1
|
Mohammed HS, Ahmed DH, Khadrawy YA, Madian NG. Neuroprotection in pentylenetetrazol kindling rat model: A synergistic approach with eugenol and photobiomodulation. Brain Res 2025; 1858:149645. [PMID: 40228569 DOI: 10.1016/j.brainres.2025.149645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/21/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Epilepsy is a complex neurological disorder characterized by recurrent seizures, significantly impacting patient health and quality of life. This study explores the neuroprotective effects of combining Eugenol (EUG), a natural bioactive compound administered at 100 mg/kg, with photobiomodulation (PBM), a non-invasive low-level laser therapy at 830 nm wavelength and 100 mW power, in a pentylenetetrazole (PTZ) kindling rat model of epilepsy. Fifty-nine adult male Wistar rats were assigned to five experimental groups: Control, PTZ (epilepsy model), PBM, EUG, and EUG + PBM. Seizure severity was assessed using a modified Racine scale following each PTZ injection. The study also evaluated cortical and hippocampal levels of brain-derived neurotrophic factor (BDNF), oxidative stress markers (MDA, NO, and GSH), activities of acetylcholinesterase (AChE) and Na + K + -ATPase, and monoamine neurotransmitters (DA, 5-HT, and NE). The results demonstrated that EUG and PBM, both individually and combined, significantly reduced seizure severity, mitigated oxidative stress, restored enzyme activities, and elevated BDNF levels. The combined treatment yielded superior neuroprotective effects compared to individual interventions, emphasizing its potential as a promising therapeutic strategy for epilepsy management.
Collapse
Affiliation(s)
- Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Dalia H Ahmed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Yasser A Khadrawy
- Medical Physiology Department, National Research Center, Giza, Egypt
| | - Noha G Madian
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
López-Rosas CA, González-Periañez S, Pawar TJ, Zurutuza-Lorméndez JI, Ramos-Morales FR, Olivares-Romero JL, Saavedra Vélez MV, Hernández-Rosas F. Anticonvulsant Potential and Toxicological Profile of Verbesina persicifolia Leaf Extracts: Evaluation in Zebrafish Seizure and Artemia salina Toxicity Models. PLANTS (BASEL, SWITZERLAND) 2025; 14:1078. [PMID: 40219149 PMCID: PMC11991391 DOI: 10.3390/plants14071078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/20/2025] [Accepted: 03/29/2025] [Indexed: 04/14/2025]
Abstract
Epilepsy is a chronic neurological disorder with significant treatment challenges, necessitating the search for alternative therapies. This study evaluates the anticonvulsant activity and toxicological profile of Verbesina persicifolia leaf extracts. Methanolic and sequential fractions (hexane, dichloromethane, ethyl acetate, and methanol) were tested using a pentylenetetrazole (PTZ)-induced seizure model in zebrafish (Danio rerio), measuring seizure latency, severity, and survival rates. Phytochemical screening confirmed the presence of flavonoids, alkaloids, and steroids, suggesting potential neuroactive properties. The hexane extracts significantly increased seizure latency and survival rates, with co-administration of hexane extract (5 µg/mL) and diazepam (35.5 µM) further enhancing these effects. Toxicity assessment in Artemia salina indicated low to moderate toxicity in methanolic extracts, while sequential fractions exhibited higher toxicity, particularly in hexane and ethyl acetate extracts. These findings suggest that V. persicifolia extracts exert anticonvulsant effects, likely through GABAergic modulation, and exhibit a favorable safety profile at therapeutic doses. The results support further investigations to isolate active constituents, confirm their mechanisms of action, and explore their potential as plant-derived anticonvulsant agents.
Collapse
Affiliation(s)
- Carlos Alberto López-Rosas
- Instituto de Química Aplicada, Universidad Veracruzana, Luis Castelazo Ayala s/n, Col. Industrial Animas, Xalapa 91190, Mexico; (C.A.L.-R.); (S.G.-P.); (F.R.R.-M.)
- Instituto de Neuroetología, Universidad Veracruzana, Luis Castelazo Ayala s/n, Col. Industrial Animas, Xalapa 91190, Mexico
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Circuito Aguirre Beltrán s/n, Col. Zona UV, Xalapa 91090, Mexico
| | - Santiago González-Periañez
- Instituto de Química Aplicada, Universidad Veracruzana, Luis Castelazo Ayala s/n, Col. Industrial Animas, Xalapa 91190, Mexico; (C.A.L.-R.); (S.G.-P.); (F.R.R.-M.)
| | - Tushar Janardan Pawar
- Red de Estudios Moleculares Avanzados, Campus III, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, Xalapa 91073, Mexico; (T.J.P.); (J.L.O.-R.)
| | - Jorge Iván Zurutuza-Lorméndez
- Centro de Salud Urbano José A. Maraboto Carreón, Servicios de Salud de Veracruz, Santiago Bonilla No 85, Col. Obrero Campesino, Xalapa 91020, Mexico;
| | - Fernando Rafael Ramos-Morales
- Instituto de Química Aplicada, Universidad Veracruzana, Luis Castelazo Ayala s/n, Col. Industrial Animas, Xalapa 91190, Mexico; (C.A.L.-R.); (S.G.-P.); (F.R.R.-M.)
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Circuito Aguirre Beltrán s/n, Col. Zona UV, Xalapa 91090, Mexico
| | - José Luís Olivares-Romero
- Red de Estudios Moleculares Avanzados, Campus III, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, Xalapa 91073, Mexico; (T.J.P.); (J.L.O.-R.)
