1
|
Zhang Q, Chen B, Ma Q, Fang Z, Li S, He X, Wang Y, Qi X, Chen Q, Cai T, Zhang L, Zou M, Wang C, Ma Q. Single-atom oxide-decorated AuNPs for universal enhancement in SERS detection of pesticide residues. Anal Chim Acta 2024; 1329:343192. [PMID: 39396282 DOI: 10.1016/j.aca.2024.343192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND In the context of modern agriculture, the proliferation of chemical use calls for enhanced pesticide detection to safeguard food quality and public health. The development of accurate testing methodologies is imperative to mitigate the environmental impact of pesticides and ensure the integrity of ecosystems, thereby reflecting the pressing need for advancements in agricultural safety protocols. Therefore, the development of highly sensitive monitoring technology for detecting pesticide residues in agricultural products is necessary for safeguarding human health, ensuring food safety, and maintaining environmental sustainability. RESULTS Herein, a controllable surface charge on single tungsten atom-modified gold nanoparticles was used to create an electrostatic force with positively charged pesticide residues. Moreover, hydrogen bonds formed by single-atom sites can induce analyte-adsorbed nanoparticle aggregation, and the sizes of single-tungsten-atom-decorated AuNPs can maintain a gap between each other, resulting in improved SERS detection sensitivity through analyte enrichment at gold nanoparticle hotspots. In terms of the detection limits for pesticide residue analysis, we can effectively achieve an ultrahigh sensitivity of 0.1 ppb for acetamiprid, paraquat and carbendazim, which is among the best SERS sensitivities at the state of the art. For apple sample analysis, our work demonstrated good reproductivity (RSD<6 %) and a strong linear relationship (R2 ≥ 0.97) for 4 pesticide residues after optimizing the pretreatment process, which proves the enormous potential in quantitative analysis. SIGNIFICANCE Single-atom sites hotspot are firstly successfully achieved and uniformly dispersed between Au nanoparticle, which can effectively increase the sensitivity, keep stability of the Raman scattering signals and possess a significant improvement beyond that of undecorated hotspots when applied in pesticide residue detection. This method can be employed as a universal strategy to capture pesticide residues at hotspots for SERS detection.
Collapse
Affiliation(s)
- Qi Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, 100123, China
| | - Binbin Chen
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Qingbian Ma
- Peking University Third Hospital, Beijing, 100191, China
| | - Zunlong Fang
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Shu Li
- Peking University Third Hospital, Beijing, 100191, China
| | - Xiaoyu He
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yufeng Wang
- Chinese Academy of Inspection and Quarantine, Beijing, 100123, China
| | - Xiaohua Qi
- Chinese Academy of Inspection and Quarantine, Beijing, 100123, China.
| | - Qian Chen
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315012, China
| | - Ting Cai
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315012, China
| | - Lin Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Mingqiang Zou
- Chinese Academy of Inspection and Quarantine, Beijing, 100123, China
| | - Cong Wang
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315012, China.
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, 100123, China
| |
Collapse
|
2
|
Kitaw SL, Birhan YS, Tsai HC. Plasmonic surface-enhanced Raman scattering nano-substrates for detection of anionic environmental contaminants: Current progress and future perspectives. ENVIRONMENTAL RESEARCH 2023; 221:115247. [PMID: 36640935 DOI: 10.1016/j.envres.2023.115247] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman scattering spectroscopy (SERS) is a powerful technique of vibrational spectroscopy based on the inelastic scattering of incident photons by molecular species. It has unique properties such as ultra-sensitivity, selectivity, non-destructivity, speed, and fingerprinting properties for analytical and sensing applications. This enables SERS to be widely used in real-world sample analysis and basic plasmonic mechanistic studies. However, the desirable properties of SERS are compromised by the high cost and low reproducibility of the signals. The development of multifunctional, stable and reusable nano-engineered SERS substrates is a viable solution to circumvent these drawbacks. Recently, plasmonic SERS active nano-substrates with various morphologies have attracted the attention of researchers due to promising properties such as the formation of dense hot spots, additional stability, tunable and controlled morphology, and surface functionalization. This comprehensive review focused on the current advances in the field of SERS active nanosubstrates suitable for the detection and quantification of anionic environmental pollutants. The common fabrication methods, including the techniques for morphological adjustments and surface modification, substrate categories, and the design of nanotechnologically fabricated plasmonic SERS substrates for anion detection are systematically presented. Here, the need for the design, synthesis, and functionalization of SERS nano-substrates for anions of great environmental importance is explained in detail. In addition, the broad categories of SERS nano-substrates, namely colloid-based SERS substrates and solid-support SERS substrates are discussed. Moreover, a brief discussion of SERS detection of certain anionic pollutants in the environment is presented. Finally, the prospects in the fabrication and commercialization of pilot-scale handheld SERS sensors and the construction of smart nanosubstrates integrated with novel amplifying materials for the detection of anions of environmental and health concern are proposed.
