1
|
Balazs I, Stadlbauer V. Circulating neutrophil anti-pathogen dysfunction in cirrhosis. JHEP Rep 2023; 5:100871. [PMID: 37822786 PMCID: PMC10562928 DOI: 10.1016/j.jhepr.2023.100871] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 10/13/2023] Open
Abstract
Neutrophils are the largest population of leucocytes and are among the first cells of the innate immune system to fight against intruding pathogens. In patients with cirrhosis, neutrophils exhibit altered functionality, including changes in phagocytic ability, bacterial killing, chemotaxis, degranulation, reactive oxygen species production and NET (neutrophil extracellular trap) formation. This results in their inability to mount an adequate antibacterial response and protect the individual from infection. Prognosis and survival in patients with cirrhosis are greatly influenced by the development of infectious complications. Multidrug-resistant bacterial infections in patients with cirrhosis are currently a growing problem worldwide; therefore, alternative methods for the prevention and treatment of bacterial infections in cirrhosis are urgently needed. The prevention and treatment of neutrophil dysfunction could be a potential way to protect patients from bacterial infections. However, the reasons for changes in neutrophil function in cirrhosis are still not completely understood, which limits the development of efficient therapeutic strategies. Both cellular and serum factors have been proposed to contribute to the functional impairment of neutrophils. Herein, we review the current knowledge on features and proposed causes of neutrophil dysfunction in cirrhosis, with a focus on current knowledge gaps and limitations, as well as opportunities for future investigations in this field.
Collapse
Affiliation(s)
- Irina Balazs
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Vanessa Stadlbauer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| |
Collapse
|
2
|
Keuler T, Wolf V, Lemke C, Voget R, Braune A, Gütschow M. Fluorogenic substrates and pre-column derivatization for monitoring the activity of bile salt hydrolase from Clostridium perfringens. Bioorg Chem 2023; 138:106574. [PMID: 37163789 DOI: 10.1016/j.bioorg.2023.106574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
The bile acid pool has a profound impact on human health and disease. The intestinal microbiota initiates the metabolism of conjugated bile acids through a critical first step catalyzed by bacterial bile salt hydrolase (BSH) and provides unique contributions to the diversity of bile acids. There has been great interest in surveying BSH activity. We compared two substrates with either 2-(7-amino-4-methyl-coumarinyl)acetic acid or 7-amino-4-methyl-coumarin as fluorescent reporters of BSH activity. The BSH-catalyzed conversion of the natural substrate taurocholic acid was followed through an HPLC-based assay by applying 7-nitrobenzo[c][1,2,5]oxadiazole as scavenger for taurine, released in the enzymatic reaction. Hence, a new opportunity to monitor the activity of bile salt hydrolases was introduced.
Collapse
Affiliation(s)
- Tim Keuler
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Valentina Wolf
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Carina Lemke
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Rabea Voget
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Annett Braune
- Research Group Intestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany.
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| |
Collapse
|
3
|
Abstract
Bile acid biotransformation is a collaborative effort by the host and the gut microbiome. Host hepatocytes synthesize primary bile acids from cholesterol. Once these host-derived primary bile acids enter the gastrointestinal tract, the gut microbiota chemically modify them into secondary bile acids. Interest into the gut-bile acid-host axis is expanding in diverse fields including gastroenterology, endocrinology, oncology, and infectious disease. This review aims to 1) describe the physiologic aspects of collaborative bile acid metabolism by the host and gut microbiota; 2) to evaluate how gut microbes influence bile acid pools, and in turn how bile acid pools modulate the gut microbial community structure; 3) to compare species differences in bile acid pools; and lastly, 4) discuss the effects of ursodeoxycholic acid (UDCA) administration, a common therapeutic bile acid, on the gut microbiota-bile acid-host axis.