| | - Margarita Virginia Saavedra Vélez
- Instituto de Neuroetología, Universidad Veracruzana, Luis Castelazo Ayala s/n, Col. Industrial Animas, Xalapa 91190, Mexico
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Circuito Aguirre Beltrán s/n, Col. Zona UV, Xalapa 91090, Mexico
| | - Fabiola Hernández-Rosas
- Centro de Investigación, Universidad Anahuac Querétaro, El Marqués, Querétaro 76246, Mexico
- Escuela de Ingeniería Biomédica, División de Ingenierías, Universidad Anahuac Querétaro, El Marqués, Querétaro 76246, Mexico
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico
| |
Collapse
|
3
|
Youssef JR, Boraie NA, Ismail FA, Bakr BA, Allam EA, El-Moslemany RM. Brain targeted lactoferrin coated lipid nanocapsules for the combined effects of apocynin and lavender essential oil in PTZ induced seizures. Drug Deliv Transl Res 2025; 15:534-555. [PMID: 38819768 PMCID: PMC11683025 DOI: 10.1007/s13346-024-01610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2024] [Indexed: 06/01/2024]
Abstract
Apocynin (APO) is a plant derived antioxidant exerting specific NADPH oxidase inhibitory action substantiating its neuroprotective effects in various CNS disorders, including epilepsy. Due to rapid elimination and poor bioavailability, treatment with APO is challenging. Correspondingly, novel APO-loaded lipid nanocapsules (APO-LNC) were formulated and coated with lactoferrin (LF-APO-LNC) to improve br ain targetability and prolong residence time. Lavender oil (LAV) was incorporated into LNC as a bioactive ingredient to act synergistically with APO in alleviating pentylenetetrazol (PTZ)-induced seizures. The optimized LF-APO-LAV/LNC showed a particle size 59.7 ± 4.5 nm with narrow distribution and 6.07 ± 1.6mV zeta potential) with high entrapment efficiency 92 ± 2.4% and sustained release (35% in 72 h). Following subcutaneous administration, LF-APO-LAV/LNC brought about ⁓twofold increase in plasma AUC and MRT compared to APO. A Log BB value of 0.2 ± 0.14 at 90 min reflects increased brain accumulation. In a PTZ-induced seizures rat model, LF-APO-LAV/LNC showed a Modified Racine score of 0.67 ± 0.47 with a significant increase in seizures latency and decrease in duration. Moreover, oxidant/antioxidant capacity and inflammatory markers levels in brain tissue were significantly improved. Histopathological and immunohistochemical assessment of brain tissue sections further supported these findings. The results suggest APO/LAV combination in LF-coated LNC as a promising approach to counteract seizures.
Collapse
Affiliation(s)
- Julie R Youssef
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt.
| | - Nabila A Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt
| | - Fatma A Ismail
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21523, Egypt
| | - Eman A Allam
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, 21131, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt
| |
Collapse
|
4
|
Monteiro ÁB, Alves AF, Ribeiro Portela AC, Oliveira Pires HF, Pessoa de Melo M, Medeiros Vilar Barbosa NM, Bezerra Felipe CF. Pentylenetetrazole: A review. Neurochem Int 2024; 180:105841. [PMID: 39214154 DOI: 10.1016/j.neuint.2024.105841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Pentylenetetrazole (PTZ), a tetrazole derivative, is commonly used as a chemical agent to induce neurological disorders and replicate the characteristics of human epileptic seizures in animal models. This review offers a comprehensive analysis of the behavioral, neurophysiological, and neurochemical changes induced by PTZ. The epileptogenic and neurotoxic mechanisms of PTZ are associated with an imbalance between the GABAergic and glutamatergic systems. At doses exceeding 60 mg/kg, PTZ exerts its epileptic effects by non-competitively antagonizing GABAA receptors and activating NMDA receptors, resulting in an increased influx of cations such as Na+ and Ca2+. Additionally, PTZ promotes oxidative stress, microglial activation, and the synthesis of pro-inflammatory mediators, all of which are features characteristic of glutamatergic excitotoxicity. These mechanisms ultimately lead to epileptic seizures and neuronal cell death, which depend on the dosage and method of administration. The behavioral, electroencephalographic, and histological changes associated with PTZ further establish it as a valuable preclinical model for the study of epileptic seizures, owing to its simplicity, cost-effectiveness, and reproducibility.
Collapse
Affiliation(s)
- Álefe Brito Monteiro
- Laboratory of Psychopharmacology, Institute of Drugs and Medicines Research, Federal University of Paraíba, Brazil
| | - Alan Ferreira Alves
- Laboratory of Psychopharmacology, Institute of Drugs and Medicines Research, Federal University of Paraíba, Brazil
| | | | | | - Mayara Pessoa de Melo
- Laboratory of Psychopharmacology, Institute of Drugs and Medicines Research, Federal University of Paraíba, Brazil
| | | | | |
Collapse
|
5
|
Walters JM, Noblet HA, Chung HJ. An emerging role of STriatal-Enriched protein tyrosine Phosphatase in hyperexcitability-associated brain disorders. Neurobiol Dis 2024; 200:106641. [PMID: 39159894 DOI: 10.1016/j.nbd.2024.106641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024] Open
Abstract
STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-specific tyrosine phosphatase that is associated with numerous neurological and neuropsychiatric disorders. STEP dephosphorylates and inactivates various kinases and phosphatases critical for neuronal function and health including Fyn, Pyk2, ERK1/2, p38, and PTPα. Importantly, STEP dephosphorylates NMDA and AMPA receptors, two major glutamate receptors that mediate fast excitatory synaptic transmission. This STEP-mediated dephosphorylation leads to their internalization and inhibits both Hebbian synaptic potentiation and homeostatic synaptic scaling. Hence, STEP has been widely accepted to weaken excitatory synaptic strength. However, emerging evidence implicates a novel role of STEP in neuronal hyperexcitability and seizure disorders. Genetic deletion and pharmacological blockade of STEP reduces seizure susceptibility in acute seizure mouse models and audiogenic seizures in a mouse model of Fragile X syndrome. Pharmacologic inhibition of STEP also decreases hippocampal activity and neuronal intrinsic excitability. Here, we will highlight the divergent roles of STEP in excitatory synaptic transmission and neuronal intrinsic excitability, present the potential underlying mechanisms, and discuss their impact on STEP-associated neurologic and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jennifer M Walters
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hayden A Noblet
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hee Jung Chung
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
6
|
Vasović D, Stanojlović O, Hrnčić D, Šutulović N, Vesković M, Ristić AJ, Radunović N, Mladenović D. Dose-Dependent Induction of Differential Seizure Phenotypes by Pilocarpine in Rats: Considerations for Translational Potential. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1579. [PMID: 39459366 PMCID: PMC11509679 DOI: 10.3390/medicina60101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Pilocarpine is used in experimental studies for testing antiepileptic drugs, but further characterization of this model is essential for its usage in testing novel drugs. The aim of our study was to study the behavioral and EEG characteristics of acute seizures caused by different doses of pilocarpine in rats. Materials and Methods: Male Wistar rats were treated with a single intraperitoneal dose of 100 mg/kg (P100), 200 mg/kg (P200), or 300 mg/kg (P300) of pilocarpine, and epileptiform behavior and EEG changes followed within 4 h. Results: The intensity and the duration of seizures were significantly higher in P300 vs. the P200 and P100 groups, with status epilepticus dominating in P300 and self-limiting tonic-clonic seizures in the P200 group. The seizure grade was significantly higher in P200 vs. the P100 group only during the first hour after pilocarpine application. The latency of seizures was significantly shorter in P300 and P200 compared with P100 group. Conclusions: Pilocarpine (200 mg/kg) can be used as a suitable model for the initial screening of potential anti-seizure medications, while at a dose of 300 mg/kg, it can be used for study of the mechanisms of epileptogenesis.
Collapse
Affiliation(s)
- Dolika Vasović
- Clinical Centre of Serbia, University Eye Hospital, Pasterova 2, 11000 Belgrade, Serbia;
| | - Olivera Stanojlović
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Višegradska 26/II, 11000 Belgrade, Serbia
| | - Dragan Hrnčić
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Višegradska 26/II, 11000 Belgrade, Serbia
| | - Nikola Šutulović
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Višegradska 26/II, 11000 Belgrade, Serbia
| | - Milena Vesković
- Institute of Pathophysiology “Ljubodrag Buba Mihailović”, Faculty of Medicine, University of Belgrade, Dr Subotića 9, 11000 Belgrade, Serbia
| | - Aleksandar J. Ristić
- Neurology Clinic, Clinical Center of Serbia, Dr Subotića 6, 11000 Belgrade, Serbia
| | - Nebojša Radunović
- Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia
| | - Dušan Mladenović
- Institute of Pathophysiology “Ljubodrag Buba Mihailović”, Faculty of Medicine, University of Belgrade, Dr Subotića 9, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Chindo BA, Yakubu MI, Jimoh AA, Waziri PM, Abdullahi I, Ayuba GI, Becker A. Ficus platyphylla alleviates seizure severity and neurobehavioral comorbidities in pentylenetetrazole-kindled rats via modulation of oxidative stress. Brain Res 2024; 1838:148994. [PMID: 38729331 DOI: 10.1016/j.brainres.2024.148994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
PTZ kindling induces oxidative stress, neuronal cell degeneration, and neurobehavioral alterations in rodents that mimic neuropsychiatric comorbidities of epilepsy, which could be initiated or aggravated by some antiepileptic drugs. Here, we investigated the effects of the methanol extract of Ficus platyphylla (FP) on severity scores for seizures, neuronal cell degeneration, and neurobehavioral alterations in rats kindled with pentylenetetrazole (PTZ) and probed the involvement of oxidative stress in these ameliorative effects of FP. FP (50 and 100 mg/kg, p.o.) ameliorated seizure severity, neuronal cell degeneration, depressive behaviors, cognitive dysfunctions, and oxidative stress in rats kindled with PTZ (42.5 mg/kg, i.p.). The findings from this study give additional insights into the potential values of FP in the treatment of persistent epilepsy and major neuropsychiatric comorbidities via modulation of oxidative stress.
Collapse
Affiliation(s)
- Ben A Chindo
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna, Nigeria.
| | - Musa I Yakubu
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna, Nigeria
| | - Abdulfatai A Jimoh
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna, Nigeria
| | - Peter M Waziri
- Department of Biochemistry, Faculty of Life Sciences, Kaduna State University, Kaduna, Nigeria
| | - Idris Abdullahi
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna, Nigeria
| | - Godwin I Ayuba
- Department of Anatomic Pathology and Forensic Medicine, College of Medicine, Kaduna State University, Kaduna, Nigeria
| | - Axel Becker
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
8
|
Hakimi Naeini S, Rajabi-Maham H, Azizi V, Hosseini A. Anticonvulsant effect of glycitin in pentylenetetrazol induced male Wistar rat model by targeting oxidative stress and Nrf2/HO-1 signaling. Front Pharmacol 2024; 15:1392325. [PMID: 39246658 PMCID: PMC11377222 DOI: 10.3389/fphar.2024.1392325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Epilepsy, characterized by recurrent seizures, poses a significant health challenge globally. Despite the availability of anti-seizure medications, their adverse effects and inadequate efficacy in controlling seizures propel the exploration of alternative therapeutic measures. In hypothesis, glycitin is a phytoestrogenic compound found in soybeans and due to its estrogenic properties may have anti-epileptic and neuroprotective effects. This study investigates the potential anti-epileptic properties of glycitin in the context of pentylenetetrazol (PTZ) induced seizures in male Wistar rats. The rats were pretreated with varying doses of glycitin (5, 10, and 20 mg/kg) before PTZ (35 mg/kg) administration, and assessments included behavioral observations and histological evaluation via hematoxylin and eosin (H&E) staining. Additionally, oxidative stress markers, such as malondialdehyde (MDA), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels, were quantified to examine glycitin's impact on oxidative stress. Molecular analysis was conducted to assess the activation of the Nuclear factor erythroid 2-related factor (Nrf2)/Heme oxygenase 1 (HO-1) signaling pathway. Results indicated that glycitin pretreatment effectively mitigated PTZ-induced convulsive behaviors, supported by histological findings from H&E staining. Furthermore, glycitin administration led to significant alterations in MDA, GPx, and SOD levels, suggestive of its ability to modulate oxidative stress. Notably, glycitin treatment induced activation of the Nrf2/HO-1 signaling pathway. These findings underscore the potential of glycitin as an anticonvulsant agent, elucidating its mechanism of action through histological protection, modulation of oxidative stress markers, and activation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Saghi Hakimi Naeini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hassan Rajabi-Maham
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Vahid Azizi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
9
|
Kajita Y, Fukuda Y, Kawamatsu R, Oyanagi T, Mushiake H. Pentylenetetrazole kindling induces dynamic changes in GAD65 expression in hippocampal somatostatin interneurons. Pharmacol Biochem Behav 2024; 239:173755. [PMID: 38527654 DOI: 10.1016/j.pbb.2024.173755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/01/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
