1
|
Som Chaudhury S, Nandi M, Kumar K, Ruidas B, Sur TK, Prasad P, Chakrabarti S, De P, Sil J, Das Mukhopadhyay C. Rodent Model Preclinical Assessment of PEGylated Block Copolymer Targeting Cognition and Oxidative Stress Insults of Alzheimer's Disease. Mol Neurobiol 2023; 60:2036-2050. [PMID: 36598649 DOI: 10.1007/s12035-022-03194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
Misfolded peptide amyloid beta (Aβ42), neurofibrillary tangles of hyper-phosphorylated tau, oxidative damage to the brain, and neuroinflammation are distinguished determinants of Alzheimer's disease (AD) responsible for disease progression. This multifaceted neurodegenerative disease is challenging to cure under a single treatment regime until the key disease determinants are traced for their sequential occurrence in disease progression. In an early report, a novel side-chain tripeptide containing PEGylated block copolymer has been tested thoroughly in vitro and in silico for the early inhibition of Aβ42 aggregation as well as degradation of preformed Aβ42 fibril deposits. The present study demonstrates a preclinical assessment of the PEGylated block copolymer in colchicine-induced AD-mimicking rodent model. The colchicine-induced Wistar rats receiving an intranasal delivery of the block copolymer at a daily dosage of 100 µg/kg and 200 µg/kg body weights, respectively, for 14 days manifested a notable attenuation of behavioral deficit pattern, oxidative stress, and neurotransmitters' deficiency as compared to the untreated ones. The current study also reports the ameliorative property of the PEGylated compound for progressive neuroinflammation and decreased mitochondrial bioenergetics in astrocytoma cell line, viz., U87. A closer look into the drug mechanism of action of a compact 3D PEGylated block copolymer confirmed its disintegrative interaction with Aβ42 fibril via in silico simulation. The results obtained from this study signify the potential of the novel PEGylated block copolymer to ameliorate the cognitive decline and progressive oxidative insults in AD and may envision a successful clinical phase trial. The amelioration of disease condition of colchicine-induced AD rat. Initially the rat has given colchicine via stereotaxic surgery which led to a mimicking condition of AD including neuronal death in hippocampal CA1 region. After recovery from the surgery, the rat was treated with the PEGylated block copolymer through intranasal delivery, and this has led to the decrease in neuronal death in hippocampal CA1 region. The mechanism of drug action has shown by the separation of monomer chains of Aβ42.
Collapse
Affiliation(s)
- Sutapa Som Chaudhury
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, West Bengal, India.,APDA Center for Advanced Parkinson's Research, Brigham and Women's Hospital, Hale Building for Transformative Medicine, 60 Fenwood Road, 9Th Floor, Boston, MA, 02115, USA
| | - Mridula Nandi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India.,Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Krishna Kumar
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Building, CN 6, Sector V Salt Lake, Kolkata, 700091, West Bengal, India
| | - Bhuban Ruidas
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, West Bengal, India
| | - Tapas Kumar Sur
- Department of Pharmacology, R.G Kar Medical College and Hospital, Kolkata, 700004, West Bengal, India
| | - Parash Prasad
- Cell Biology & Physiology Department, CSIR-Indian Institute of Chemical Biology, 4, Raja Subodh Chandra Mallick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Building, CN 6, Sector V Salt Lake, Kolkata, 700091, West Bengal, India
| | - Priyadarsi De
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Jaya Sil
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, West Bengal, India
| | - Chitrangada Das Mukhopadhyay
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, West Bengal, India.
| |
Collapse
|
2
|
Chaudhury SS, Nandi M, Kumar K, Ruidas B, Sur TK, Prasad P, Chakrabarti S, De P, Sil J, Mukhopadhyay CD. Rodent model preclinical assessment of PEGylated block copolymer targeting cognition and oxidative stress insults of Alzheimer’s disease.. [DOI: 10.21203/rs.3.rs-1907312/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
Abstract
Misfolded peptide amyloid beta (Aβ42), neurofibrillary tangles of hyper-phosphorylated tau, oxidative damage to the brain, neuroinflammation are distinguished determinants of Alzheimer’s disease (AD) responsible for disease progression. This multifaceted neurodegenerative disease is challenging to cure under a single treatment regime until the key disease-determinants are traced for their sequential occurrence in disease progression. In an early report, a novel side-chain tripeptide containing PEGylated block copolymer has been tested thoroughly in vitro and in silico for the early inhibition of Aβ42-aggregation as well as degradation of preformed Aβ42-fibril deposits. The present study demonstrates a preclinical assessment of the PEGylated block copolymer in colchicine-induced AD mimicking rodent model. The colchicine induced Wistar rats receiving an intranasal delivery of the block copolymer at a daily dosage of 100 µg/kg and 200 µg/kg body weights respectively for 14 days manifested a notable attenuation of behavioral deficit pattern, oxidative stress, and neurotransmitters’ deficiency as compared to the untreated ones. The current study also reports the ameliorative property of the PEGylated compound for progressive neuroinflammation and decreased mitochondrial bioenergetics in astrocytoma cell line viz. U87. A closer look into the drug mechanism of action of a compact three-dimensional PEGylated block copolymer confirmed its disintegrative interaction with Aβ42 fibril via in silico simulation. The results obtained herein this study signify the potential of the novel PEGylated block copolymer to ameliorate the cognitive decline and progressive oxidative insults in AD, and may envision a successful clinical phase trial.