Collapse
Affiliation(s)
- Sintayehu Leshe Kitaw
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, ROC
| | - Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan, 320, Taiwan, ROC.
| |
Collapse
|
3
|
Xu R, Dai S, Dou M, Yang J, Wang X, Liu X, Wei C, Li Q, Li J. Simultaneous, Label-Free and High-throughput SERS Detection of Multiple Pesticides on Ag@Three-Dimensional Silica Photonic Microsphere Array. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3050-3059. [PMID: 36734836 DOI: 10.1021/acs.jafc.2c07846] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rapid identification and quantitative simultaneous analysis for multiple pesticide in real samples based on surface-enhanced Raman spectroscopy (SERS) is still a challenge because of sample complexity, reproducibility, and stability of SERS substrate. With use of colloidal silver nanoparticles loaded three-dimensional (3D) silica photonic microspheres (SPMs) array as the analytical platform, a SERS-based array assay for multiple pesticides was developed in this work. The silver nanoparticles were fixed into the gaps formed by the self-assembled nanospheres of the 3D SPMs to produce "hot spots", on which the Raman enhanced effect was up to 9.86 × 107 and the maximum electric field enhancement effect reached to 9.75 times, ensuring the target pesticides on the surface of the SERS-substrate integrated SPM can be detected sensitively. Using 2,4-dichlorophenoxyacetic acid (2,4-D), glyphosate, and imidacloprid as the testing pesticides, the label-free and high-throughput SERS assay for simultaneous detection of the pesticides was established, giving good linear detection ranges (0.1-204.8 μg/mL for 2,4-D, 0.3-247.9 μg/mL for glyphosate, and 0.2-204.8 μg/mL for imidacloprid) and low detection limits (3.03 ng/mL for 2,4-D, 3.14 ng/mL for glyphosate, and 8.82 ng/mL for imidacloprid). The spiked recovery rates in the real samples were measured in the range of 82-112%, which was consistent with that of the classical standard methods. The label-free 3D SERS array analytical platform provides a powerful tool for high-throughput and low-cost screening of multiple pesticide residues in real samples.
Collapse
Affiliation(s)
- Ruimin Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing210023, China
| | - Shijie Dai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing210023, China
| | - Menghua Dou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing210023, China
| | - Jing Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing210023, China
| | - Xiu Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing210023, China
| | - Xiaomeng Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing210023, China
| | - Chenhong Wei
- Anhui Costar Biochemical Company Ltd., Dangtu243100, Anhui, China
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing210023, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing210023, China
| |
Collapse
|
4
|
Development of a New Screen-Printed Transducer for the Electrochemical Detection of Thiram. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9110303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new transducer based on a screen-printed carbon electrode has been developed for the quantification of thiram. Detection of this fungicide is based on the performance of two enzymes: (1) aldehyde dehydrogenase catalyzes the aldehyde oxidation using NAD+ as a cofactor and simultaneously, (2) diaphorase reoxidizes the NADH formed in the first enzymatic process due to the presence of hexacyanoferrate(III) which is reduced to hexacyanoferrate(II). Taking into account that aldehyde dehydrogenase is inhibited by thiram, the current decreases with pesticide concentration and thiram can be electrochemically quantified below legal limits. The transducer proposed in this work involves the modification of the carbon WE with the co-factors (NAD+ and hexacyanoferrate(III)) required in the enzymatic system. The new device employed in this work allows the detection of 0.09 ppm thiram, a concentration below legal limits (Maximum Residue Limits 0.1–10 ppm).
