1
|
Liu Q, Akhtar M, Kong N, Zhang R, Liang Y, Gu Y, Yang D, Nafady AA, Shi D, Ansari AR, Abdel-Kafy ESM, Naqvi SUAS, Liu H. Early fecal microbiota transplantation continuously improves chicken growth performance by inhibiting age-related Lactobacillus decline in jejunum. MICROBIOME 2025; 13:49. [PMID: 39930537 PMCID: PMC11808950 DOI: 10.1186/s40168-024-02021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/19/2024] [Indexed: 02/13/2025]
Abstract
BACKGROUND At an early age, chickens commonly exhibit a rise in the average daily gain, which declines as they age. Further studies indicated that the decrease in chicken growth performance at a later age is closely associated with an age-related decline in Lactobacillus abundance in the small intestines. Whether inhibiting the age-related decline in Lactobacillus in the small intestine by early fecal microbiota transplantation (FMT) could improve chicken growth performance is an interesting question. RESULTS 16S rRNA gene sequencing revealed a higher jejunal Lactobacillus abundance in high body weight chickens in both two different chicken breeds (yellow feather chickens, H vs L, 85.96% vs 55.58%; white feather chickens, H vs L, 76.21% vs 31.47%), which is significantly and positively associated with body and breast/leg muscle weights (P < 0.05). Moreover, the jejunal Lactobacillus abundance declined with age (30 days, 74.04%; 60 days, 50.80%; 120 days, 34.03%) and the average daily gain rose in early age and declined in later age (1 to 30 days, 5.78 g; 30 to 60 days, 9.86 g; 60 to 90 days, 7.70 g; 90 to 120 days, 3.20 g), indicating the age-related decline in jejunal Lactobacillus abundance is closely related to chicken growth performance. Transplanting fecal microbiota from healthy donor chickens with better growth performance and higher Lactobacillus abundance to 1-day-old chicks continuously improved chicken growth performance (Con vs FMT; 30 days, 288.45 g vs 314.15 g, P < 0.05; 60 days, 672.77 g vs 758.15 g, P < 0.01; 90 days, 1146.08 g vs 1404.43 g, P < 0.0001) even after stopping fecal microbiota transplantation at 4th week. Four-week FMT significantly inhibited age-related decline in jejunal Lactobacillus abundance (Con vs FMT, 30 days, 65.07% vs 85.68%, P < 0.01; 60 days, 38.87% vs 82.71%, P < 0.0001 and 90 days, 34.23% vs 60.86%, P < 0.01). Moreover, the numbers of goblet and Paneth cells were also found significantly higher in FMT groups at three time points (P < 0.05). Besides, FMT triggered GH/IGF-1 underlying signaling by significantly increasing the expressions of GH, GHR, and IGF-1 in the liver and IGF-1 and IGF-1R in muscles along age (P < 0.05). CONCLUSION These findings revealed that age-related decline in jejunal Lactobacillus abundance compromised chicken growth performance, while early fecal microbiota transplantation continuously improved chicken growth performance by inhibiting age-related jejunal Lactobacillus decline, promoting the integrity of jejunal mucosal barrier and up-regulating the expression level of genes related to growth axis. Video Abstract.
Collapse
Affiliation(s)
- Qiyao Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Muhammad Akhtar
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Na Kong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Rumeng Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yue Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yaqian Gu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Danyi Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Abdallah A Nafady
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Deshi Shi
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Abdur Rahman Ansari
- Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS) Jhang, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - El-Sayed M Abdel-Kafy
- Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Ministry of Agriculture, Giza, Egypt
| | | | - Huazhen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
2
|
Voukali E, Divín D, Samblas MG, Veetil NK, Krajzingrová T, Těšický M, Li T, Melepat B, Talacko P, Vinkler M. Subclinical peripheral inflammation has systemic effects impacting central nervous system proteome in budgerigars. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105213. [PMID: 38880215 DOI: 10.1016/j.dci.2024.105213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Regulation of neuroimmune interactions varies across avian species. Little is presently known about the interplay between periphery and central nervous system (CNS) in parrots, birds sensitive to neuroinflammation. Here we investigated the systemic and CNS responses to dextran sulphate sodium (DSS)- and lipopolysaccharide (LPS)-induced subclinical acute peripheral inflammation in budgerigar (Melopsittacus undulatus). Three experimental treatment groups differing in DSS and LPS stimulation were compared to controls. Individuals treated with DSS showed significant histological intestinal damage. Through quantitative proteomics we described changes in plasma (PL) and cerebrospinal fluid (CSF) composition. In total, we identified 180 proteins in PL and 978 proteins in CSF, with moderate co-structure between the proteomes. Between treatments we detected differences in immune, coagulation and metabolic pathways. Proteomic variation was associated with the levels of pro-inflammatory cytokine mRNA expression in intestine and brain. Our findings shed light on systemic impacts of peripheral low-grade inflammation in birds.
