1
|
González-Castro MJ, Uribe-Ares J, Muniategui-Lorenzo S, Beceiro-González E. Development of a dispersive liquid-liquid microextraction method for the determination of plastic additives in seawater. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38404245 DOI: 10.1039/d3ay01948a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A method using dispersive liquid-liquid microextraction (DLLME) prior to high performance liquid chromatography-diode array detection (HPLC-DAD) was developed to determine seven additives from the plastics industry (butylated hydroxytoluene, diisodecyl phthalate, irgafos 168, lawsone, quercetin, triclosan and vitamin E) in seawater samples. These compounds can reach seawater due to direct discharge from wastewater treatment plants and leaching from plastics and microplastics. The extraction was performed using 25 mL of seawater, 500 μL of 1-octanol (extraction solvent) and a stirring step instead of dispersive solvent. Additive concentrations were determined by LC-DAD on a C18 column with a mobile phase of acetonitrile and phosphoric acid aqueous solution (pH 3.5) by gradient elution. The analytical recoveries ranged from 82 to 93% for all compounds, except for lawsone (60%). Repeatability and intermediate precision were adequate with RSD < calculated values following the Horwitz equation at the concentration levels evaluated (0.06 and 0.24 mg L-1). All additives exhibited linear matrix calibration curves (R2 > 0.99). Detection limits ranged from 0.009 to 0.028 mg L-1 and quantification limits ranged from 0.027 to 0.084 mg L-1. Finally, the application of the method to real samples verified the method as accurate and applicable to seawater.
Collapse
Affiliation(s)
- María José González-Castro
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Campus de A Coruña, 15071 A Coruña, Spain.
| | - Jaime Uribe-Ares
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Campus de A Coruña, 15071 A Coruña, Spain.
| | - Soledad Muniategui-Lorenzo
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Campus de A Coruña, 15071 A Coruña, Spain.
| | - Elisa Beceiro-González
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Campus de A Coruña, 15071 A Coruña, Spain.
| |
Collapse
|
2
|
Galal SAB, Elzanfaly ES, Hussien EM, Amer EAH, Zaazaa HE. Spectrofluorimetric determination of butylated hydroxytoluene and butylated hydroxyanisole in their combined formulation: application to butylated hydroxyanisole residual analysis in milk and butter. Sci Rep 2024; 14:4498. [PMID: 38402246 PMCID: PMC10894300 DOI: 10.1038/s41598-024-54483-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
Butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) are two antioxidants that have been extensively used in many applications. Both are well known for their debatable health risks due to their multiple intake sources. Therefore, conservative limits are set for them in different regulations adapted to the matrices in which they exist. Here we present a simple spectrofluorimetric method for the determination of BHT and BHA based on their native fluorescence and synchronous scanning mode. The type of solvent and the interval between emission and excitation wavelengths were carefully optimized. Under the optimized conditions, good linearities were obtained between the emission intensity and the corresponding concentrations of BHT and BHA over the range of 3-18 µg/mL and 0.1-7 µg/mL, respectively with a good correlation coefficient (r > 0.99). The limits of detection were 0.9 and 0.02 µg/mL, and the quantification limits were 3 and 0.05 µg/mL for BHT and BHA, respectively. The suggested procedure was validated according to ICH guidelines Q2 (R1). Furthermore, the method's greenness was assessed by three different methods, and it proved to be eco-reasonable. The method was successfully applied to the determination of BHT and BHA in pharmaceutical formulations. We also applied the suggested method for monitoring the residual BHA in conventional, powdered milk and butter, with good recovery in spiked samples.
Collapse
Affiliation(s)
| | - Eman Saad Elzanfaly
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | | | | | - Hala Elsayed Zaazaa
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
3
|
Döll EG, Santana ER, Winiarski JP, Baumgarten LG, Vieira IC. Green Synthesis of Gold Nanoparticles Using Peach Extract Incorporated in Graphene for the Electrochemical Determination of Antioxidant Butylated Hydroxyanisole in Food Matrices. BIOSENSORS 2023; 13:1037. [PMID: 38131797 PMCID: PMC10741992 DOI: 10.3390/bios13121037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Butylated hydroxyanisole (BHA) is a synthetic phenolic antioxidant widely used in various food matrices to prevent oxidative rancidity. However, its presence has been associated with liver damage and carcinogenesis in animals. Thus, an electrochemical sensor was built using a composite of gold nanoparticles synthesized in peach extract (Prunus persica (L.) Batsch) and graphene. Peach extract served as a reducing and stabilizing agent for gold nanoparticles, as a dispersing agent for graphene, and as a film former to immobilize the composite on the surface of a glassy carbon electrode. The gold nanoparticles were characterized using spectroscopic and microscopic techniques, and the electrodes were electrochemically characterized using electrochemical impedance spectroscopy and cyclic voltammetry. The sensor provided higher current responses and lower charge transfer resistances compared to the unmodified glassy carbon electrode. Under the established optimized working conditions (0.1 mol L-1 Britton-Robinson buffer, pH 4.0, and differential pulse voltammetry), the calibration curve exhibited a linear range from 0.2 to 9.8 µmol L-1, with a detection limit of 70 nmol L-1. The proposed sensor represented a sensitive and practical analytical tool for the accurate determination of BHA in mayonnaise samples.