Collapse
|
5
|
Application of surface-enhanced Raman spectroscopy using silver and gold nanoparticles for the detection of pesticides in fruit and fruit juice. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Li M, Zhang X. Nanostructure-Based Surface-Enhanced Raman Spectroscopy Techniques for Pesticide and Veterinary Drug Residues Screening. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:194-205. [PMID: 32939593 DOI: 10.1007/s00128-020-02989-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Pesticide and veterinary drug residues in food and environment pose a threat to human health, and a rapid, super-sensitive, accurate and cost-effective analysis technique is therefore highly required to overcome the disadvantages of conventional techniques based on mass spectrometry. Recently, the surface-enhanced Raman spectroscopy (SERS) technique emerges as a potential promising analytical tool for rapid, sensitive and selective detections of environmental pollutants, mostly owing to its possible simplified sample pretreatment, gigantic detectable signal amplification and quick target analyte identification via finger-printing SERS spectra. So theoretically the SERS detection technology has inherent advantages over other competitors especially in complex environmental matrices. The progress in nanostructure SERS substrates and portable Raman appliances will promote this novel detection technology to play an important role in future rapid on-site assay. This paper reviews the advances in nanostructure-based SERS substrates, sensors and relevant portable integrated systems for environmental analysis, highlights the potential applications in the detections of synthetic chemicals such as pesticide and veterinary drug residues, and also discusses the challenges of SERS detection technique for actual environmental monitoring in the future.
Collapse
Affiliation(s)
- Mingtao Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Xiang Zhang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
7
|
Pan TT, Guo W, Lu P, Hu D. In situ and rapid determination of acetamiprid residue on cabbage leaf using surface-enhanced Raman scattering. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3595-3604. [PMID: 33275280 DOI: 10.1002/jsfa.10988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/12/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pesticide residues in agricultural products and foods pose a serious threat to human health, and therefore a simple, rapid and direct method is urgently needed for pesticide residue detection. In addition to realizing the detection of acetamiprid in cabbage extract solution, the main target of this study was to establish an in situ surface-enhanced Raman scattering (SERS) method, which could directly detect acetamiprid residue on cabbage leaf without the need for extraction. Acetamiprid was first used to contaminate the surface of fresh cabbage leaf, and then bimetallic silver-coated gold nanoparticles (Au@AgNPs) were added on the contaminated spots and dried for SERS measurement. RESULTS Results suggested that acetamiprid can be detected in cabbage extract and on cabbage leaf surface in situ using the SERS method based on the Au@AgNPs substrate. The limit of detection was 0.08 μg mL-1 in cabbage extract and 0.14 mg kg-1 on cabbage leaf, the recovery ranged from 80.5% to 105.5% and the relative standard deviation was in the range 4.37-10.63%. CONCLUSIONS The proposed SERS method provides an in situ, nondestructive and rapid way to detect acetamiprid residue on the surface of fruits and vegetables, which could serve as an auxiliary approach for early screening of contaminated produce in field or on site in the future. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting-Tiao Pan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- College of Biological Sciences and Agriculture, Qiannan Normal University for Nationalities, Duyun, China
| | - Wang Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Ping Lu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
8
|
Al-Syadi AM, Faisal M, Harraz FA, Jalalah M, Alsaiari M. Immersion-plated palladium nanoparticles onto meso-porous silicon layer as novel SERS substrate for sensitive detection of imidacloprid pesticide. Sci Rep 2021; 11:9174. [PMID: 33911124 PMCID: PMC8080827 DOI: 10.1038/s41598-021-88326-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/01/2021] [Indexed: 11/09/2022] Open
Abstract
Herein, we demonstrate the effectiveness of surface-enhanced Raman scattering (SERS) to detect trace concentration of potentially harmful imidacloprid pesticide. To achieve this ultimate objective, a rapid and highly effective methodology for the fabrication of active and stable porous silicon (PSi) plated palladium nanoparticles (PdNPs) SERS substrates by an electrochemical anodization and immersion plating routes was applied. The PSi layers were fabricated by the electrochemical anodization of a silicon wafer in ethanoic fluoride solution, followed by uniformly deposition of PdNPs via a simple immersion plating technique. The structural features and morphology of fabricated frameworks of PSi-Pd NPs have been investigated by field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectra. The PSi substrate demonstrates a meso-porous morphology with good distribution, good pore density and average pore sizes around 20 nm. The SERS performance of Si-Pd NPs and PSi-Pd NPs substrates has been examined taking imidacloprid (an insecticide) as a target analyte. The SERS signal of imidacloprid using PSi-Pd NPs substrate exhibited immense enhancement compared to the Si-Pd NPs substrate. The active substrate revealed excellent detectable performance with a concentration as low as 10-9 M imidacloprid and an enhancement factor (EF) of 1.2 × 105. This large EF is fundamentally ascribed to the combined effect of the electromagnetic improvement and charge transfer mechanisms. Additionally, no aging effect was observed for the present substrates kept in air for two weeks. Striking enhancement in Raman spectral signals obtained with the current PSi-Pd NPs substrates can provide a simple and smooth platform towards the sensitive detection of various target analytes.