Collapse
Affiliation(s)
- Eleni Voukali
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic.
| | - Daniel Divín
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic
| | - Mercedes Goméz Samblas
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic
| | - Nithya Kuttiyarthu Veetil
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic
| | - Tereza Krajzingrová
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic
| | - Martin Těšický
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic
| | - Tao Li
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic
| | - Balraj Melepat
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic
| | - Pavel Talacko
- Biotechnology and Biomedicine Centre of Academy of Sciences and Charles University, Laboratory of OMICS Proteomics and Metabolomics, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Michal Vinkler
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic.
| |
Collapse
|
3
|
Zheng L, Han Z, Zhang J, Kang J, Li C, Pang Q, Liu S. Lactiplantibacillus plantarum and Saccharomyces cerevisiae-Fermented Coconut Water Alleviates Dextran Sodium Sulfate-Induced Enteritis in Wenchang Chicken: A Gut Microbiota and Metabolomic Approach. Animals (Basel) 2024; 14:575. [PMID: 38396543 PMCID: PMC10886277 DOI: 10.3390/ani14040575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
In order to investigate the potential mechanisms of probiotic-fermented coconut water in treating enteritis, this study conducted a comprehensive analysis of the effects of probiotic intervention on the recovery from Dextran Sodium Sulfate-induced acute enteritis in Wenchang chicks. The analysis encompassed the assessment of growth performance, serum indicators, intestinal tissue structure, and metagenomic and metabolomic profiles of cecal contents in 60 Wenchang chicks subjected to intervention. This approach aimed to elucidate the impact of probiotic intervention on the recovery process from acute enteritis at both the genetic and metabolic levels in the avian model. The results revealed that intervention with Saccharomyces cerevisiae Y301 improved the growth rate of chicks. and intervention with Lactiplantibacillus plantarum MS2c regulated the glycerophospholipid metabolism pathway and reshaped the gut microbiota structure in modeling chicks with acute enteritis, reducing the abundance of potentially pathogenic bacteria from the Alistipes and increasing the abundance of potentially beneficial species from the Christensenellaceae. This intervention resulted in the production of specific gut metabolites, including Gentamicin C and polymyxin B2, recognized for their therapeutic effects on acute enteritis. The combined intervention of S. cerevisiae Y301 and L. plantarum MS2c not only enhanced growth performance but also mitigated intestinal wall damage and increased the abundance of gut metabolites such as gentamicin C and polymyxin B2, thereby mitigating symptoms of enteritis. Furthermore, this combined intervention reduced the levels of serum immune markers, including IL-10, IL-6, TNF-α, IFN-γ, and D-lactic acid, thus mitigating intestinal epithelial cell damage and promoting acute enteritis recovery. This study provides crucial insights into the mechanisms of action of probiotics and probiotic-fermented coconut water in acute enteritis recovery, offering new perspectives for sustainable farming practices for Wenchang chicken.
Collapse
Affiliation(s)
- Leijie Zheng
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.Z.)
| | - Zhe Han
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.Z.)
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.Z.)
| | - Jiamu Kang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.Z.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.Z.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou City, Haikou 570228, China
| | - Qing Pang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.Z.)
| | - Sixin Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.Z.)