INTRODUCTION One of the mechanisms of epileptgenesis is impairment of inhibitory neural circuits. Several studies have compared neural changes among subtypes of gamma-aminobutyric acid-related (GABAergic) neurons after acquired epileptic seizure. However, it is unclear that GABAergic neural modifications that occur during acquisition process of epileptic seizure. METHODS Male rats were injected with pentylenetetrazole (PTZ kindling: n = 30) or saline (control: n = 15) every other day to observe the development of epileptic seizure stages. Two time points were identified: the point at which seizures were most difficult to induce, and the point at which seizures were most easy to induce. The expression of GABAergic neuron-related proteins in the hippocampus was immunohistochemically compared among GABAergic subtypes at each of these time points. RESULTS Bimodal changes in seizure stages were observed in response to PTZ kindling. The increase of seizure stage was transiently suppressed after 8 or 10 injections, and then progressed again by the 16th injection. Based on these results, we defined 10 injections as a short-term injection period during which seizures are less likely to occur, and 20 injections as a long-term injection period during which continuous seizures are likely to occur. The immunohistochemical analysis showed that hippocampal glutamic acid decarboxylase 65 (GAD65) expression was increased after short-term kindling but unchanged after long-term kindling. Increased GAD65 expression was limited to somatostatin-positive (SOM+) cells among several GABAergic subtypes. By contrast, GAD, GABA, GABAAR α1, GABABR1, and VGAT cells showed no change following short- or long-term PTZ kindling. CONCLUSION PTZ kindling induces bimodal changes in the epileptic seizure stage. Seizure stage is transiently suppressed after short-term PTZ injection with GAD65 upregulation in SOM+ cells. The seizure stage is progressed again after long-term PTZ injection with GAD65 reduction to baseline level.
Collapse
Affiliation(s)
- Yuki Kajita
- Department of Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Yuki Fukuda
- Department of Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Riho Kawamatsu
- Department of Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Takanori Oyanagi
- Department of Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
10
|
Vitale C, Natali G, Cerullo MS, Floss T, Michetti C, Grasselli G, Benfenati F. The homeostatic effects of the RE-1 silencing transcription factor on cortical networks are altered under ictogenic conditions in the mouse. Acta Physiol (Oxf) 2024; 240:e14146. [PMID: 38606882 DOI: 10.1111/apha.14146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/22/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
AIM The Repressor Element-1 Silencing Transcription Factor (REST) is an epigenetic master regulator playing a crucial role in the nervous system. In early developmental stages, REST downregulation promotes neuronal differentiation and the acquisition of the neuronal phenotype. In addition, postnatal fluctuations in REST expression contribute to shaping neuronal networks and maintaining network homeostasis. Here we investigate the role of the early postnatal deletion of neuronal REST in the assembly and strength of excitatory and inhibitory synaptic connections. METHODS We investigated excitatory and inhibitory synaptic transmission by patch-clamp recordings in acute neocortical slices in a conditional knockout mouse model (RestGTi) in which Rest was deleted by delivering PHP.eB adeno-associated viruses encoding CRE recombinase under the control of the human synapsin I promoter in the lateral ventricles of P0-P1 pups. RESULTS We show that, under physiological conditions, Rest deletion increased the intrinsic excitability of principal cortical neurons in the primary visual cortex and the density and strength of excitatory synaptic connections impinging on them, without affecting inhibitory transmission. Conversely, in the presence of a pathological excitation/inhibition imbalance induced by pentylenetetrazol, Rest deletion prevented the increase in synaptic excitation and decreased seizure severity. CONCLUSION The data indicate that REST exerts distinct effects on the excitability of cortical circuits depending on whether it acts under physiological conditions or in the presence of pathologic network hyperexcitability. In the former case, REST preserves a correct excitatory/inhibitory balance in cortical circuits, while in the latter REST loses its homeostatic activity and may become pro-epileptogenic.
Collapse
Affiliation(s)
- Carmela Vitale
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Giulia Natali
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Maria Sabina Cerullo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Thomas Floss
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Caterina Michetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Giorgio Grasselli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Pharmacy, University of Genova, Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
11
|
Umezu HL, Bittencourt-Silva PG, Mourão FAG, Moreira FA, Moraes MFD, Santos VR, da Silva GSF. Respiratory activity during seizures induced by pentylenetetrazole. Respir Physiol Neurobiol 2024; 323:104229. [PMID: 38307440 DOI: 10.1016/j.resp.2024.104229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
This study investigated the respiratory activity in adult Wistar rats across different behavioral seizure severity induced by pentylenetetrazole (PTZ). Animals underwent surgery for electrodes implantation, allowing simultaneous EEG and diaphragm EMG (DIAEMG) recordings and the respiratory frequency and DIAEMG amplitude were measured. Seizures were acutely induced through PTZ injection and classified based on a pre-established score, with absence-like seizures (spike wave discharge (SWD) events on EEG) representing the lowest score. The respiratory activity was grouped into the different seizure severities. During absence-like and myoclonic jerk seizures, the breathing frequency decreased significantly (∼50% decrease) compared to pre- and post-ictal periods. Pronounced changes occurred with more severe seizures (clonic and tonic) with periods of apnea, especially during tonic seizures. Apnea duration was significantly higher in tonic compared to clonic seizures. Notably, during PTZ-induced tonic seizures the apnea events were marked by tonic DIAEMG contraction (tonic-phase apnea). In the majority of animals (5 out of 7) this was a fatal event in which the seizure-induced respiratory arrest preceded the asystole. In conclusion, we provide an assessment of the respiratory activity in the PTZ-induced acute seizures and showed that breathing dysfunction is more pronounced in seizures with higher severity.