Collapse
Affiliation(s)
- A M Al-Syadi
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia.,Department of Physics, Faculty of Science and Arts, Najran University, Najran, Saudi Arabia.,Physics Department, Faculty of Education, Ibb University, Ibb, Yemen
| | - M Faisal
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia.,Department of Chemistry, Faculty of Science and Arts, Najran University, Najran, Saudi Arabia
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia. .,Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. 87, Helwan, Cairo, 11421, Egypt.
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia.,Department of Electrical Engineering, Faculty of Engineering, Najran University, Najran, Saudi Arabia
| | - Mabkhoot Alsaiari
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia.,Department of Chemistry, Faculty of Science and Arts At Sharurah, Najran University, Najran, Saudi Arabia
| |
Collapse
|
9
|
Wang SH, Lo SC, Tung YJ, Kuo CW, Tai YH, Hsieh SY, Lee KL, Hsiao SR, Sheen JF, Hsu JC, Wei PK. Multichannel nanoplasmonic platform for imidacloprid and fipronil residues rapid screen detection. Biosens Bioelectron 2020; 170:112677. [DOI: 10.1016/j.bios.2020.112677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 11/27/2022]
|
10
|
Creedon N, Lovera P, Moreno JG, Nolan M, O’Riordan A. Highly Sensitive SERS Detection of Neonicotinoid Pesticides. Complete Raman Spectral Assignment of Clothianidin and Imidacloprid. J Phys Chem A 2020; 124:7238-7247. [DOI: 10.1021/acs.jpca.0c02832] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Niamh Creedon
- Nanotechnology Group, Tyndall National Institute, University College Cork, Lee Maltings, Cork T12 R5CP, Ireland
| | - Pierre Lovera
- Nanotechnology Group, Tyndall National Institute, University College Cork, Lee Maltings, Cork T12 R5CP, Ireland
| | - Julio Gutierrez Moreno
- Materials Modelling for Devices Group, Tyndall National Institute, University College Cork, Lee Maltings, Cork T12 R5CP, Ireland
| | - Michael Nolan
- Materials Modelling for Devices Group, Tyndall National Institute, University College Cork, Lee Maltings, Cork T12 R5CP, Ireland
| | - Alan O’Riordan
- Nanotechnology Group, Tyndall National Institute, University College Cork, Lee Maltings, Cork T12 R5CP, Ireland
| |
Collapse
|
11
|
Yang CP, Fang SU, Tsai HY, Chen JW, Liu YC. Newly prepared surface-enhanced Raman scattering-active substrates for sensing pesticides. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Scratch on Polymer Materials Using AFM Tip-Based Approach: A Review. Polymers (Basel) 2019; 11:polym11101590. [PMID: 31569474 PMCID: PMC6835326 DOI: 10.3390/polym11101590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/30/2023] Open
Abstract
As a brand new nanomachining method, the tip-based nanomachining/nanoscratching (TBN) method has exhibited a powerful ability at machining on polymer materials and various structures have been achieved using this approach, ranging from the nanodot, nanogroove/channel, bundle to 2D/3D (three-dimensional) nanostructures. The TBN method is widely used due to its high precision, ease of use and low environmental requirements. First, the theoretical models of machining on polymer materials with a given tip using the TBN method are presented. Second, advances of nanostructures achieved by this method are given, including nanodots/nanodot arrays, a nanogroove/channel, 2D/3D nanostructures and bundles. In particular, a useful approach called the ultrasonic vibration-assisted method introduced to integrate with TBN method to reduce the wear of the tip is also reviewed, respectively. Third, the typical applications of the TBN method and the nanostructures achieved by it are summarized in detail. Finally, the existing shortcomings and future prospects of the TBN method are given. It is confirmed that this review will be helpful in learning about this method and push the technology toward industrialization.
