1
|
Pandiselvam R, Aydar AY, Aksoylu Özbek Z, Sözeri Atik D, Süfer Ö, Taşkin B, Olum E, Ramniwas S, Rustagi S, Cozzolino D. Farm to fork applications: how vibrational spectroscopy can be used along the whole value chain? Crit Rev Biotechnol 2024:1-44. [PMID: 39494675 DOI: 10.1080/07388551.2024.2409124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 06/28/2024] [Accepted: 08/08/2024] [Indexed: 11/05/2024]
Abstract
Vibrational spectroscopy is a nondestructive analysis technique that depends on the periodic variations in dipole moments and polarizabilities resulting from the molecular vibrations of molecules/atoms. These methods have important advantages over conventional analytical techniques, including (a) their simplicity in terms of implementation and operation, (b) their adaptability to on-line and on-farm applications, (c) making measurement in a few minutes, and (d) the absence of dangerous solvents throughout sample preparation or measurement. Food safety is a concept that requires the assurance that food is free from any physical, chemical, or biological hazards at all stages, from farm to fork. Continuous monitoring should be provided in order to guarantee the safety of the food. Regarding their advantages, vibrational spectroscopic methods, such as Fourier-transform infrared (FTIR), near-infrared (NIR), and Raman spectroscopy, are considered reliable and rapid techniques to track food safety- and food authenticity-related issues throughout the food chain. Furthermore, coupling spectral data with chemometric approaches also enables the discrimination of samples with different kinds of food safety-related hazards. This review deals with the recent application of vibrational spectroscopic techniques to monitor various hazards related to various foods, including crops, fruits, vegetables, milk, dairy products, meat, seafood, and poultry, throughout harvesting, transportation, processing, distribution, and storage.
Collapse
Affiliation(s)
- Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, India
| | - Alev Yüksel Aydar
- Department of Food Engineering, Manisa Celal Bayar University, Manisa, Türkiye
| | - Zeynep Aksoylu Özbek
- Department of Food Engineering, Manisa Celal Bayar University, Manisa, Türkiye
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Didem Sözeri Atik
- Department of Food Engineering, Agriculture Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Türkiye
| | - Özge Süfer
- Department of Food Engineering, Faculty of Engineering, Osmaniye Korkut Ata University, Osmaniye, Türkiye
| | - Bilge Taşkin
- Centre DRIFT-FOOD, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Suchdol, Prague 6, Czech Republic
| | - Emine Olum
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts Design and Architecture, Istanbul Medipol University, Istanbul, Türkiye
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali, India
| | - Sarvesh Rustagi
- School of Applied and Life sciences, Uttaranchal University, Dehradun, India
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| |
Collapse
|
2
|
Yin Y, Cui D, Chi Q, Xu H, Guan P, Zhang H, Jiao T, Wang X, Wang L, Sun H. Reactive oxygen species may be involved in the distinctive biological effects of different doses of 12C 6+ ion beams on Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 14:1337640. [PMID: 38312361 PMCID: PMC10835405 DOI: 10.3389/fpls.2023.1337640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/31/2023] [Indexed: 02/06/2024]
Abstract
Introduction Heavy ion beam is a novel approach for crop mutagenesis with the advantage of high energy transfer line density and low repair effect after injury, however, little investigation on the biological effect on plant was performed. 50 Gy irradiation significantly stimulated the growth of Arabidopsis seedlings, as indicated by an increase in root and biomass, while 200 Gy irradiation significantly inhibited the growth of seedlings, causing a visible decrease in plant growth. Methods The Arabidopsis seeds were irradiated by 12C6+. Monte Carlo simulations were used to calculate the damage to seeds and particle trajectories by ion implantation. The seed epidermis received SEM detection and changes in its organic composition were detected using FTIR. Evidence of ROS and antioxidant systems were analyzed. RNA-seq and qPCR were used to detect changes in seedling transcript levels. Results and discussion Monte Carlo simulations revealed that high-dose irradiation causes various damage. Evidence of ROS and antioxidant systems implies that the emergence of phenotypes in plant cells may be associated with oxidative stress. Transcriptomic analysis of the seedlings demonstrated that 170 DEGs were present in the 50 Gy and 200 Gy groups and GO enrichment indicated that they were mainly associated with stress resistance and cell wall homeostasis. Further GO enrichment of DEGs unique to 50 Gy and 200 Gy revealed 58 50Gy-exclusive DEGs were enriched in response to oxidative stress and jasmonic acid entries, while 435 200 Gy-exclusive DEGs were enriched in relation to oxidative stress, organic cyclic compounds, and salicylic acid. This investigation advances our insight into the biological effects of heavy ion irradiation and the underlying mechanisms.
