1
|
Chen Y, Ying J, Li Z, He ZNT, Zhan J, Liang H, Liu Y, Chen Y, Li X, Zhu T, Kuang C, Lu G, Yang Q. IDO1 inhibitors block septic cytokine storm by suppressing the IDO1-AHR-CYP1A1 axis. Biomed Pharmacother 2025; 187:118054. [PMID: 40245547 DOI: 10.1016/j.biopha.2025.118054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025] Open
Abstract
Indoleamine-2,3-dioxygenase 1 (IDO1) is the rate-limiting enzyme in tryptophan (Trp) catabolism along kynurenine (Kyn) pathway. Increased IDO1 activity has been noticed in patients with sepsis, while IDO1's involvement in sepsis, especially in the initial cytokine storm phase is not yet completely understood. Using the GEO database and clinical samples of sepsis, current study revealed that IDO1-AHR-CYP1A1 axis was significantly upregulated and closely related to cytokine storm in septic patients. With cell models of cytokine storm, it was found that IDO1 promoted cytokine storm and the apoptosis of model cells via AHR-CYP1A1, and IDO1-AHR-CYP1A1 axis correlated classic cytokine storm signal pathway including STAT3, NF-κB/STAT1, JNK/p38. With mouse models of septic cytokine storm, it was shown that IDO1 inhibitors could block the upregulated IDO1-AHR-CYP1A1 axis, reduce the enhanced inflammatory cytokine levels, decrease the phosphorylation of classic cytokine storm signal pathway, rescue organ damage, and increase survival rate. It was also found that IDO1 activation occurred after the increase of inflammatory cytokine levels. Therefore, classic cytokine storm signal pathways, inflammatory cytokines and IDO1-AHR-CYP1A1 axis form a tripartite interaction loop to promote cytokine storm. IDO1 inhibitors were able to block this process.
Collapse
Affiliation(s)
- Yunqiu Chen
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China
| | - Jiayun Ying
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Fudan University, Wanyuan Road 399, Shanghai 201102, China
| | - Zhiyao Li
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China
| | - Zhen Ning Tony He
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China
| | - Jiani Zhan
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China
| | - Heng Liang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China
| | - Yuying Liu
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China
| | - Yijia Chen
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China
| | - Xuewen Li
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China
| | - Ting Zhu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Fudan University, Wanyuan Road 399, Shanghai 201102, China
| | - Chunxiang Kuang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Guoping Lu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Fudan University, Wanyuan Road 399, Shanghai 201102, China; Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Dongan Road 130, Shanghai 200032, China.
| | - Qing Yang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China.
| |
Collapse
|
2
|
Luo C, Yang Y, Jiang C, Lv A, Zuo W, Ye Y, Ke J. Influenza and the gut microbiota: A hidden therapeutic link. Heliyon 2024; 10:e37661. [PMID: 39315196 PMCID: PMC11417228 DOI: 10.1016/j.heliyon.2024.e37661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/31/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024] Open
Abstract
Background The extensive community of gut microbiota significantly influences various biological functions throughout the body, making its characterization a focal point in biomedicine research. Over the past few decades, studies have revealed a potential link between specific gut bacteria, their associated metabolic pathways, and influenza. Bacterial metabolites can communicate directly or indirectly with organs beyond the gut via the intestinal barrier, thereby impacting the physiological functions of the host. As the microbiota increasingly emerges as a 'gut signature' in influenza, gaining a deeper understanding of its role may offer new insights into its pathophysiological relevance and open avenues for novel therapeutic targets. In this Review, we explore the differences in gut microbiota between healthy individuals and those with influenza, the relationship between gut microbiota metabolites and influenza, and potential strategies for preventing and treating influenza through the regulation of gut microbiota and its metabolites, including fecal microbiota transplantation and microecological preparations. Methods We utilized PubMed and Web of Science as our search databases, employing keywords such as "influenza," "gut microbiota," "traditional Chinese medicine," "metabolites," "prebiotics," "probiotics," and "machine learning" to retrieve studies examining the potential therapeutic connections between the modulation of gut microbiota and its metabolites in the treatment of influenza. The search encompassed literature from the inception of the databases up to December 2023. Results Fecal microbiota transplantation (FMT), microbial preparations (probiotics and prebiotics), and traditional Chinese medicine have unique advantages in regulating intestinal microbiota and its metabolites to improve influenza outcomes. The primary mechanism involves increasing beneficial intestinal bacteria such as Bacteroidetes and Bifidobacterium while reducing harmful bacteria such as Proteobacteria. These interventions act directly or indirectly on metabolites such as short-chain fatty acids (SCFAs), amino acids (AAs), bile acids, and monoamines to alleviate lung inflammation, reduce viral load, and exert anti-influenza virus effects. Conclusion The gut microbiota and its metabolites have direct or indirect therapeutic effects on influenza, presenting broad research potential for providing new directions in influenza research and offering references for clinical prevention and treatment. Future research should focus on identifying key strains, specific metabolites, and immune regulation mechanisms within the gut microbiota to accurately target microbiota interventions and prevent respiratory viral infections such as influenza.