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou City, Haikou 570228, China
| |
Collapse
|
4
|
Chang Y, Wang K, Liu G, Zhao H, Chen X, Cai J, Jia G. Zinc glycine chelate ameliorates DSS-induced intestinal barrier dysfunction via attenuating TLR4/NF-κB pathway in meat ducks. J Anim Sci Biotechnol 2024; 15:5. [PMID: 38243258 PMCID: PMC10797781 DOI: 10.1186/s40104-023-00962-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/01/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Zinc glycine chelate (Zn-Gly) has anti-inflammation and growth-promoting properties; however, the mechanism of Zn-Gly contribution to gut barrier function in Cherry Valley ducks during intestinal inflammation is unknown. Three-hundred 1-day-old ducks were divided into 5 groups (6 replicates and 10 ducks per replicate) in a completely randomized design: the control and dextran sulfate sodium (DSS) groups were fed a corn-soybean meal basal diet, and experimental groups received supplements of 70, 120 or 170 mg/kg Zn in form of Zn-Gly. The DSS and treatment groups were given 2 mL of 0.45 g/mL DSS daily during d 15-21, and the control group received normal saline. The experiment lasted 21 d. RESULTS Compared with DSS group, 70, 120 and 170 mg/kg Zn significantly increased body weight (BW), villus height and the ratio of villus to crypt, and significantly decreased the crypt depth of jejunum at 21 d. The number of goblet cells in jejunal villi in the Zn-Gly group was significantly increased by periodic acid-Schiff staining. Compared with control, the content of intestinal permeability marker D-lactic acid (D-LA) and fluxes of fluorescein isothiocyanate (FITC-D) in plasma of DSS group significantly increased, and 170 mg/kg Zn supplementation significantly decreased the D-LA content and FITC-D fluxes. Compared with control, contents of plasma, jejunum endotoxin and jejunum pro-inflammatory factors IL-1β, IL-6 and TNF-α were significantly increased in DSS group, and were significantly decreased by 170 mg/kg Zn supplementation. Dietary Zn significantly increased the contents of anti-inflammatory factors IL-10, IL-22 and sIgA and IgG in jejunum. Real-time PCR and Western blot results showed that 170 mg/kg Zn supplementation significantly increased mRNA expression levels of CLDN-1 and expression of OCLN protein in jejunum, and decreased gene and protein expression of CLDN-2 compared with DSS group. The 120 mg/kg Zn significantly promoted the expressions of IL-22 and IgA. Dietary Zn-Gly supplementation significantly decreased pro-inflammatory genes IL-8 and TNF-α expression levels and TNF-α protein expression in jejunum. Additionally, Zn significantly reduced the gene and protein expression of TLR4, MYD88 and NF-κB p65. CONCLUSIONS Zn-Gly improved duck BW and alleviated intestinal injury by regulating intestinal morphology, barrier function and gut inflammation-related signal pathways TLR4/MYD88/NF-κB p65.
Collapse
Affiliation(s)
- Yaqi Chang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ke Wang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Jia
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
5
|
Liu L, Sui W, Yang Y, Liu L, Li Q, Guo A. Establishment of an Enteric Inflammation Model in Broiler Chickens by Oral Administration with Dextran Sulfate Sodium. Animals (Basel) 2022; 12:ani12243552. [PMID: 36552471 PMCID: PMC9774581 DOI: 10.3390/ani12243552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
This study aimed to evaluate the effectiveness of oral gavage of dextran sodium sulfate (DSS) to establish an enteric inflammation model in broilers. Forty 1-day-old male, yellow-feathered broilers were randomly divided into 2 groups with 5 replicates of 4 birds each for a 42-day trial. The experiment design used 2 groups: (1) the control group (CT), normal broilers fed a basal diet, and (2) the DSS group, DSS-treated broilers fed a basal diet. The DSS group received 1 mL of 2.5% DSS solution once a day by oral gavage from 21 to 29 days of age. The results showed that compared with those in CT, DSS treatment significantly increased histological scores for enteritis and mucosal damage at 29 and 42 days of age (p < 0.01) and the disease activity index (DAI) from 23 to 29 days of age (p < 0.01). DSS-treated broilers showed poor growth performance at 42 days of age, including decreased body weight and average daily gain and an increased feed conversion ratio (p < 0.01). DSS also caused gross lesions and histopathological damage in the jejunum of broilers, such as obvious hemorrhagic spots, loss of villus architecture, epithelial cell disruption, inflammatory cell infiltration, and decreased villus height. These results suggest that oral gavage of DSS is an effective method for inducing mild and non-necrotic enteric inflammation in broilers.