Collapse
|
13
|
Chen Q, Hassan MM, Xu J, Zareef M, Li H, Xu Y, Wang P, Agyekum AA, Kutsanedzie FYH, Viswadevarayalu A. Fast sensing of imidacloprid residue in tea using surface-enhanced Raman scattering by comparative multivariate calibration. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 211:86-93. [PMID: 30521997 DOI: 10.1016/j.saa.2018.11.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
This study focused on the fabrication of a rapid, highly sensitive and inexpensive technique for the quantification of imidacloprid residue in green tea, based on surface-enhanced Raman scattering (SERS) using highly roughned surface flower shaped silver nanostructure (as SERS substrate) coupled with the chemometrics algorithm. The basic principle of this method is imidacloprid yielded SERS signal after adsorption on Ag-NF under laser excitation by the electromagnetic enhancement and the intensity of the peak is proportional to the concentration ranging from 1.0 × 103 to 1.0 × 10-4 μg/mL. Among the models used, the GA-PLS (Genetic algorithm-partial least square) exhibited superiority to quantify imidacloprid residue in green tea. The model achieved Rp (correlation coefficient) of 0.9702 with RPD of 4.95% in the test set and RSD for precision recorded up to 4.50%. Therefore, the proposed sensor could be employed to quantify imidacloprid residue in green tea for the safeguarding of quality and human health.
Collapse
Affiliation(s)
- Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Xu
- School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Pingyue Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Akwasi A Agyekum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Felix Y H Kutsanedzie
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | | |
Collapse
|
14
|
Hassan MM, Chen Q, Kutsanedzie FYH, Li H, Zareef M, Xu Y, Yang M, Agyekum AA. rGO-NS SERS-based coupled chemometric prediction of acetamiprid residue in green tea. J Food Drug Anal 2018; 27:145-153. [PMID: 30648567 PMCID: PMC9298640 DOI: 10.1016/j.jfda.2018.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 11/25/2022] Open
Abstract
Pesticide residue in food is of grave concern in recent years. In this paper, a rapid, sensitive, SERS (Surface-enhanced Raman scattering) active reduced-graphene-oxide-gold-nano-star (rGO-NS) nano-composite nanosensor was developed for the detection of acetamiprid (AC) residue in green tea. Different concentrations of AC combined with rGO-NS nano-composite electro-statically, yielded a strong SERS signal linearly with increasing concentration of AC ranging from 1.0 × 10−4 to 1.0 × 103 μg/mL indicating the potential of rGO-NS nanocomposite to detect AC in green tea. Genetic algorithm-partial least squares regression (GA-PLS) algorithm was used to develop a quantitative model for AC residue prediction. The GA-PLS model achieved a correlation coefficient (Rc) of 0.9772 and recovery of the real sample of 97.06%–115.88% and RSD of 5.98% using the developed method. The overall results demonstrated that Raman spectroscopy combined with SERS active rGO-NS nanocomposite could be utilized to determine AC residue in green tea to achieve quality and safety.
Collapse
Affiliation(s)
- Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Felix Y H Kutsanedzie
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mingxiu Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Akwasi A Agyekum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
15
|
Rapid determination of illegal additives chrysoidin and malachite green by surface-enhanced Raman scattering with silanized support based substrate. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Kang Y, Li L, Chen W, Zhang F, Du Y, Wu T. Rapid In Situ SERS Analysis of Pesticide Residues on Plant Surfaces Based on Micelle Extraction of Targets and Stabilization of Ag Nanoparticle Aggregates. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1290-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Tsogas GZ, Kappi FA, Vlessidis AG, Giokas DL. Recent Advances in Nanomaterial Probes for Optical Biothiol Sensing: A Review. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1329833] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- George Z. Tsogas
- Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Foteini A. Kappi
- Department of Chemistry, University of Ioannina, Ioannina, Greece
| | | | | |
Collapse
|
18
|
Review of SERS Substrates for Chemical Sensing. NANOMATERIALS 2017; 7:nano7060142. [PMID: 28594385 PMCID: PMC5485789 DOI: 10.3390/nano7060142] [Citation(s) in RCA: 302] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/21/2022]
Abstract
The SERS effect was initially discovered in the 1970s. Early research focused on understanding the phenomenon and increasing enhancement to achieve single molecule detection. From the mid-1980s to early 1990s, research started to move away from obtaining a fundamental understanding of the phenomenon to the exploration of analytical applications. At the same time, significant developments occurred in the field of photonics that led to the advent of inexpensive, robust, compact, field-deployable Raman systems. The 1990s also saw rapid development in nanoscience. This convergence of technologies (photonics and nanoscience) has led to accelerated development of SERS substrates to detect a wide range of chemical and biological analytes. It would be a monumental task to discuss all the different kinds of SERS substrates that have been explored. Likewise, it would be impossible to discuss the use of SERS for both chemical and biological detection. Instead, a review of the most common metallic (Ag, Cu, and Au) SERS substrates for chemical detection only is discussed, as well as SERS substrates that are commercially available. Other issues with SERS for chemical detection have been selectivity, reversibility, and reusability of the substrates. How these issues have been addressed is also discussed in this review.
Collapse
|