Collapse
Affiliation(s)
- Yue Yin
- Henan Key Laboratory of Ion-beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongjie Cui
- Henan Key Laboratory of Ion-beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Sanya Institute, Zhengzhou University, Zhengzhou, China
| | - Qing Chi
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Sanya Institute, Zhengzhou University, Zhengzhou, China
| | - Hangbo Xu
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Sanya Institute, Zhengzhou University, Zhengzhou, China
| | - Panfeng Guan
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Sanya Institute, Zhengzhou University, Zhengzhou, China
| | - Hanfeng Zhang
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Tao Jiao
- Asset Management Co., Ltd, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaojie Wang
- School of Bioengineering, Xinxiang University, Xinxiang, China
| | - Lin Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Hao Sun
- Henan Key Laboratory of Ion-beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Sanya Institute, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Ma S, Li Y, Peng Y, Wang W. Toward commercial applications of LED and laser-induced fluorescence techniques for food identity, quality, and safety monitoring: A review. Compr Rev Food Sci Food Saf 2023; 22:3620-3646. [PMID: 37458292 DOI: 10.1111/1541-4337.13196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 09/13/2023]
Abstract
The assessment of food safety and quality is a matter of paramount importance, especially considering the challenges posed by climate change. Convenient, eco-friendly, and non-destructive techniques have attracted extensive attention in the food industry because they can retain food safety and quality. Fluorescence radiation, the process by which fluorophore emits light upon the absorption of ultraviolet or visible light, offers the advantages of high sensitivity and selectivity. The use of excitation-emission matrix (EEM) has been extensively explored in the food industry, but on-site detection of EEMs remain a challenge. To address this limitation, laser-induced fluorescence (LIF) and light emitting diode-induced fluorescence (LED-IF) have been implemented in many cases to facilitate the transition of fluorescence measurements from the laboratory to commercial applications. This review provides an overview of the application of commercially available LIF/LED-IF devices for non-destructive food measurement and recent studies that focus on the development of LIF/LED-IF devices for commercial applications. These studies were categorized into two stages: the preliminary exploration stage, which emphasizes the selection of an appropriate excitation wavelength based on the combination of EEM and chemometrics, and the pre-application stage, where experiments were conducted on scouting with specific excitation wavelength. Although commercially available devices have emerged in many research fields, only a limited number have been reported for use in the food industry. Future studies should focus on enhancing the diversity of test samples and parameters that can be measured by a single device, exploring the application of LIF techniques for detecting low-concentration substances in food, investigating more quantitative approaches, and developing embedded computing devices.
Collapse
Affiliation(s)
- Shaojin Ma
- College of Engineering, China Agricultural University, Beijing, China
| | - Yongyu Li
- College of Engineering, China Agricultural University, Beijing, China
| | - Yankun Peng
- College of Engineering, China Agricultural University, Beijing, China
| | - Wei Wang
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Islam K, Rawoof A, Kumar A, Momo J, Ahmed I, Dubey M, Ramchiary N. Genetic Regulation, Environmental Cues, and Extraction Methods for Higher Yield of Secondary Metabolites in Capsicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37289974 DOI: 10.1021/acs.jafc.3c01901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Capsicum (chili pepper) is a widely popular and highly consumed fruit crop with beneficial secondary metabolites such as capsaicinoids, carotenoids, flavonoids, and polyphenols, among others. Interestingly, the secondary metabolite profile is a dynamic function of biosynthetic enzymes, regulatory transcription factors, developmental stage, abiotic and biotic environment, and extraction methods. We propose active manipulable genetic, environmental, and extraction controls for the modulation of quality and quantity of desired secondary metabolites in Capsicum species. Specific biosynthetic genes such as Pun (AT3) and AMT in the capsaicinoids pathway and PSY, LCY, and CCS in the carotenoid pathway can be genetically engineered for enhanced production of capsaicinoids and carotenoids, respectively. Generally, secondary metabolites increase with the ripening of the fruit; however, transcriptional regulators such as MYB, bHLH, and ERF control the extent of accumulation in specific tissues. The precise tuning of biotic and abiotic factors such as light, temperature, and chemical elicitors can maximize the accumulation and retention of secondary metabolites in pre- and postharvest settings. Finally, optimized extraction methods such as ultrasonication and supercritical fluid method can lead to a higher yield of secondary metabolites. Together, the integrated understanding of the genetic regulation of biosynthesis, elicitation treatments, and optimization of extraction methods can maximize the industrial production of secondary metabolites in Capsicum.