Collapse
Affiliation(s)
- Lixuan Liu
- Faculty of Life Sciences, Southwest Forestry University, No. 300, Bailong Road, Panlong District, Kunming 650224, China
| | - Wenjing Sui
- Faculty of Life Sciences, Southwest Forestry University, No. 300, Bailong Road, Panlong District, Kunming 650224, China
| | - Yajin Yang
- Faculty of Life Sciences, Southwest Forestry University, No. 300, Bailong Road, Panlong District, Kunming 650224, China
| | - Lily Liu
- Faculty of Life Sciences, Southwest Forestry University, No. 300, Bailong Road, Panlong District, Kunming 650224, China
| | - Qingqing Li
- Faculty of Life Sciences, Southwest Forestry University, No. 300, Bailong Road, Panlong District, Kunming 650224, China
- Kunming Xianghao Technology Co., Ltd., Kunming 650204, China
| | - Aiwei Guo
- Faculty of Life Sciences, Southwest Forestry University, No. 300, Bailong Road, Panlong District, Kunming 650224, China
- Correspondence:
| |
Collapse
|
6
|
Kolba N, Cheng J, Jackson CD, Tako E. Intra-Amniotic Administration-An Emerging Method to Investigate Necrotizing Enterocolitis, In Vivo ( Gallus gallus). Nutrients 2022; 14:nu14224795. [PMID: 36432481 PMCID: PMC9696943 DOI: 10.3390/nu14224795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in premature infants and a leading cause of death in neonates (1-7% in the US). NEC is caused by opportunistic bacteria, which cause gut dysbiosis and inflammation and ultimately result in intestinal necrosis. Previous studies have utilized the rodent and pig models to mimic NEC, whereas the current study uses the in vivo (Gallus gallus) intra-amniotic administration approach to investigate NEC. On incubation day 17, broiler chicken (Gallus gallus) viable embryos were injected intra-amniotically with 1 mL dextran sodium sulfate (DSS) in H2O. Four treatment groups (0.1%, 0.25%, 0.5%, and 0.75% DSS) and two controls (H2O/non-injected controls) were administered. We observed a significant increase in intestinal permeability and negative intestinal morphological changes, specifically, decreased villus surface area and goblet cell diameter in the 0.50% and 0.75% DSS groups. Furthermore, there was a significant increase in pathogenic bacterial (E. coli spp. and Klebsiella spp.) abundances in the 0.75% DSS group compared to the control groups, demonstrating cecal microbiota dysbiosis. These results demonstrate significant physiopathology of NEC and negative bacterial-host interactions within a premature gastrointestinal system. Our present study demonstrates a novel model of NEC through intra-amniotic administration to study the effects of NEC on intestinal functionality, morphology, and gut microbiota in vivo.