Collapse
Affiliation(s)
- Cheng Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Yi Yang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Academy of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Cheng Jiang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Academy of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Anqi Lv
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Wanzhao Zuo
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Yuanhang Ye
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Jia Ke
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Academy of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, 430074, China
| |
Collapse
|
3
|
Bouzari B, Chugaeva UY, Karampoor S, Mirzaei R. Immunometabolites in viral infections: Action mechanism and function. J Med Virol 2024; 96:e29807. [PMID: 39037069 DOI: 10.1002/jmv.29807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/10/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
The interplay between viral pathogens and host metabolism plays a pivotal role in determining the outcome of viral infections. Upon viral detection, the metabolic landscape of the host cell undergoes significant changes, shifting from oxidative respiration via the tricarboxylic acid (TCA) cycle to increased aerobic glycolysis. This metabolic shift is accompanied by elevated nutrient accessibility, which is vital for cell function, development, and proliferation. Furthermore, depositing metabolites derived from fatty acids, TCA intermediates, and amino acid catabolism accelerates the immunometabolic transition, facilitating pro-inflammatory and antimicrobial responses. Immunometabolites refer to small molecules involved in cellular metabolism regulating the immune response. These molecules include nutrients, such as glucose and amino acids, along with metabolic intermediates and signaling molecules adenosine, lactate, itaconate, succinate, kynurenine, and prostaglandins. Emerging evidence suggests that immunometabolites released by immune cells establish a complex interaction network within local niches, orchestrating and fine-tuning immune responses during viral diseases. However, our current understanding of the immense capacity of metabolites to convey essential cell signals from one cell to another or within cellular compartments remains incomplete. Unraveling these complexities would be crucial for harnessing the potential of immunometabolites in therapeutic interventions. In this review, we discuss specific immunometabolites and their mechanisms of action in viral infections, emphasizing recent findings and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Williams EP, Nandi A, Nam V, Allen LJS, Trindade AA, Kosiewicz MM, Jonsson CB. Modeling the Immune Response for Pathogenic and Nonpathogenic Orthohantavirus Infections in Human Lung Microvasculature Endothelial Cells. Viruses 2023; 15:1806. [PMID: 37766212 PMCID: PMC10535571 DOI: 10.3390/v15091806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Hantaviruses, genus Orthohantavirus, family Hantaviridae, order Bunyavirales, are negative-sense, single-stranded, tri-segmented RNA viruses that persistently infect rodents, shrews, and moles. Of these, only certain virus species harbored by rodents are pathogenic to humans. Infection begins with inhalation of virus particles into the lung and trafficking to the lung microvascular endothelial cells (LMVEC). The reason why certain rodent-borne hantavirus species are pathogenic has long been hypothesized to be related to their ability to downregulate and dysregulate the immune response as well as increase vascular permeability of infected endothelial cells. We set out to study the temporal dynamics of host immune response modulation in primary human LMVECs following infection by Prospect Hill (nonpathogenic), Andes (pathogenic), and Hantaan (pathogenic) viruses. We measured the level of RNA transcripts for genes representing antiviral, proinflammatory, anti-inflammatory, and metabolic pathways from 12 to 72 h with time points every 12 h. Gene expression analysis in conjunction with mathematical modeling revealed a similar profile for all three viruses in terms of upregulated genes that partake in interferon signaling (TLR3, IRF7, IFNB1), host immune cell recruitment (CXCL10, CXCL11, and CCL5), and host immune response modulation (IDO1). We examined secreted protein levels of IFN-β, CXCL10, CXCL11, CCL5, and IDO in two male and two female primary HLMVEC donors at 48 and 60 h post infection. All three viruses induced similar levels of CCL5, CXCL10, and CXCL11 within a particular donor, and the levels were similar in three of the four donors. All three viruses induced different protein secretion levels for both IFN-β and IDO and secretion levels differed between donors. In conclusion, we show that there was no difference in the transcriptional profiles of key genes in primary HLMVECs following infection by pathogenic and nonpathogenic hantaviruses, with protein secretion levels being more donor-specific than virus-specific.