Collapse
Affiliation(s)
- Khushbu Islam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abdul Rawoof
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ajay Kumar
- Department of Plant Sciences, School of Biological Sciences, Central University of Kerala, Kasaragod 671316, Kerala, India
| | - John Momo
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ilyas Ahmed
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Meenakshi Dubey
- Department of Biotechnology, Delhi Technological University, New Delhi 110042, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
5
|
Whatley CR, Wijewardane NK, Bheemanahalli R, Reddy KR, Lu Y. Effects of fine grinding on mid-infrared spectroscopic analysis of plant leaf nutrient content. Sci Rep 2023; 13:6314. [PMID: 37072478 PMCID: PMC10113243 DOI: 10.1038/s41598-023-33558-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
Fourier transform mid infrared (FT-MIR) spectroscopy combined with modeling techniques has been studied as a useful tool for multivariate chemical analysis in agricultural research. A drawback of this method is the sample preparation requirement, in which samples must be dried and fine ground for accurate model calibrations. For research involving large sample sets, this may dramatically increase the time and cost of analysis. This study investigates the effect of fine grinding on model performance using leaf tissue from a variety of crop species. Dried leaf samples (N = 300) from various environmental conditions were obtained with data on 11 nutrients measured using chemical methods. The samples were scanned with attenuated total reflectance (ATR) and diffuse reflectance (DRIFT) FT-MIR techniques. Scanning was repeated after fine grinding for 2, 5, and 10 min. The spectra were analyzed for the 11 nutrients using partial least squares regression with a 75%/25% split for calibration and validation and repeated for 50 iterations. All analytes except for boron, iron, and zinc were well-modeled (average R2 > 0.7), with higher R2 values on ATR spectra. The 5 min level of fine grinding was found to be most optimal considering overall model performance and sample preparation time.
Collapse
Affiliation(s)
- Caleb R Whatley
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Nuwan K Wijewardane
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Raju Bheemanahalli
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - K Raja Reddy
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Yuzhen Lu
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, 44824, USA
| |
Collapse
|
6
|
Nasereddin J, Shakib M. Ira: a free and open-source Fourier transform infrared (FTIR) data analysis widget for pharmaceutical applications. ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2180516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Jehad Nasereddin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Zarqa University, Zarqa, Jordan
| | - Mohammad Shakib
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Zarqa University, Zarqa, Jordan
| |
Collapse
|
7
|
Early detection of stripe rust infection in wheat using light-induced fluorescence spectroscopy. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:115-134. [PMID: 36121603 DOI: 10.1007/s43630-022-00303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/08/2022] [Indexed: 01/12/2023]
Abstract
In the current study, the application of fluorescence spectroscopy along with the advanced statistical technique and confocal microscopy was investigated for the early detection of stripe rust infection in wheat grown under field conditions. The indigenously developed Fluorosensor fitted with LED, emitting monochromatic light was used that covered comparatively larger leaf area for recording fluorescence data thus presenting more reliable current status of the leaf. The examined leaf samples covered the entire range of stripe rust disease infection from no visible symptoms to the complete disease prevalence. The molecular changes were also assessed in the leaves as the disease progresses. The emission spectra mainly produce two fluorescence emission classes, namely the blue-green fluorescence (400-600 nm range) and chlorophyll fluorescence (650-800 nm range). The chlorophyll fluorescence region showed lower chlorophyll bands both at 685 and 735 nm in the asymptomatic (early diseased) and symptomatic (diseased) leaf samples than the healthy ones as a result of partial deactivation of PSII reaction centers. The 735 nm chlorophyll fluorescence band was either slight or completely absent in the leaf samples with lower to higher disease incidence and thus differentiate between the healthy and the infected leaf samples. The Hydroxycinnamic acids (caffeic and sinapic acids) showed decreasing trend, whereas the ferulic acid increased with the rise in disease infection. Peak broadening/shifting has been observed in case of ferulic acid and carotenes/carotenoids, with the increase in the disease intensity. While using the LEDs (365 nm), the peak broadening and the decline in the chlorophyll fluorescence bands could be used for the early prediction of stripe rust disease in wheat crop. The PLSR statistical techniques discriminated well between the healthy and the diseased samples, thus showed promise in early disease detection. Confocal microscopy confirmed the early prevalence of stripe rust disease infection in a susceptible variety at a stage when the disease is not detectable visually. It is inferred that fluorescence emission spectroscopy along with the chemometrics aided in the effective and timely diagnosis of plant diseases and the detected signatures provide the basis for remote sensing.