Collapse
Affiliation(s)
| | | | | | - Elad Tako
- Correspondence: ; Tel.: +1-607-255-0884
| |
Collapse
|
7
|
Chen Y, Zha P, Xu H, Zhou Y. An evaluation of the protective effects of chlorogenic acid on broiler chickens in a dextran sodium sulfate model: a preliminary investigation. Poult Sci 2022; 102:102257. [PMID: 36399933 PMCID: PMC9673092 DOI: 10.1016/j.psj.2022.102257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/15/2022] Open
Abstract
This study was conducted to investigate the protective effects of chlorogenic acid (CGA) on broilers subjected to dextran sodium sulfate (DSS)-induced intestinal damage. One hundred and forty-four 1-day-old male Arbor Acres broiler chicks were allocated into one of 3 groups with 6 replicates of eight birds each for a 21-d trial. The treatments included: 1) Control group: normal birds fed a basal diet; 2) DSS group: DSS-treated birds fed a basal diet; and 3) CGA group: DSS-treated birds fed a CGA-supplemented control diet. An oral DSS administration via drinking water was performed from 15 to 21 d of age. Compared with the control group, DSS administration reduced 21-d body weight and weight gain from 15 to 21 d, but increased absolute weight of jejunum and absolute and relative weight of ileum (P < 0.05). DSS administration elevated circulating D-lactate concentration and diamine oxidase activity (P < 0.05), which were partially reversed when supplementing CGA (P < 0.05). The oral administration with DSS decreased villus height and villus height/crypt depth ratio, but increased crypt depth in jejunum and ileum (P < 0.05). Compared with the control group, DSS administration increased serum glutathione level and jejunal catalase activity and malonaldehyde accumulation, but decreased jejunal glutathione level (P < 0.05). In contrast, feeding a CGA-supplemented diet normalized serum glutathione and jejunal malonaldehyde levels, and increased jejunal glutathione concentration in DSS-administrated birds (P < 0.05). Additionally, CGA supplementation reduced ileal malonaldehyde accumulation in DSS-treated birds (P < 0.05). DSS challenge increased levels of serum interferon-γ and interleukin-6, jejunal interleukin-1β, tumor necrosis factor-α, and interleukin-6, and ileal interleukin-1β and interleukin-6 when compared with the control group (P < 0.05). The elevated serum interferon-γ and ileal interleukin-6 levels were normalized to control values when supplementing CGA (P < 0.05). The results suggested that CGA administration could partially prevent DSS-induced increased intestinal permeability, oxidative damage, and inflammation in broilers, although it did not improve their growth performance and intestinal morphology.
Collapse
Affiliation(s)
- Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Pingping Zha
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Hongrui Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, 450046, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China,Corresponding author:
| |
Collapse
|
8
|
Savary-Auzeloux I, Jarzaguet M, Migné C, Kemeny JL, Novais-Gameiro L, de Azevedo M, Mathé V, Mariotti F, Langella P, Chatel JM, Dardevet D. Anti-inflammatory Streptococcus thermophilus CNRZ160 limits sarcopenia induced by low-grade inflammation in older adult rats. Front Nutr 2022; 9:986542. [PMID: 36245508 PMCID: PMC9559730 DOI: 10.3389/fnut.2022.986542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background and aimsAging is characterized, at the systemic level, by the development of low-grade inflammation, which has been identified as determining sarcopenia by blunting postprandial muscle anabolism. The causes of this “inflammageing” is still not clearly defined. An increased intestinal permeability, a microbiota dysbiosis and subsequent generation of intestinal then generalized inflammation have been hypothesized. The objective of this study was to test in vivo during aging if (1) a chronic low-grade intestinal inflammation can lead to anabolic resistance and muscle loss and (2) if a bacterial strain presenting anti-inflammatory properties could prevent these adverse effects.MethodsYoung adult (6 m) and elderly rats (18 m) received Dextran Sodium Sulfate (DSS) for 28 days to generate low-grade intestinal inflammation, and received (PB1 or PB2 groups) or not (DSS group) one of the two S. Thermophilus strains (5 × 109 CFU/day) previously shown to present an anti-inflammatory potential in vitro. They were compared to pair fed control (PF). Muscle and colon weights and protein synthesis (using 13C Valine) were measured at slaughter. Muscle proteolysis, gut permeability and inflammatory markers were assessed only in old animals by RT-PCR or proteins quantifications (ELISA).ResultsIn both adult and old rats, DSS reduced absolute protein synthesis (ASR) in gastrocnemius muscle [−12.4% (PB1) and −9.5% (PB2) vs. PF, P < 0.05] and increased ASR in colon (+86% and +30.5%, respectively vs. PF, P < 0.05). PB1 (CNRZ160 strain) but not PB2 resulted in a higher muscle ASR as compared to DSS in adults (+18%, P < 0.05), a trend also observed for PB1 in old animals (+12%, P = 0.10). This was associated with a blunted increase in colon ASR. In old rats, PB1 also significantly decreased expression of markers of autophagy and ubiquitin-proteasome pathways vs. DSS groups and improved gut permeability (assessed by Occludin, Zonula Occludens 1 and Claudin 1 expression, P < 0.05) and alleviated systemic inflammation (A2M: −48% vs. DSS, P < 0.05).ConclusionThe loss of muscle anabolism associated with low-grade intestinal inflammation can be prevented by supplementation with anti-inflammatory CNRZ160 strain. We propose that the moderated gut inflammation by CNRZ160 may result in curtailed amino acids (AA) utilization by the gut, and subsequent restored AA systemic availability to support muscle protein accretion. Therefore, CNRZ160 could be considered as an efficient probiotic to modulate muscle mass loss and limit sarcopenia during aging.