Collapse
Affiliation(s)
| | - Edson Roberto Santana
- Laboratory of Biosensors, Department of Chemistry, Federal University of Santa Catarina, Florianópolis 88040 900, Santa Catarina, Brazil; (E.G.D.); (J.P.W.); (L.G.B.); (I.C.V.)
| | | | | | | |
Collapse
|
4
|
Maneeratanachot S, Kanatharana P, Thammakhet-Buranachai C, Wattanasin P. A polypyrrole-cotton pad sorbent as micro-solid phase extractor enclosed in tea bag envelope for determination of synthetic antioxidants in non-alcoholic beverage products. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:334-344. [PMID: 36974485 DOI: 10.1080/03601234.2023.2192635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A polypyrrole (PPy)-cotton pad sorbent enclosed in tea bag envelope was developed and used in micro-solid phase extraction (µ-SPE) for the determination of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). After extraction, the extract was qualified and quantified by a gas chromatograph equipped with a flame ionization detector (GC-FID). Parameters influencing this developed method and the efficiency of µ-SPE were studied and optimized. Under the optimal conditions, the developed method provided good linearity in a concentration range of 0.100-100 µg L-1 for BHA and 0.050-50 µg L-1 for BHT, respectively. The limits of detection were 39.27 ± 0.52 ng L-1 for BHA and 16.96 ± 0.17 ng L-1 for BHT. Satisfactory relative recoveries of BHA and BHT were achieved in the range from 86.8 ± 1.9 to 117.1 ± 2.3% with acceptable relative standard deviation (RSD) below 8.1%. Good reproducibility was obtained with RSDs < 3.1%, for n = 6. The developed adsorbent is easy to operate, low cost, eco-friendly, reusable, with high extraction efficiency, and was successfully applied in the simultaneous synthetic antioxidant determination of non-alcoholic beverage samples.
Collapse
Affiliation(s)
- Suwatchanee Maneeratanachot
- Faculty of Science, Center of Excellence for Innovation in Chemistry, Prince of Songkla University, Hat Yai, Thailand
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Proespichaya Kanatharana
- Faculty of Science, Center of Excellence for Innovation in Chemistry, Prince of Songkla University, Hat Yai, Thailand
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Chongdee Thammakhet-Buranachai
- Faculty of Science, Center of Excellence for Innovation in Chemistry, Prince of Songkla University, Hat Yai, Thailand
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Panwadee Wattanasin
- Faculty of Science, Center of Excellence for Innovation in Chemistry, Prince of Songkla University, Hat Yai, Thailand
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
5
|
Pekkaya S, Yıldız E, Çabuk H. New di-(2-Ethylhexyl)Phosphoric Acid-Based Supramolecular Solvent (DEHPA-SUPRAS) Microextraction Coupled to High Performance Liquid Chromatography (HPLC) for the Determination of Organophosphorus Pesticides in Tea Drinks. ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2167086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Semra Pekkaya
- Faculty of Sciences, Department of Chemistry, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Elif Yıldız
- Faculty of Sciences, Department of Chemistry, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Hasan Çabuk
- Faculty of Sciences, Department of Chemistry, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
6
|
Jiang H, Huang X, Xue H, Wang M, Qi Y, Jia L, Jing X. Switchable deep eutectic solvent‐based homogenous liquid–liquid microextraction combined with high‐performance liquid chromatography–diode‐array detection for the determination of the chiral fungicide mefentrifluconazole in water, fruit juice, and fermented liquor. Chirality 2022; 34:968-976. [DOI: 10.1002/chir.23445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Haijuan Jiang
- College of Food Science and Engineering Shanxi Agricultural University Taigu China
| | - Xin Huang
- College of Food Science and Engineering Shanxi Agricultural University Taigu China
| | - Haoyue Xue
- College of Food Science and Engineering Shanxi Agricultural University Taigu China
| | - Min Wang
- College of Food Science and Engineering Shanxi Agricultural University Taigu China
| | - Yanli Qi
- Shanxi Center for Testing of Functional Agro‐Products Shanxi Agricultural University Taiyuan China
| | - Liyan Jia
- College of Food Science and Engineering Shanxi Agricultural University Taigu China
| | - Xu Jing
- College of Food Science and Engineering Shanxi Agricultural University Taigu China
| |
Collapse
|