Collapse
Affiliation(s)
- Jenessa A. Winston
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA,CONTACT Casey M. Theriot Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Research Building 406, 1060 William Moore Drive, Raleigh, NC 27607, USA
| |
Collapse
|
4
|
Ciocan D, Voican CS, Wrzosek L, Hugot C, Rainteau D, Humbert L, Cassard AM, Perlemuter G. Bile acid homeostasis and intestinal dysbiosis in alcoholic hepatitis. Aliment Pharmacol Ther 2018; 48:961-974. [PMID: 30144108 DOI: 10.1111/apt.14949] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/25/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Intestinal microbiota plays an important role in bile acid homeostasis. AIM To study the structure of the intestinal microbiota and its function in bile acid homeostasis in alcoholic patients based on the severity of alcoholic liver disease. METHODS In this prospective study, we included four groups of active alcoholic patients (N = 108): two noncirrhotic, with (noCir_AH, n = 13) or without alcoholic hepatitis (noCir_noAH, n = 61), and two cirrhotic, with (Cir_sAH, n = 17) or without severe alcoholic hepatitis (Cir_noAH, n = 17). Plasma and faecal bile acid profiles and intestinal microbiota composition were assessed. RESULTS Plasma levels of total bile acids (84.6 vs 6.8 μmol/L, P < 0.001) and total ursodeoxycholic acid (1.3 vs 0.3 μmol/L, P = 0.03) were higher in cirrhosis with severe alcoholic hepatitis (Cir_sAH) than Cir_noAH, whereas total faecal (2.4 vs 11.3, P = 0.01) and secondary bile acids (0.7 vs 10.7, P < 0.01) levels were lower. Cir_sAH patients had a different microbiota than Cir_noAH patients: at the phyla level, the abundance of Actinobacteria (9 vs 1%, P = 0.01) was higher and that of Bacteroidetes was lower (25 vs 40%, P = 0.04). Moreover, the microbiota of Cir_sAH patients showed changes in the abundance of genes involved in 15 metabolic pathways, including upregulation of glutathione metabolism, and downregulation of biotin metabolism. CONCLUSIONS Patients with Cir_sAH show specific changes of the bile acid pool with a shift towards more hydrophobic and toxic species that may be responsible for the specific microbiota changes. Conversely, the microbiota may also alter the bile acid pool by transforming primary to secondary bile acids, leading to a vicious cycle.
Collapse
Affiliation(s)
- Dragos Ciocan
- Inflammation Chimiokines et Immunopathologie, DHU Hepatinov, Faculté de Médecine-Université Paris-Sud/Université Paris-Saclay, INSERM, UMR-S 996, Clamart, France
| | - Cosmin Sebastian Voican
- Inflammation Chimiokines et Immunopathologie, DHU Hepatinov, Faculté de Médecine-Université Paris-Sud/Université Paris-Saclay, INSERM, UMR-S 996, Clamart, France.,AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| | - Laura Wrzosek
- Inflammation Chimiokines et Immunopathologie, DHU Hepatinov, Faculté de Médecine-Université Paris-Sud/Université Paris-Saclay, INSERM, UMR-S 996, Clamart, France.,AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| | - Cindy Hugot
- Inflammation Chimiokines et Immunopathologie, DHU Hepatinov, Faculté de Médecine-Université Paris-Sud/Université Paris-Saclay, INSERM, UMR-S 996, Clamart, France
| | - Dominique Rainteau
- UPMC Université Paris 6, Sorbonne Universités, Paris, France.,Inflammation-Immunopathology-Biotherapy Department (DHU i2B), INSERM-ERL 1157, Paris, France.,UMR 7203, Laboratoire des Biomolécules, UPMC/CNRS/ENS, Paris, France.,Département PM2 Plateforme de Métabolomique, APHP, Hôpital Saint Antoine, Peptidomique et dosage de Médicaments, Paris, France
| | - Lydie Humbert
- UPMC Université Paris 6, Sorbonne Universités, Paris, France.,Inflammation-Immunopathology-Biotherapy Department (DHU i2B), INSERM-ERL 1157, Paris, France.,UMR 7203, Laboratoire des Biomolécules, UPMC/CNRS/ENS, Paris, France
| | - Anne-Marie Cassard
- Inflammation Chimiokines et Immunopathologie, DHU Hepatinov, Faculté de Médecine-Université Paris-Sud/Université Paris-Saclay, INSERM, UMR-S 996, Clamart, France
| | - Gabriel Perlemuter
- Inflammation Chimiokines et Immunopathologie, DHU Hepatinov, Faculté de Médecine-Université Paris-Sud/Université Paris-Saclay, INSERM, UMR-S 996, Clamart, France.,AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| |
Collapse
|
6
|
Maillette de Buy Wenniger L, Beuers U. Bile salts and cholestasis. Dig Liver Dis 2010; 42:409-18. [PMID: 20434968 DOI: 10.1016/j.dld.2010.03.015] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 03/13/2010] [Indexed: 12/11/2022]
Abstract
Bile salts have a crucial role in hepatobiliary and intestinal homeostasis and digestion. Primary bile salts are synthesized by the liver from cholesterol, and may be modified by the intestinal flora to form secondary and tertiary bile salts. Bile salts are efficiently reabsorbed from the intestinal lumen to undergo enterohepatic circulation. In addition to their function as a surfactant involved in the absorption of dietary lipids and fat-soluble vitamins bile salts are potent signaling molecules in both the liver and intestine. Under physiological conditions the bile salt pool is tightly regulated, but the adaptive capacity may fall short under cholestatic conditions. Elevated serum and tissue levels of potentially toxic hydrophobic bile salts during cholestasis may cause mitochondrial damage, apoptosis or necrosis in susceptible cell types. Therapeutic nontoxic bile salts may restore impaired hepatobiliary secretion in cholestatic disorders. The hydrophilic bile salt ursodeoxycholate is today regarded as the effective standard treatment of primary biliary cirrhosis and intrahepatic cholestasis of pregnancy, and is implicated for use in various other cholestatic conditions. Novel therapeutic bile salts that are currently under evaluation may also prove valuable in the treatment of these diseases.