Collapse
Affiliation(s)
- Evan P. Williams
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Aadrita Nandi
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA; (A.N.); (V.N.); (L.J.S.A.); (A.A.T.)
| | - Victoria Nam
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA; (A.N.); (V.N.); (L.J.S.A.); (A.A.T.)
| | - Linda J. S. Allen
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA; (A.N.); (V.N.); (L.J.S.A.); (A.A.T.)
| | - A. Alexandre Trindade
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA; (A.N.); (V.N.); (L.J.S.A.); (A.A.T.)
| | - Michele M. Kosiewicz
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA;
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| |
Collapse
|
5
|
Tamminen P, Kerimov D, Viskari H, Aittoniemi J, Syrjänen J, Lehtimäki L. Nasal nitric oxide is decreased in acute mild COVID-19 and related to viral load. J Breath Res 2022; 16. [PMID: 35772381 DOI: 10.1088/1752-7163/ac7d6a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/30/2022] [Indexed: 11/12/2022]
Abstract
Gaseous nitric oxide levels from the lungs (FeNO) and from the nose (nNO) have been demonstrated to react to acute infection or influenza vaccination. There are no published data on nNO levels during acute COVID-19, but normal levels of FeNO have been reported in one study. Our aim was to assess if acute mild COVID-19 alters nasal or bronchial NO output at the time of acute infection and at a 2-month follow up, and if this is related to symptoms or viral load. This study included 82 subjects with mild acute airway infection who did not need hospitalisation: 43 cases (RT-PCR-positive for SARS-CoV-2 in routine testing from nasopharynx) and 39 age- (+/- 5 years) and gender-matched controls (RT-PCR-negative for SARS-CoV-2). During acute infection, the cases had lower nNO compared to controls (526 [345-688] vs. 773 [677-929] ppb; p<0.001), but after two months, there was no significant difference between the groups (766 [597-965] vs. 893 [739-1066] ppb; p=0.162). There was no difference in FeNO between the groups at either of the visits. Nasal NO correlated with the cycle threshold (Ct) value of the nasopharyngeal RT-PCR test for SARS-CoV-2 (Spearman's rs=0.550; p<0.001), that is, nNO was lower with a higher viral load. Nasal NO output was decreased in acute COVID-19 in relation to higher viral load, suggesting that the type and intensity of inflammatory response affects the release of NO from airway mucosa. In these subjects without significant lower airway involvement, there were no clinically relevant findings regarding FeNO.
Collapse
Affiliation(s)
- Pekka Tamminen
- Tampere University Hospital, Elämänaukio 2, Tampere, 33521, FINLAND
| | - Dominik Kerimov
- Department of Clinical Microbiology, Fimlab Laboratories, Arvo Ylpön Katu 4, Tampere, 33520, FINLAND
| | - Hanna Viskari
- Tampere University Hospital, Elämänaukio 2, Tampere, Pirkanmaa, 33521, FINLAND
| | - Janne Aittoniemi
- Department of Clinical Microbiology, Fimlab Laboratories, Arvo Ylpön Katu 4, Tampere, 33520, FINLAND
| | - Jaana Syrjänen
- Department of Internal Medicine, Tampere University Hospital, Elämänaukio 2, Tampere, Pirkanmaa, 33521, FINLAND
| | - Lauri Lehtimäki
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, Tampere, 33520, FINLAND
| |
Collapse
|
6
|
Spatial Metabolomics Reveals Localized Impact of Influenza Virus Infection on the Lung Tissue Metabolome. mSystems 2022; 7:e0035322. [PMID: 35730946 PMCID: PMC9426520 DOI: 10.1128/msystems.00353-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The influenza virus (IAV) is a major cause of respiratory disease, with significant infection increases in pandemic years. Vaccines are a mainstay of IAV prevention but are complicated by IAV’s vast strain diversity and manufacturing and vaccine uptake limitations. While antivirals may be used for treatment of IAV, they are most effective in early stages of the infection, and several virus strains have become drug resistant. Therefore, there is a need for advances in IAV treatment, especially host-directed therapeutics. Given the spatial dynamics of IAV infection and the relationship between viral spatial distribution and disease severity, a spatial approach is necessary to expand our understanding of IAV pathogenesis. We used spatial metabolomics to address this issue. Spatial metabolomics combines liquid chromatography-tandem mass spectrometry of metabolites extracted from systematic organ sections, 3D models, and computational techniques to develop spatial models of metabolite location and their role in organ function and disease pathogenesis. In this project, we analyzed serum and systematically sectioned lung tissue samples from uninfected or infected mice. Spatial mapping of sites of metabolic perturbations revealed significantly lower metabolic perturbation in the trachea compared to other lung tissue sites. Using random forest machine learning, we identified metabolites that responded differently in each lung position based on infection, including specific amino acids, lipids and lipid-like molecules, and nucleosides. These results support the implementation of spatial metabolomics to understand metabolic changes upon respiratory virus infection. IMPORTANCE The influenza virus is a major health concern. Over 1 billion people become infected annually despite the wide distribution of vaccines, and antiviral agents are insufficient to address current clinical needs. In this study, we used spatial metabolomics to understand changes in the lung and serum metabolome of mice infected with influenza A virus compared to uninfected controls. We determined metabolites altered by infection in specific lung tissue sites and distinguished metabolites perturbed by infection between lung tissue and serum samples. Our findings highlight the utility of a spatial approach to understanding the intersection between the lung metabolome, viral infection, and disease severity. Ultimately, this approach will expand our understanding of respiratory disease pathogenesis.
Collapse
|
7
|
Masoodi M, Peschka M, Schmiedel S, Haddad M, Frye M, Maas C, Lohse A, Huber S, Kirchhof P, Nofer JR, Renné T. Disturbed lipid and amino acid metabolisms in COVID-19 patients. J Mol Med (Berl) 2022; 100:555-568. [PMID: 35064792 PMCID: PMC8783191 DOI: 10.1007/s00109-022-02177-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022]
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic is overwhelming the healthcare systems. Identification of systemic reactions underlying COVID-19 will lead to new biomarkers and therapeutic targets for monitoring and early intervention in this viral infection. We performed targeted metabolomics covering up to 630 metabolites within several key metabolic pathways in plasma samples of 20 hospitalized COVID-19 patients and 37 matched controls. Plasma metabolic signatures specifically differentiated severe COVID-19 from control patients. The identified metabolic signatures indicated distinct alterations in both lipid and amino acid metabolisms in COVID-19 compared to control patient plasma. Systems biology-based analyses identified sphingolipid, tryptophan, tyrosine, glutamine, arginine, and arachidonic acid metabolism as mostly impacted pathways in COVID-19 patients. Notably, gamma-aminobutyric acid (GABA) was significantly reduced in COVID-19 patients and GABA plasma levels allowed for stratification of COVID-19 patients with high sensitivity and specificity. The data reveal large metabolic disturbances in COVID-19 patients and suggest use of GABA as potential biomarker and therapeutic target for the infection.
Collapse
Affiliation(s)
- Mojgan Masoodi
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Manuela Peschka
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20251, Hamburg, Germany
| | - Stefan Schmiedel
- Center for Internal Medicine, Clinic of Gastroenterology, Infectiology and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Munif Haddad
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20251, Hamburg, Germany
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20251, Hamburg, Germany
| | - Coen Maas
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, University, Utrecht, the Netherlands
| | - Ansgar Lohse
- Center for Internal Medicine, Clinic of Gastroenterology, Infectiology and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Center for Internal Medicine, Clinic of Gastroenterology, Infectiology and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center UKE Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lubeck, Hamburg, Germany
| | - Jerzy-Roch Nofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20251, Hamburg, Germany
- Central Laboratory Facility, University Hospital Münster, Münster, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20251, Hamburg, Germany.
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany.