Collapse
|
8
|
Potential of confocal micro-Raman spectroscopy for the nutrient profiling of kidney beans. NATIONAL ACADEMY SCIENCE LETTERS 2022. [DOI: 10.1007/s40009-022-01199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Sharma S, Tripathi A, Baran C, Awasthi A, Tiwari A, Sharma S, Jaiswal A, Uttam KN. Monitoring Pigment Dynamics Involved in the Ripening of Sweet Cherries Non-Destructively Using Confocal Micro Raman Spectroscopy. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2147536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Sweta Sharma
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj
- Department of Applied Science and Humanities, Faculty of Engineering and Technology, Khwaja Moinuddin Chishti Language University, Lucknow
| | - Aradhana Tripathi
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj
| | - Chhavi Baran
- Centre for Environmental Science, IIDS, University of Allahabad, Prayagraj
| | - Aishwary Awasthi
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj
| | - Aparna Tiwari
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj
| | - Shristi Sharma
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj
| | - Aarti Jaiswal
- Centre for Material Sciences, IIDS, University of Allahabad, Prayagraj
| | - K. N. Uttam
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj
| |
Collapse
|
10
|
Baran C, Sharma S, Tripathi A, Awasthi A, Jaiswal A, Tandon P, Singh R, Uttam KN. Non-Destructive Monitoring of Ripening Process of the Underutilized Fruit Kadam Using Laser-Induced Fluorescence and Confocal Micro Raman Spectroscopy. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2137523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Chhavi Baran
- Centre for Environmental Science, IIDS, University of Allahabad, Allahabad, India
| | - Sweta Sharma
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
- Department of Applied Science and Humanities, Faculty of Engineering and Technology, Khwaja Moinuddin Chishti Language University, Lucknow, India
| | - Aradhana Tripathi
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| | - Aishwary Awasthi
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| | - Aarti Jaiswal
- Centre for Material Sciences, IIDS, University of Allahabad, Allahabad, India
| | | | - Renu Singh
- School of Humanities and Sciences, Malla Reddy University, Hyderabad, India
| | - K. N. Uttam
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| |
Collapse
|
11
|
Sharma S, Sharma S, Bharti AS, Tiwari MK, Uttam KN. Non-Destructive Assessment of the Nutrient Profile of Underutilized Seeds Using Spectroscopic Probes. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2099414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shristi Sharma
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj, India
| | - Sweta Sharma
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj, India
- Department of Applied Science and Humanities, Faculty of Engineering and Technology, Khwaja Moinuddin Chishti Language University, Lucknow, India
| | - Abhi Sarika Bharti
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj, India
| | - M. K. Tiwari
- Indus Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore, India
| | - K. N. Uttam
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj, India
| |
Collapse
|
12
|
Kolašinac S, Pećinar I, Danojević D, Stevanović ZD. Raman spectroscopy coupled with chemometric modeling approaches for authentication of different paprika varieties at physiological maturity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Wang K, Li Z, Li J, Lin H. Raman spectroscopic techniques for nondestructive analysis of agri-foods: A state-of-the-art review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Fate of carotenoids in the closed living system of gall–gall wasp–parasitoid. CHEMOECOLOGY 2021. [DOI: 10.1007/s00049-021-00364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Sharma S, Bharti A, Singh R, Uttam KN. Non-Destructive, Label Free Evaluation of the Biochemical Profile Associated With the Growth and Ripening Process of Jamun Fruit by Confocal Micro Raman Spectroscopy. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1967968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sweta Sharma
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
- Department of Applied Science and Humanities, Faculty of Engineering and Technology, Khwaja Moinuddin Chishti Language University, Lucknow, India
| | - Abhisarika Bharti
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| | - Renu Singh
- School of Basic and Applied Sciences, G. D. Goenka University, Gurugram, Haryana, India
| | - K. N. Uttam
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| |
Collapse
|
16
|