Collapse
Affiliation(s)
- Isabelle Savary-Auzeloux
- Unité Nutrition Humaine, UMR1019, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
- *Correspondence: Isabelle Savary-Auzeloux
| | - Marianne Jarzaguet
- Unité Nutrition Humaine, UMR1019, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Carole Migné
- MetaboHUB Clermont, Plateforme d'Exploration du Métabolisme, Unité de Nutrition Humaine (UNH), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jean-Louis Kemeny
- Centre Imagerie cellulaire et Santé – CICS - Université Clermont Auvergne, Clermont-Ferrand, France
| | - Lorraine Novais-Gameiro
- Centre Imagerie cellulaire et Santé – CICS - Université Clermont Auvergne, Clermont-Ferrand, France
| | - Marcela de Azevedo
- Université Paris Saclay, AgroParisTech, UMR1319 MICALIS, INRAE, Jouy en Josas, France
| | - Véronique Mathé
- Université Paris-Saclay, AgroParisTech, UMR PNCA, INRAE, Paris, France
| | - François Mariotti
- Université Paris-Saclay, AgroParisTech, UMR PNCA, INRAE, Paris, France
| | - Philippe Langella
- Université Paris Saclay, AgroParisTech, UMR1319 MICALIS, INRAE, Jouy en Josas, France
| | - Jean-Marc Chatel
- Université Paris Saclay, AgroParisTech, UMR1319 MICALIS, INRAE, Jouy en Josas, France
| | - Dominique Dardevet
- Unité Nutrition Humaine, UMR1019, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| |
Collapse
|
9
|
<i>Bacillus subtilis-</i>Fermented Products Ameliorate the Growth Performance, Alleviate Intestinal Inflammatory Gene Expression, and Modulate Cecal Microbiota Community in Broilers during the Starter Phase under Dextran Sulfate Sodium Challenge. J Poult Sci 2022; 59:260-271. [PMID: 35989696 PMCID: PMC9346603 DOI: 10.2141/jpsa.0210139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/11/2022] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to evaluate the effects of B. subtilis-fermented products (BSFP) on growth performance, intestinal inflammatory gene expression, and cecal microbiota community in broilers challenged with dextran sulfate sodium (DSS) in a 14-day experiment. A total of 32, 1-day-old male broiler chickens (Ross 308), were randomly divided into four groups of eight birds per group and reared individually (n=8). The treatments consisted of a control diet without supplementation and DSS challenge, control diet plus 1.5% DSS, control diet plus 1 g/kg BSFP in combination with 1.5% DSS, and control diet plus 3 g/kg of BSFP in combination with 1.5% DSS. The results showed that BSFP supplementation (1 and 3 g/kg) partially improved body weight and average daily gain in broilers under DSS challenge. Relative to DSS treatment alone, BSFP supplementation dose-dependently increased the body weight of broilers at 7 days of age, with the average daily gain being at 1 to 7 days of age. BSFP supplementation (1 and 3 g/kg) alleviated intestinal inflammatory gene expression in broilers under DSS challenge. The richness and evenness of bacterial species in cecal digesta increased in a dose-dependent manner in the groups treated with BSFP (1 and 3 g/kg) in combination with DSS challenge, compared with the control group. Unweighted principal coordinate analysis indicated distinct clusters separating the group treated with 3 g/kg of BSFP in combination with DSS challenge from the other three groups. The abundance of short-chain fatty acid-producing bacteria (genus Ruminococcaceae_unclassified) increased and that of mucindegrading bacteria (genus Ruminococcus torques group) decreased in the cecal digesta of broilers fed 3 g/kg of BSFP, compared with the control group. In conclusion, BSFP supplementation dose-dependently improved growth performance, reduced gut inflammation, and regulated the cecal microbiota of broilers exposed to DSS challenge during the starter phase.