Collapse
Affiliation(s)
- Hanna L Umezu
- Department of Physiology and Biophysics, Institute of Biological Science, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Paloma G Bittencourt-Silva
- Department of Physiology and Biophysics, Institute of Biological Science, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Flávio A G Mourão
- Department of Physiology and Biophysics, Institute of Biological Science, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil; Graduate Program in Neuroscience, Institute of Biological Science, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Fabrício A Moreira
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Márcio Flávio D Moraes
- Department of Physiology and Biophysics, Institute of Biological Science, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil; Graduate Program in Neuroscience, Institute of Biological Science, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Victor R Santos
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Glauber S F da Silva
- Department of Physiology and Biophysics, Institute of Biological Science, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil.
| |
Collapse
|
12
|
Sharifi M, Oryan S, Komaki A, Barkley V, Sarihi A, Mirnajafi-Zadeh J. Comparing the synaptic potentiation in schaffer collateral-CA1 synapses in dorsal and intermediate regions of the hippocampus in normal and kindled rats. IBRO Neurosci Rep 2023; 15:252-261. [PMID: 37841086 PMCID: PMC10570600 DOI: 10.1016/j.ibneur.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/17/2023] Open
Abstract
There is growing evidence that the hippocampus comprises diverse neural circuits that exhibit longitudinal variation in their properties, however, the intermediate region of the hippocampus has received comparatively little attention. Therefore, this study was designed to compared short- and long-term synaptic plasticity between the dorsal and intermediate regions of the hippocampus in normal and PTZ-kindled rats. Short-term plasticity was assessed by measuring the ratio of field excitatory postsynaptic potentials' (fEPSPs) slope in response to paired-pulse stimulation at three different inter-pulse intervals (20, 80, and 160 ms), while long-term plasticity was assessed using primed burst stimulation (PBS). The results showed that the basal synaptic strength differed between the dorsal and intermediate regions of the hippocampus in both control and kindled rats. In the control group, paired-pulse stimulation of Schaffer collaterals resulted in a significantly lower fEPSP slope in the intermediate part of the hippocampus compared to the dorsal region. Additionally, the magnitude of long-term potentiation (LTP) was significantly lower in the intermediate part of the hippocampus compared to the dorsal region. In PTZ-kindled rats, both short-term facilitation and long-term potentiation were impaired in both regions of the hippocampus. Interestingly, there was no significant difference in synaptic plasticity between the dorsal and intermediate regions in PTZ-kindled rats, despite impairments in both regions. This suggests that seizures eliminate the regional difference between the dorsal and intermediate parts of the hippocampus, resulting in similar electrophysiological activity in both regions in kindled animals. Future studies should consider this when investigating the responses of the dorsal and intermediate regions of the hippocampus following PTZ kindling.
Collapse
Affiliation(s)
- Maryam Sharifi
- Department of Animal Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrbanoo Oryan
- Department of Animal Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Victoria Barkley
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
13
|
Dai SJ, Shao YY, Zheng Y, Sun JY, Li ZS, Shi JY, Yan MQ, Qiu XY, Xu CL, Cho WS, Nishibori M, Yi S, Park SB, Wang Y, Chen Z. Inflachromene attenuates seizure severity in mouse epilepsy models via inhibiting HMGB1 translocation. Acta Pharmacol Sin 2023; 44:1737-1747. [PMID: 37076634 PMCID: PMC10462729 DOI: 10.1038/s41401-023-01087-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/02/2023] [Indexed: 04/21/2023]
Abstract
Epilepsy is not well controlled by current anti-seizure drugs (ASDs). High mobility group box 1 (HMGB1) is a DNA-binding protein in the nucleus regulating transcriptional activity and maintaining chromatin structure and DNA repair. In epileptic brains, HMGB1 is released by activated glia and neurons, interacting with various receptors like Toll-like receptor 4 (TLR4) and downstream glutamatergic NMDA receptor, thus enhancing neural excitability. But there is a lack of small-molecule drugs targeting the HMGB1-related pathways. In this study we evaluated the therapeutic potential of inflachromene (ICM), an HMGB-targeting small-molecule inhibitor, in mouse epilepsy models. Pentylenetetrazol-, kainic acid- and kindling-induced epilepsy models were established in mice. The mice were pre-treated with ICM (3, 10 mg/kg, i.p.). We showed that ICM pretreatment significantly reduced the severity of epileptic seizures in all the three epilepsy models. ICM (10 mg/kg) exerted the most apparent anti-seizure effect in kainic acid-induced epileptic status (SE) model. By immunohistochemical analysis of brain sections from kainic acid-induced SE mice, we found that kainic acid greatly enhanced HMGB1 translocation in the hippocampus, which was attenuated by ICM pretreatment in subregion- and cell type-dependent manners. Notably, in CA1 region, the seizure focus, ICM pretreatment mainly inhibited HMGB1 translocation in microglia. Furthermore, the anti-seizure effect of ICM was related to HMGB1 targeting, as pre-injection of anti-HMGB1 monoclonal antibody (5 mg/kg, i.p.) blocked the seizure-suppressing effect of ICM in kainic acid-induced SE model. In addition, ICM pretreatment significantly alleviated pyramidal neuronal loss and granule cell dispersion in kainic acid-induced SE model. These results demonstrate that ICM is an HMGB-targeting small molecule with anti-seizure potential, which may help develop a potential drug for treating epilepsy.