Tan J, Li MF, Li R, Jiang ZT, Tang SH, Wang Y. Front-face synchronous fluorescence spectroscopy for rapid and non-destructive determination of free capsanthin, the predominant carotenoid in chili (Capsicum annuum L.) powders based on aggregation-induced emission. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119696. [PMID: 33774412 DOI: 10.1016/j.saa.2021.119696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/12/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Capsanthin is the major natural carotenoid pigment in red chili pepper possessing important bioactivity. Its conventional determination method is high performance liquid chromatography (HPLC) with complex and tedious sample pretreatment. In this study, synchronous front-face fluorescence spectroscopy (FFFS) was applied for the fast and non-invasive detection of free capsanthin in chili powders. Although capsanthin was only weak fluorescent in solution state, it showed strong fluorescence in two separated regions in front-face geometry which could also be clearly observed in chili powders. The mechanisms of these emissions are revealed to be aggregation-induced emission (AIE) and J-aggregate formation (JAF). The free capsanthin in 85 chili powder samples were determined by HPLC as in the range of 0.6-3.0 mg/g. The total synchronous FFFS spectra of these samples were scanned. Simple first-order models were built by partial least square regression (PLSR), and were validated by 5-fold cross-validation and external validation. The coefficients of determination (R2) were higher than 0.9, and the root mean square errors (RMSE) were less than 0.2 mg/g. The relative error of prediction (REP) was 9.9%, and the residual predictive deviation (RPD) was 3.7. The method was applied for the estimation of free capsanthin in several real-world samples with satisfactory analytical results. The average relative error to HPLC reference values was -11.8%.
Collapse
Affiliation(s)
- Jin Tan
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China.
| | - Ming-Fen Li
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China.
| | - Rong Li
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China.
| | - Zi-Tao Jiang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China.
| | - Shu-Hua Tang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China.
| | - Ying Wang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China.
| |
Collapse
|
17
|
Sharma S, Baran C, Tripathi A, Awasthi A, Jaiswal A, Uttam R, Bharti AS, Singh R, Uttam KN. Phytochemical Screening of the Different Cultivars of Ixora Flowers by Non-Destructive, Label-Free, and Rapid Spectroscopic Techniques. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1855440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sweta Sharma
- Department of Applied Science and Humanities, Faculty of Engineering and Technology, Khwaja Moinuddin Chishti Language University, Lucknow, India
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| | - Chhavi Baran
- Centre for Environmental Science, IIDS, University of Allahabad, Allahabad, India
| | - Aradhana Tripathi
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| | - Aishwary Awasthi
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| | - Aarti Jaiswal
- Centre for Material Science, IIDS, University of Allahabad, Allahabad, India
| | - Rahul Uttam
- Centre for Material Science, IIDS, University of Allahabad, Allahabad, India
| | - Abhi Sarika Bharti
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| | - Renu Singh
- School of Basic and Applied Sciences, G D Goenka University, Gurugram, Haryana, India
| | - K. N. Uttam
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| |
Collapse
|
18
|
Tripathi A, Baran C, Jaiswal A, Awasthi A, Uttam R, Sharma S, Bharti AS, Singh R, Uttam KN. Investigating the Carotenogenesis Process in Papaya Fruits during Maturity and Ripening by Non-Destructive Spectroscopic Probes. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1760874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Aradhana Tripathi
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| | - Chhavi Baran
- Centre for Environmental Science, IIDS, University of Allahabad, Allahabad, India
| | - Aarti Jaiswal
- Centre for Material Science, IIDS, University of Allahabad, Allahabad, India
| | - Aishwary Awasthi
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| | - Rahul Uttam
- Centre for Material Science, IIDS, University of Allahabad, Allahabad, India
| | - Sweta Sharma
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| | - Abhi Sarika Bharti
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| | - Renu Singh
- School of Basic and Applied Sciences, G D Goenka University, Gurugram, Haryana, India
| | - K. N. Uttam
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| |
Collapse
|