Collapse
|
10
|
Dal Pont GC, Belote BL, Lee A, Bortoluzzi C, Eyng C, Sevastiyanova M, Khadem A, Santin E, Farnell YZ, Gougoulias C, Kogut MH. Novel Models for Chronic Intestinal Inflammation in Chickens: Intestinal Inflammation Pattern and Biomarkers. Front Immunol 2021; 12:676628. [PMID: 34054868 PMCID: PMC8158159 DOI: 10.3389/fimmu.2021.676628] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/23/2021] [Indexed: 01/30/2023] Open
Abstract
For poultry producers, chronic low-grade intestinal inflammation has a negative impact on productivity by impairing nutrient absorption and allocation of nutrients for growth. Understanding the triggers of chronic intestinal inflammation and developing a non-invasive measurement is crucial to managing gut health in poultry. In this study, we developed two novel models of low-grade chronic intestinal inflammation in broiler chickens: a chemical model using dextran sodium sulfate (DSS) and a dietary model using a high non-starch polysaccharide diet (NSP). Further, we evaluated the potential of several proteins as biomarkers of gut inflammation. For these experiments, the chemical induction of inflammation consisted of two 5-day cycles of oral gavage of either 0.25mg DSS/ml or 0.35mg DSS/ml; whereas the NSP diet (30% rice bran) was fed throughout the experiment. At four times (14, 22, 28 and 36-d post-hatch), necropsies were performed to collect intestinal samples for histology, and feces and serum for biomarkers quantification. Neither DSS nor NSP treatments affected feed intake or livability. NSP-fed birds exhibited intestinal inflammation through 14-d, which stabilized by 36-d. On the other hand, the cyclic DSS-treatment produced inflammation throughout the entire experimental period. Histological examination of the intestine revealed that the inflammation induced by both models exhibited similar spatial and temporal patterns with the duodenum and jejunum affected early (at 14-d) whereas the ileum was compromised by 28-d. Calprotectin (CALP) was the only serum protein found to be increased due to inflammation. However, fecal CALP and Lipocalin-2 (LCN-2) concentrations were significantly greater in the induced inflammation groups at 28-d. This experiment demonstrated for the first time, two in vivo models of chronic gut inflammation in chickens, a DSS and a nutritional NSP protocols. Based on these models we observed that intestinal inflammation begins in the upper segments of small intestine and moved to the lower region over time. In the searching for a fecal biomarker for intestinal inflammation, LCN-2 showed promising results. More importantly, calprotectin has a great potential as a novel biomarker for poultry measured both in serum and feces.
Collapse
Affiliation(s)
- Gabriela C Dal Pont
- Department of Poultry Science, Texas A&M Agrilife Research, Texas A&M University, College Station, TX, United States.,Department of Veterinary Science, Federal University of Paraná, Curitiba, Brazil.,Department of Animal Science, Western Parana State University, Marechal C. Rondon, Brazil.,Innovad NV/SA, Essen, Belgium.,Southern Plains Agricultural Research Center, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), College Station, TX, United States
| | - Bruna L Belote
- Department of Veterinary Science, Federal University of Paraná, Curitiba, Brazil
| | - Annah Lee
- Department of Poultry Science, Texas A&M Agrilife Research, Texas A&M University, College Station, TX, United States
| | - Cristiano Bortoluzzi
- Department of Poultry Science, Texas A&M Agrilife Research, Texas A&M University, College Station, TX, United States
| | - Cinthia Eyng
- Department of Animal Science, Western Parana State University, Marechal C. Rondon, Brazil
| | | | | | - Elizabeth Santin
- Department of Veterinary Science, Federal University of Paraná, Curitiba, Brazil
| | - Yuhua Z Farnell
- Department of Poultry Science, Texas A&M Agrilife Research, Texas A&M University, College Station, TX, United States
| | | | - Michael H Kogut
- Southern Plains Agricultural Research Center, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), College Station, TX, United States
| |
Collapse
|
11
|