Collapse
Affiliation(s)
| | - Mridula Nandi
- IISER-K: Indian Institute of Science Education and Research Kolkata
| | - Krishna Kumar
- CSIR-IICB: Indian Institute of Chemical Biology CSIR
| | - Bhuban Ruidas
- Indian Institute of Engineering Science and Technology
| | | | - Parash Prasad
- CSIR-IICB: Indian Institute of Chemical Biology CSIR
| | | | - Priyadarsi De
- IISER-K: Indian Institute of Science Education and Research Kolkata
| | - Jaya Sil
- Indian Institute of Engineering Science and Technology
| | | |
Collapse
|
3
|
GroEL—A Versatile Chaperone for Engineering and a Plethora of Applications. Biomolecules 2022; 12:biom12050607. [PMID: 35625535 PMCID: PMC9138447 DOI: 10.3390/biom12050607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Chaperones play a vital role in the life of cells by facilitating the correct folding of other proteins and maintaining them in a functional state, being themselves, as a rule, more stable than the rest of cell proteins. Their functional properties naturally tempt investigators to actively adapt them for biotechnology needs. This review will mostly focus on the applications found for the bacterial chaperonin GroE and its counterparts from other organisms, in biotechnology or for research purposes, both in their engineered or intact versions.
Collapse
|
5
|
Jin W, Zhang F, Linhardt RJ. Glycosaminoglycans in Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:189-204. [PMID: 34495536 DOI: 10.1007/978-3-030-70115-4_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glycosaminoglycans (GAGs) are linear polysaccharides that consist of alternating disaccharides sequences of uronic acids and/or galactose hexamino sugars most of which are sulfated. GAGs are ubiquitously expressed on the cell surface, in the intracellular milieu and in the extracellular matrix of all animal cells. Thus, GAGs exhibit many essential roles in a variety of physiological and pathological processes. The targets of GAGs are GAG-binding proteins and related proteins that are of significant interest to both the academic community and in the pharmaceutical industry. In this review, the structures of GAGs, their binding proteins, and analogs are presented that further the development of GAGs and their analogs for the treatment of neurodegenerative diseases agents.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA. .,Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
8
|
Urban JM, Ho J, Piester G, Fu R, Nilsson BL. Rippled β-Sheet Formation by an Amyloid-β Fragment Indicates Expanded Scope of Sequence Space for Enantiomeric β-Sheet Peptide Coassembly. Molecules 2019; 24:E1983. [PMID: 31126069 PMCID: PMC6571685 DOI: 10.3390/molecules24101983] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/10/2019] [Accepted: 05/22/2019] [Indexed: 11/30/2022] Open
Abstract
In 1953, Pauling and Corey predicted that enantiomeric β-sheet peptides would coassemble into so-called "rippled" β-sheets, in which the β-sheets would consist of alternating l- and d-peptides. To date, this phenomenon has been investigated primarily with amphipathic peptide sequences composed of alternating hydrophilic and hydrophobic amino acid residues. Here, we show that enantiomers of a fragment of the amyloid-β (Aβ) peptide that does not follow this sequence pattern, amyloid-β (16-22), readily coassembles into rippled β-sheets. Equimolar mixtures of enantiomeric amyloid-β (16-22) peptides assemble into supramolecular structures that exhibit distinct morphologies from those observed by self-assembly of the single enantiomer pleated β-sheet fibrils. Formation of rippled β-sheets composed of alternating l- and d-amyloid-β (16-22) is confirmed by isotope-edited infrared spectroscopy and solid-state NMR spectroscopy. Sedimentation analysis reveals that rippled β-sheet formation by l- and d-amyloid-β (16-22) is energetically favorable relative to self-assembly into corresponding pleated β-sheets. This work illustrates that coassembly of enantiomeric β-sheet peptides into rippled β-sheets is not limited to peptides with alternating hydrophobic/hydrophilic sequence patterns, but that a broader range of sequence space is available for the design and preparation of rippled β-sheet materials.
Collapse
Affiliation(s)
- Jennifer M Urban
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| | - Janson Ho
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| | - Gavin Piester
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| | - Riqiang Fu
- The National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA.
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| |
Collapse
|
9
|
Som Chaudhury S, Sannigrahi A, Nandi M, Mishra VK, De P, Chattopadhyay K, Mishra S, Sil J, Das Mukhopadhyay C. A Novel PEGylated Block Copolymer in New Age Therapeutics for Alzheimer’s Disease. Mol Neurobiol 2019; 56:6551-6565. [DOI: 10.1007/s12035-019-1542-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/27/2019] [Indexed: 12/15/2022]
|
10
|
Gour S, Kumar V, Singh A, Gadhave K, Goyal P, Pandey J, Giri R, Yadav JK. Mammalian antimicrobial peptide protegrin‐4 self assembles and forms amyloid‐like aggregates: Assessment of its functional relevance. J Pept Sci 2019; 25:e3151. [DOI: 10.1002/psc.3151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/18/2018] [Accepted: 01/13/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Shalini Gour
- Department of BiotechnologyCentral University of Rajasthan Ajmer India
| | - Vijay Kumar
- Department of BiotechnologyCentral University of Rajasthan Ajmer India
| | - Ashutosh Singh
- School of Basic SciencesIndian Institute of Technology Mandi Kamand India
| | - Kundlik Gadhave
- School of Basic SciencesIndian Institute of Technology Mandi Kamand India
| | - Pankaj Goyal
- Department of BiotechnologyCentral University of Rajasthan Ajmer India
| | - Janmejay Pandey
- Department of BiotechnologyCentral University of Rajasthan Ajmer India
| | - Rajanish Giri
- School of Basic SciencesIndian Institute of Technology Mandi Kamand India
| | - Jay Kant Yadav
- Department of BiotechnologyCentral University of Rajasthan Ajmer India
| |
Collapse
|