| |
Collapse
|
8
|
Jain A. Olfactory Nasal Nitric Oxide Link in COVID-19: A Marker of Neurogenesis or Risk Factor for Chronic Rhinosinusitis? Am J Respir Crit Care Med 2021; 204:1345-1347. [PMID: 34491873 PMCID: PMC8786068 DOI: 10.1164/rccm.202107-1697le] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Amit Jain
- Cleveland Clinic Abu Dhabi Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Mok DZL, Chan CYY, Ooi EE, Chan KR. The effects of aging on host resistance and disease tolerance to SARS-CoV-2 infection. FEBS J 2021; 288:5055-5070. [PMID: 33124149 PMCID: PMC8518758 DOI: 10.1111/febs.15613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 01/08/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a large-scale pandemic that is afflicting millions of individuals in over 200 countries. The clinical spectrum caused by SARS-CoV-2 infections can range from asymptomatic infection to mild undifferentiated febrile illness to severe respiratory disease with multiple complications. Elderly patients (aged 60 and above) with comorbidities such as cardiovascular diseases and diabetes mellitus appear to be at highest risk of a severe disease outcome. To protect against pulmonary immunopathology caused by SARS-CoV-2 infection, the host primarily depends on two distinct defense strategies: resistance and disease tolerance. Resistance is the ability of the host to suppress and eliminate incoming viruses. By contrast, disease tolerance refers to host responses that promote host health regardless of their impact on viral replication. Disruption of either resistance or disease tolerance mechanisms or both could underpin predisposition to elevated risk of severe disease during viral infection. Aging can disrupt host resistance and disease tolerance by compromising immune functions, weakening of the unfolded protein response, progressive mitochondrial dysfunction, and altering metabolic processes. A comprehensive understanding of the molecular mechanisms underlying declining host defense in elderly individuals could thus pave the way to provide new opportunities and approaches for the treatment of severe COVID-19.
Collapse
Affiliation(s)
- Darren Z. L. Mok
- Emerging Infectious Diseases ProgramDuke‐NUS Medical SchoolSingaporeSingapore
| | | | - Eng Eong Ooi
- Emerging Infectious Diseases ProgramDuke‐NUS Medical SchoolSingaporeSingapore
- Viral Research & Experimental Medicine Center @ SingHealth/Duke‐NUS (ViREMiCS)SingaporeSingapore
- Singapore‐MIT Alliance in Research and TechnologyAntimicrobial Resistance Interdisciplinary Research GroupSingaporeSingapore
- Saw Swee Hock School of Public HealthNational University of SingaporeSingapore
- Department of Microbiology and ImmunologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Kuan Rong Chan
- Emerging Infectious Diseases ProgramDuke‐NUS Medical SchoolSingaporeSingapore
| |
Collapse
|
10
|
Nasopharyngeal metabolomics and machine learning approach for the diagnosis of influenza. EBioMedicine 2021; 71:103546. [PMID: 34419924 PMCID: PMC8385175 DOI: 10.1016/j.ebiom.2021.103546] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/03/2022] Open
Abstract
Background Respiratory virus infections are significant causes of morbidity and mortality, and may induce host metabolite alterations by infecting respiratory epithelial cells. We investigated the use of liquid chromatography quadrupole time-of-flight mass spectrometry (LC/Q-TOF) combined with machine learning for the diagnosis of influenza infection. Methods We analyzed nasopharyngeal swab samples by LC/Q-TOF to identify distinct metabolic signatures for diagnosis of acute illness. Machine learning models were performed for classification, followed by Shapley additive explanation (SHAP) analysis to analyze feature importance and for biomarker discovery. Findings A total of 236 samples were tested in the discovery phase by LC/Q-TOF, including 118 positive samples (40 influenza A 2009 H1N1, 39 influenza H3 and 39 influenza B) as well as 118 age and sex-matched negative controls with acute respiratory illness. Analysis showed an area under the receiver operating characteristic curve (AUC) of 1.00 (95% confidence interval [95% CI] 0.99, 1.00), sensitivity of 1.00 (95% CI 0.86, 1.00) and specificity of 0.96 (95% CI 0.81, 0.99). The metabolite most strongly associated with differential classification was pyroglutamic acid. Independent validation of a biomarker signature based on the top 20 differentiating ion features was performed in a prospective cohort of 96 symptomatic individuals including 48 positive samples (24 influenza A 2009 H1N1, 5 influenza H3 and 19 influenza B) and 48 negative samples. Testing performed using a clinically-applicable targeted approach, liquid chromatography triple quadrupole mass spectrometry, showed an AUC of 1.00 (95% CI 0.998, 1.00), sensitivity of 0.94 (95% CI 0.83, 0.98), and specificity of 1.00 (95% CI 0.93, 1.00). Limitations include lack of sample suitability assessment, and need to validate these findings in additional patient populations. Interpretation This metabolomic approach has potential for diagnostic applications in infectious diseases testing, including other respiratory viruses, and may eventually be adapted for point-of-care testing.