Collapse
Affiliation(s)
- Si-Jie Dai
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yu-Ying Shao
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yang Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jin-Yi Sun
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Sheng Li
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Ying Shi
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Meng-Qi Yan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiao-Yun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ceng-Lin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wan-Sang Cho
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sihyeong Yi
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Bum Park
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yi Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
14
|
Alam MN, Singh L, Khan NA, Asiri YI, Hassan MZ, Afzal O, Altamimi ASA, Hussain MS. Ameliorative Effect of Ethanolic Extract of Moringa oleifera Leaves in Combination with Curcumin against PTZ-Induced Kindled Epilepsy in Rats: In Vivo and In Silico. Pharmaceuticals (Basel) 2023; 16:1223. [PMID: 37765031 PMCID: PMC10534968 DOI: 10.3390/ph16091223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/30/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
The ameliorative effect of ethanolic extract of M. oleifera (MOEE) leaves in combination with curcumin against seizures, cognitive impairment, and oxidative stress in the molecular docking of PTZ-induced kindled rats was performed to predict the potential phytochemical effects of MOEE and curcumin against epilepsy. The effect of pretreatment with leaves of M. oleifera ethanolic extracts (MOEE) (250 mg/kg and 500 mg/kg, orally), curcumin (200 mg/kg and 300 mg/kg, orally), valproic acid used as a standard (100 mg/kg), and the combined effect of MOEE (250 mg/kg) and curcumin (200 mg/kg) at a low dose on Pentylenetetrazole was used for (PTZ)-induced kindling For the development of kindling, individual Wistar rats (male) were injected with pentyletetrazole (40 mg/kg, i.p.) on every alternate day. Molecular docking was performed by the Auto Dock 4.2 tool to merge the ligand orientations in the binding cavity. From the RCSB website, the crystal structure of human glutathione reductase (PDB ID: 3DK9) was obtained. Curcumin and M. oleifera ethanolic extracts (MOEE) showed dose-dependent effects. The combined effects of MOEE and curcumin leaves significantly improved the seizure score and decreased the number of myoclonic jerks compared with a standard dose of valproic acid. PTZ kindling induced significant oxidative stress and cognitive impairment, which was reversed by pretreatment with MOEE and curcumin. Glutathione reductase (GR) is an enzyme that plays a key role in the cellular control of reactive oxygen species (ROS). Therefore, activating GR can uplift antioxidant properties, which leads to the inhibition of ROS-induced cell death in the brain. The combination of the ethanolic extract of M. oleifera (MOEE) leaves and curcumin has shown better results than any other combination for antiepileptic effects by virtue of antioxidant effects. As per the docking study, chlorogenic acid and quercetin treated with acombination of curcumin have much more potential.
Collapse
Affiliation(s)
- Md. Niyaz Alam
- Faculty of Pharmacy, IFTM University, Moradabad 244102, Uttar Pradesh, India
- Department of Pharmacology, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida 201310, Uttar Pradesh, India
| | - Lubhan Singh
- Kharvel Subharti College of Pharmacy, Subharti University, Meerut 250005, Uttar Pradesh, India;
| | - Najam Ali Khan
- GMS College of Pharmacy, Shakarpur, Rajabpure, Amroha 244221, Uttar Pradesh, India;
| | - Yahya I. Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Mohd. Zaheen Hassan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | - Abdulmalik Saleh Alfawaz Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | - Md. Sarfaraj Hussain
- Lord Buddha Koshi College of Pharmacy, Baijnathpur, Saharsa 852201, Bihar, India;
| |
Collapse
|
15
|
Che Has AT. The applications of the pilocarpine animal model of status epilepticus: 40 years of progress (1983-2023). Behav Brain Res 2023; 452:114551. [PMID: 37348654 DOI: 10.1016/j.bbr.2023.114551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/02/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Status epilepticus is a neurological disorder that can result in various neuropathological conditions and presentations. Various studies involving animal models have been accomplished to understand and replicating its prominent manifestations including characteristics of related clinical cases. Up to these days, there are variety of methods and techniques to be utilized in inducing this disorder that can be chemically or electrically applied which depending on the experimental designs and targets of the studies. In particular, the chemically induced pilocarpine animal model of status epilepticus is a reliable choice which has evolved for 40 years from its initial discovery back in 1983. Although the development of the model can be considered as a remarkable breakthrough in understanding status epilepticus, several aspects of the model have been improved, throughout the years. Among the major issues in developing this model are the morbidity and mortality rates during induction process. Several modifications have been introduced in the process by different studies to tackle the related problems including application of dose fractionation, adaptation of pilocarpine to lithium-pilocarpine model and utilization of various drugs. Despite all challenges and drawbacks, this model has proven its pertinent and relevance with improvements that have been adapted since it was introduced 40 years ago. In this review, we emphasize on the evolution of this animal model from the beginning until now (1983 - 2023) and the related issues that have made this model still a popular choice in status epilepticus studies.
Collapse
Affiliation(s)
- Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus Kubang Kerian, 16150, Kota Bharu, Kelantan, Malaysia.
| |
Collapse
|
16
|
Zhao YC, Wang CC, Li XY, Wang DD, Wang YM, Xue CH, Wen M, Zhang TT. Supplementation of n-3 PUFAs in Adulthood Attenuated Susceptibility to Pentylenetetrazol Induced Epilepsy in Mice Fed with n-3 PUFAs Deficient Diet in Early Life. Mar Drugs 2023; 21:354. [PMID: 37367679 DOI: 10.3390/md21060354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
The growth and development of the fetus and newborn throughout pregnancy and lactation are directly related to the nutritional status of the mother, which has a significant impact on the health of the offspring. The purpose of this experiment was to investigate the susceptibility of n-3 polyunsaturated fatty acid deficiency in early life to seizures in adulthood. The n-3 PUFAs-deficient mice's offspring were established and then fed with α-LNA diet, DHA-enriched ethyl ester, and DHA-enriched phospholipid-containing diets for 17 days at the age of eight weeks. During this period, animals received intraperitoneal injections of 35 mg/kg of pentylenetetrazol (PTZ) every other day for eight days. The results showed that dietary n-3 PUFA-deficiency in early life could aggravate PTZ-induced epileptic seizures and brain disorders. Notably, nutritional supplementation with n-3 PUFAs in adulthood for 17 days could significantly recover the brain n-3 fatty acid and alleviate the epilepsy susceptibility as well as raise seizure threshold to different levels by mediating the neurotransmitter disturbance and mitochondria-dependent apoptosis, demyelination, and neuroinflammation status of the hippocampus. DHA-enriched phospholipid possessed a superior effect on alleviating the seizure compared to α-LNA and DHA-enriched ethyl ester. Dietary n-3 PUFA deficiency in early life increases the susceptibility to PTZ-induced epilepsy in adult offspring, and nutritional supplementation with n-3 PUFAs enhances the tolerance to the epileptic seizure.