Acharya M, Arsi K, Donoghue AM, Liyanage R, Rath NC. Production and characterization of avian crypt-villus enteroids and the effect of chemicals. BMC Vet Res 2020; 16:179. [PMID: 32503669 PMCID: PMC7275437 DOI: 10.1186/s12917-020-02397-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Three-dimensional models of cell culture such as organoids and mini organs accord better advantage over regular cell culture because of their ability to simulate organ functions hence, used for disease modeling, metabolic research, and the development of therapeutics strategies. However, most advances in this area are limited to mammalian species with little progress in others such as poultry where it can be deployed to study problems of agricultural importance. In the course of enterocyte culture in chicken, we observed that intestinal mucosal villus-crypts self-repair and form spheroid-like structures which appear to be useful as ex vivo models to study enteric physiology and diseases. RESULTS The villus-crypts harvested from chicken intestinal mucosa were cultured to generate enteroids, purified by filtration then re cultured with different chemicals and growth factors to assess their response based on their morphological dispositions. Histochemical analyses using marker antibodies and probes showed the enteroids consisting different cell types such as epithelial, goblet, and enteroendocrine cells typical to villi and retain functional characteristics of intestinal mucosa. CONCLUSIONS We present a simple procedure to generate avian crypt-villous enteroids containing different cell types. Because the absorptive cells are functionally positioned outwards, similar to the luminal enterocytes, the cells have better advantages to interact with the factors present in the culture medium. Thus, the enteroids have the potential to study the physiology, metabolism, and pathology of the intestinal villi and can be useful for preliminary screenings of the factors that may affect gut health in a cost-effective manner and reduce the use of live animals.
Collapse
Affiliation(s)
- Mohan Acharya
- Poultry Production and Product Safety Research Unit, ARS/USDA, Fayetteville, AR, 72701, USA
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Komala Arsi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Annie M Donoghue
- Poultry Production and Product Safety Research Unit, ARS/USDA, Fayetteville, AR, 72701, USA
| | - Rohana Liyanage
- Statewide Mass spectrometry Facility, Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Narayan C Rath
- Poultry Production and Product Safety Research Unit, ARS/USDA, Fayetteville, AR, 72701, USA.
| |
Collapse
|
12
|
Zou X, Ji J, Qu H, Wang J, Shu DM, Wang Y, Liu TF, Li Y, Luo CL. Effects of sodium butyrate on intestinal health and gut microbiota composition during intestinal inflammation progression in broilers. Poult Sci 2019; 98:4449-4456. [PMID: 31162611 DOI: 10.3382/ps/pez279] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/05/2019] [Indexed: 01/06/2023] Open
Abstract
Butyric acid is a beneficial feed additive used in animal production, including poultry production. However, there are few reports on butyric acid as a prophylactic treatment against intestinal inflammation in broilers. The current study explored the effect of sodium butyrate (SB) as a prophylactic treatment on the intestinal health and gut microbiota of broilers with intestinal inflammation induced by dextran sulfate sodium (DSS) by monitoring changes in intestinal histopathology, gut leakiness indicators, inflammatory cytokines, and gut microbiota composition. Sodium butyrate supplementation prior to DSS administration significantly reduced the lesion scores of intestinal bleeding (P < 0.05) and increased villus height and the total mucosa of the ileum (P < 0.05). Regardless of intestinal inflammation, supplementation with SB at 300 mg/kg significantly decreased the levels of D (-)-lactate (P < 0.05), interleukin-6, and interleukin-1β (P < 0.05) but increased the level of interleukin-10 (P < 0.05). The SB treatment did not affect the alpha diversity of intestinal microbiota during intestinal inflammation progression but altered their composition, and the microbial community structure of treated broilers was similar to that of control broilers. Taken together, our results reveal the importance of SB in improving intestinal development, inducing an anti-inflammatory effect during intestinal inflammation progression, and modulating the microbial community in broilers. Sodium butyrate seems to be optimized for anti-inflammatory effects at higher doses (300 mg/kg SB).
Collapse
Affiliation(s)
- X Zou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| | - J Ji
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| | - H Qu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| | - J Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| | - D M Shu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| | - Y Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| | - T F Liu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| | - Y Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| | - C L Luo
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| |
Collapse
|