Collapse
|
11
|
Rijsbergen LC, van Dijk LLA, Engel MFM, de Vries RD, de Swart RL. In Vitro Modelling of Respiratory Virus Infections in Human Airway Epithelial Cells - A Systematic Review. Front Immunol 2021; 12:683002. [PMID: 34489934 PMCID: PMC8418200 DOI: 10.3389/fimmu.2021.683002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Respiratory tract infections (RTI) are a major cause of morbidity and mortality in humans. A large number of RTIs is caused by viruses, often resulting in more severe disease in infants, elderly and the immunocompromised. Upon viral infection, most individuals experience common cold-like symptoms associated with an upper RTI. However, in some cases a severe and sometimes life-threatening lower RTI may develop. Reproducible and scalable in vitro culture models that accurately reflect the human respiratory tract are needed to study interactions between respiratory viruses and the host, and to test novel therapeutic interventions. Multiple in vitro respiratory cell culture systems have been described, but the majority of these are based on immortalized cell lines. Although useful for studying certain aspects of viral infections, such monomorphic, unicellular systems fall short in creating an understanding of the processes that occur at an integrated tissue level. Novel in vitro models involving primary human airway epithelial cells and, more recently, human airway organoids, are now in use. In this review, we describe the evolution of in vitro cell culture systems and their characteristics in the context of viral RTIs, starting from advances after immortalized cell cultures to more recently developed organoid systems. Furthermore, we describe how these models are used in studying virus-host interactions, e.g. tropism and receptor studies as well as interactions with the innate immune system. Finally, we provide an outlook for future developments in this field, including co-factors that mimic the microenvironment in the respiratory tract.
Collapse
Affiliation(s)
- Laurine C. Rijsbergen
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Laura L. A. van Dijk
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Maarten F. M. Engel
- Medical Library, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Rik L. de Swart
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
12
|
Marim FM, Teixeira DC, Queiroz-Junior CM, Valiate BVS, Alves-Filho JC, Cunha TM, Dantzer R, Teixeira MM, Teixeira AL, Costa VV. Inhibition of Tryptophan Catabolism Is Associated With Neuroprotection During Zika Virus Infection. Front Immunol 2021; 12:702048. [PMID: 34335614 PMCID: PMC8320694 DOI: 10.3389/fimmu.2021.702048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/30/2021] [Indexed: 01/19/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus belonging to Flaviviridae family that emerged as a global health threat due to its association with microcephaly and other severe neurological complications, including Guillain-Barré Syndrome (GBS) and Congenital Zika Syndrome (CZS). ZIKV disease has been linked to neuroinflammation and neuronal cell death. Neurodegenerative processes may be exacerbated by metabolites produced by the kynurenine pathway, an important pathway for the degradation of tryptophan, which induces neuronal dysfunction due to enhanced excitotoxicity. Here, we exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking a target enzyme of the kynurenine pathway, the Indoleamine 2,3-dioxygenase (IDO-1). RT-PCR analysis showed increased levels of IDO-1 RNA expression in undifferentiated primary neurons isolated from wild type (WT) mice infected by ZIKV ex vivo, as well as in the brain of ZIKV-infected A129 mice. Pharmacological inhibition of IDO-1 enzyme with 1-methyl-D-tryptophan (1-MT), in both in vitro and in vivo systems, led to significant reduction of ZIKV-induced neuronal death without interfering with the ability of ZIKV to replicate in those cells. Furthermore, in vivo analyses using both genetically modified mice (IDO-/- mice) and A129 mice treated with 1-MT resulted in reduced microgliosis, astrogliosis and Caspase-3 positive cells in the brain of ZIKV-infected A129 mice. Interestingly, increased levels of CCL5 and CXCL-1 chemokines were found in the brain of 1-MT treated-mice. Together, our data indicate that IDO-1 blockade provides a neuroprotective effect against ZIKV-induced neurodegeneration, and this is amenable to inhibition by pharmacological treatment.
Collapse
Affiliation(s)
- Fernanda Martins Marim
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Research Group in Arboviral Diseases, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Center for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Danielle Cunha Teixeira
- Research Group in Arboviral Diseases, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Center for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso Martins Queiroz-Junior
- Research Group in Arboviral Diseases, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Center for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departament of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruno Vinicius Santos Valiate
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Center for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jose Carlos Alves-Filho
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thiago Mattar Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Research Group in Arboviral Diseases, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Center for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antonio Lucio Teixeira
- Department of Psychiatry and Behavioral Sciences, McGovern Medical Houston, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Vivian Vasconcelos Costa
- Research Group in Arboviral Diseases, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Center for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departament of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|