Collapse
Affiliation(s)
- Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xiao-Yue Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Dan-Dan Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Min Wen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252000, China
- Pet Nutrition Research and Development Center, Gambol Pet Group Co., Ltd., Liaocheng 252000, China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| |
Collapse
|
17
|
Desalegn T, Engidawork E. Anti-Convulsant Activity of Soxhlet Leaf Extracts of Ajuga Integrifolia Buch.-Ham. Ex D.Don (Lamiaceae) in Mice. J Exp Pharmacol 2023; 15:241-253. [PMID: 37275786 PMCID: PMC10239258 DOI: 10.2147/jep.s409099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023] Open
Abstract
Background The leaves of Ajuga integrifolia Buch.-Ham. ex D.Don (Lamiaceae) have long been used as an anti-convulsant remedy in Ethiopian traditional medicine. However, the evidence supporting their use is sparse in the literature. This study was conducted to add to the existing body of knowledge about the anti-convulsant activity of the plant. Methods The anti-convulsant activity of the extract was investigated in both acute (pentylenetetrazol [PTZ], 80 mg/kg; and maximal electroshock [MES]) and chronic (PTZ, 35 mg/kg) kindling seizure models. For the experimental paradigms, various doses of the extract (100, 200, and 400 mg/kg) were administered. Positive controls received sodium valproate (200 mg/kg) for the PTZ model and phenytoin (25 mg/kg) for the MES model. Parameters including the onset of clonus and duration of hindlimb tonic extension were recorded and compared with controls. Moreover, the total alkaloid, flavonoid, and phenol contents of the extracts were determined. Results Ethyl acetate extract produced a superior effect among all solvent extracts in both the PTZ and MES models. At all doses, it significantly delayed the mean onset of clonus (p<0.01) in the PTZ test compared to controls. It also significantly reduced (p<0.001) the mean duration of hindlimb tonic extension in the MES model. Treatment of mice with 200 mg/kg (p<0.01) and 400 mg/kg (p<0.001) of ethyl acetate extract significantly protected against PTZ-induced kindling compared to controls. The leaf was found to contain 10.002±0.119 mg atropine equivalent per gram of dry extract of alkaloids, 9.045±0.8445 mg quercetin equivalent per gram of dry extract of flavonoids, and 21.928±1.118 mg gallic acid equivalent per gram of dry extract of phenols. Conclusion This study indicated that the plant A. integrifolia has anti-convulsant activity in both acute and chronic models of seizure. This plant represents a potential source for the development of a new anti-epileptic drug for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Tesfaye Desalegn
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
18
|
Akünal Türel C, Yunusoğlu O. Oleanolic acid suppresses pentylenetetrazole-induced seizure in vivo. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:529-540. [PMID: 36812380 DOI: 10.1080/09603123.2023.2167947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to investigate the protective effects of triterpene oleanolic acid on the brain tissue of mice with pentylenetetrazole (PTZ)-induced epileptic seizures. Male Swiss albino mice were randomly separated into five groups as the PTZ, control, and oleanolic acid (10, 30, and 100 mg/kg) groups. PTZ injection was seen to cause significant seizures compared with the control group. Oleanolic acid significantly prolonged the latency to onset of myoclonic jerks and the duration of clonic convulsions, and decreased mean seizure scores following PTZ administration. Pretreatment with oleanolic acid also led to an increase in antioxidant enzyme activity (CAT and AChE) and levels (GSH and SOD) in the brain. The data obtained from this study support oleanolic acid may have anticonvulsant potential in PTZ-induced seizures, prevent oxidative stress and protect against cognitive disturbances. These results may provide useful information for the inclusion of oleanolic acid in epilepsy treatment.
Collapse
Affiliation(s)
- Canan Akünal Türel
- Department of Neurology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Oruç Yunusoğlu
- Department of Pharmacology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
19
|
Javaid S, Alqahtani F, Ashraf W, Anjum SMM, Rasool MF, Ahmad T, Alasmari F, Alasmari AF, Alqarni SA, Imran I. Tiagabine suppresses pentylenetetrazole-induced seizures in mice and improves behavioral and cognitive parameters by modulating BDNF/TrkB expression and neuroinflammatory markers. Biomed Pharmacother 2023; 160:114406. [PMID: 36791567 DOI: 10.1016/j.biopha.2023.114406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Tiagabine (Tia), a new-generation antiseizure drug that mimics the GABAergic signaling by inhibiting GABA transporter type-1, is the least studied molecule in chronic epilepsy models with comorbid neurobehavioral and neuroinflammatory parameters. Therefore, the current study investigated the effects of Tia in a real-time manner on electroencephalographic (EEG) activity, behavioral manifestations and mRNA expression in pentylenetetrazole (PTZ)-kindled mice. Male BALB/c mice were treated with tiagabine (0.5, 1 and 2 mg/kg) for 21 days with simultaneous PTZ (40 mg/kg) injection every other day for a total of 11 injections and monitored for seizure progression with synchronized validation through EEG recordings from cortical electrodes. The post-kindling protection from anxiety and memory deficit was verified by a battery of behavioral experiments. Isolated brains were evaluated for oxidative alterations and real-time changes in mRNA expression for BDNF/TrkB, GAT-1 and GAT-3 as well as neuroinflammatory markers. Experimental results revealed that Tia at the dose of 2 mg/kg maximally inhibited the development of full bloom seizure and reduced epileptic spike discharges from the cortex. Furthermore, Tia dose-dependently exerted the anxiolytic effects and protected from PTZ-evoked cognitive impairment. Tia reduced lipid peroxidation and increased superoxide dismutase and glutathione levels in the brain via augmentation of GABAergic modulation. PTZ-induced upregulated BDNF/TrkB signaling and pro-inflammatory cytokines were mitigated by Tia with upregulation of GAT-1 and GAT-3 transporters in whole brains. In conclusion, the observed effects of Tia might have resulted from reduced oxidative stress, BDNF/TrkB modulation and mitigated neuroinflammatory markers expression leading to reduced epileptogenesis and improved epilepsy-related neuropsychiatric effects.