Collapse
Affiliation(s)
- Lucas Maillette de Buy Wenniger
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, The Netherlands
| | | |
Collapse
|
7
|
Abstract
In addition to their roles in facilitating lipid digestion and absorption, bile acids are recognized as important regulators of intestinal function. Exposure to bile acids can dramatically influence intestinal transport and barrier properties; in recent years, they have also become appreciated as important factors in regulating cell growth and survival. Indeed, few cells reside within the intestinal mucosa that are not altered to some degree by exposure to bile acids. The past decade saw great advances in the knowledge of how bile acids exert their actions at the cellular and molecular levels. In this review, we summarize the current understanding of the role of bile acids in regulation of intestinal physiology.
Collapse
|
8
|
Abstract
Bile acids (BAs) have a long established role in fat digestion in the intestine by acting as tensioactives, due to their amphipathic characteristics. BAs are reabsorbed very efficiently by the intestinal epithelium and recycled back to the liver via transport mechanisms that have been largely elucidated. The transport and synthesis of BAs are tightly regulated in part by specific plasma membrane receptors and nuclear receptors. In addition to their primary effect, BAs have been claimed to play a role in gastrointestinal cancer, intestinal inflammation and intestinal ionic transport. BAs are not equivalent in any of these biological activities, and structural requirements have been generally identified. In particular, some BAs may be useful for cancer chemoprevention and perhaps in inflammatory bowel disease, although further research is necessary in this field. This review covers the most recent developments in these aspects of BA intestinal biology.
Collapse
|
10
|
Picard C, Fioramonti J, Francois A, Robinson T, Neant F, Matuchansky C. Review article: bifidobacteria as probiotic agents -- physiological effects and clinical benefits. Aliment Pharmacol Ther 2005; 22:495-512. [PMID: 16167966 DOI: 10.1111/j.1365-2036.2005.02615.x] [Citation(s) in RCA: 400] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bifidobacteria, naturally present in the dominant colonic microbiota, represent up to 25% of the cultivable faecal bacteria in adults and 80% in infants. As probiotic agents, bifidobacteria have been studied for their efficacy in the prevention and treatment of a broad spectrum of animal and/or human gastrointestinal disorders, such as colonic transit disorders, intestinal infections, and colonic adenomas and cancer. The aim of this review is to focus on the gastrointestinal effects of bifidobacteria as probiotic agents in animal models and man. The traditional use of bifidobacteria in fermented dairy products and the GRAS ('Generally Recognised As Safe') status of certain strains attest to their safety. Some strains, especially Bifidobacterium animalis strain DN-173 010 which has long been used in fermented dairy products, show high gastrointestinal survival capacity and exhibit probiotic properties in the colon. Bifidobacteria are able to prevent or alleviate infectious diarrhoea through their effects on the immune system and resistance to colonization by pathogens. There is some experimental evidence that certain bifidobacteria may actually protect the host from carcinogenic activity of intestinal flora. Bifidobacteria may exert protective intestinal actions through various mechanisms, and represent promising advances in the fields of prophylaxis and therapy.
Collapse
Affiliation(s)
- C Picard
- Danone Vitapole, Centre de Recherche Daniel Carasso, Nutrivaleur, Palaiseau, France.
| | | | | | | | | | | |
Collapse
|