Collapse
Affiliation(s)
- Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Syed Muhammad Muneeb Anjum
- The Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore 75270, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Tanveer Ahmad
- Institut pour l'Avancée des Biosciences, Centre de Recherche UGA / INSERM U1209 / CNRS 5309, Université Grenoble Alpes, France
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh Abdullah Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan.
| |
Collapse
|
20
|
Lu H, Wang Q, Jiang X, Zhao Y, He M, Wei M. The Potential Mechanism of Cannabidiol (CBD) Treatment of Epilepsy in Pentetrazol (PTZ) Kindling Mice Uncovered by Multi-Omics Analysis. Molecules 2023; 28:molecules28062805. [PMID: 36985783 PMCID: PMC10056192 DOI: 10.3390/molecules28062805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/05/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Cannabidiol (CBD) is the main active ingredient in the cannabis plant used for treating epilepsy and related diseases. However, how CBD ameliorates epilepsy and its effect on the hippocampus remains unknown. Herein, we evaluated how CBD ameliorates seizure degree in pentylenetetrazol (PTZ) induced epilepsy mice after being exposed to CBD (10 mg/kg p.o). In addition, transcriptome and metabolomic analysis were performed on the hippocampus. Our results suggested that CBD could alleviate PTZ-induced seizure, of which the NPTX2, Gprc5c, Lipg, and Stc2 genes were significantly down-regulated in mice after being exposed to PTZ. Transcriptome analysis showed 97 differently expressed genes (CBD) and the PTZ groups. Metabonomic analysis revealed that compared with the PTZ group, 41 up-regulated and 67 down-regulated metabolites were identified in the hippocampus of epileptic mice exposed to CBD. The correlation analysis for transcriptome and metabolome showed that (±) 15-HETE and carnitine C6:0 were at the core of the network and were involved in the positive or negative regulation of the related genes after being treated with CBD. In conclusion, CBD ameliorates epilepsy by acting on the metabolism, calcium signaling pathway, and tuberculosis pathways in the hippocampus. Our study provided a practical basis for the therapeutic potential of treating epilepsy using CBD.
Collapse
Affiliation(s)
- Hongyuan Lu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qinbiao Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xiaowen Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanyun Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
21
|
Adassi MB, Ngoupaye GT, Yassi FB, Foutsop AF, Kom TD, Ngo Bum E. Revealing the most effective anticonvulsant part of Malvaviscus arboreus Dill. Ex Cav. and its acute and sub-acute toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115995. [PMID: 36509255 DOI: 10.1016/j.jep.2022.115995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Different parts of Malvaviscus arboreus Dill. Ex Cav. (M. arboreus) are traditionally used in the West Region of Cameroon to treat many diseases, including epilepsy. AIM OF THE STUDY To determine which part of M. arboreus offers the best anticonvulsant effect, and to assess the acute and sub-acute toxicity of the part of interest. MATERIALS AND METHODS the anticonvulsant effect of the aqueous lyophilisate of the decoction of flowers, leaves, stems and roots of M. arboreus at various doses was evaluated and compared on the model of acute epileptic seizures induced by pentylenetetrazole (PTZ) (70 mg/kg), injected 1 h after oral administration of the various extracts. Out of these plant parts, the leaves were then selected to prepare the hydroethanolic extract and its anticonvulsant effect against PTZ at the doses of 122.5, 245 and 490 mg/kg, as well as its acute toxicity were compared with those of the aqueous lyophilisate of the leaves. The anticonvulsant effect of the aqueous lyophilisate of M. arboreus leaves was further evaluated on models of acute epileptic seizures induced by picrotoxin (PIC) (7.5 mg/kg), strychnine (STR) (2.5 mg/kg) and pilocarpine (350 mg/kg). The 28 days sub-acute toxicity, as well as the quantitative phytochemistry and the in vitro antioxidant potential (FRAP, DPPH, ABTS+) of the aqueous lyophilisate of the leaves of M. arboreus were also evaluated. RESULTS M. arboreus leaves showed the best anticonvulsant effect and the aqueous lyophilisate was the best extract. The latter significantly protected the animals against convulsions induced by PTZ (71.43%) (p < 0.01), PIC (57.14%) (p < 0.05) and STR (42%) and had no effect on pilocarpine-induced seizures. Furthermore, it showed no acute or sub-acute toxicity, and revealed a high content of flavonoids, saponins, tannins and alkaloids, and antioxidant activity in vitro. CONCLUSION The aqueous lyophilisate of the leaves of M. arboreus offers the best anticonvulsant effect on the extraction solvent used, and it would act mainly via a potentiation of the inhibitory systems of the brain (GABA, Glycine). In addition, its richness in bioactive compounds gives it an antioxidant potential, and it is not toxic in acute and sub-acute toxicity. All this justifies at least in part its empirical uses, and makes M. arboreus a candidate for the alternative treatment of epilepsy.
Collapse
Affiliation(s)
- Maxwell Blesdel Adassi
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Gwladys Temkou Ngoupaye
- Animal Physiology and Phytopharmacology Research Unit, Department of Animal Biology, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| | - Francis Bray Yassi
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, P.O. Box, Ngaoundéré, 454, Cameroon
| | - Aurelien Fossueh Foutsop
- Animal Physiology and Phytopharmacology Research Unit, Department of Animal Biology, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Tatiana Diebo Kom
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Elisabeth Ngo Bum
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| |
Collapse
|
22
|
Jiang X, Wang Y, Liu J. Comprehensive characterization of amino acids and water-soluble vitamins in a pentylenetetrazole-induced seizures rat model. J Sep Sci 2023; 46:e2201004. [PMID: 36841992 DOI: 10.1002/jssc.202201004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
Epilepsy is a complex neurological disease characterized by spontaneous recurrent seizures that affect around 1% of the global population. Despite the significant progress in the mechanisms of epileptogenesis, there is still about 60% of cases in which the cause is unknown. Thus, revealing the molecular mechanisms of epileptogenesis will greatly improve the development of epilepsy treatment. Since the comprehensive characterization of amino acids and water-soluble vitamins is important in understanding the underlying mechanisms of epilepsy or seizures, we developed two liquid chromatography-tandem mass spectrometry methods to quantify 17 water-soluble vitamins and 46 amino acids and applied them to our pentylenetetrazole-induced kindling rat model. All water-soluble vitamins were detected with a linearity of r > 0.992 and limits of quantitation between 0.1 and 5 ng/ml except for nicotinic acid. For amino acids, the linearities obtained were good with correlation coefficients higher than 0.99, and matrix effects were between 85.3% and 110%. To handle the multidimensional data more effectively, multivariate statistical analysis approaches used in non-targeted metabolomics were creatively exploited in the visualization, interpretation, and exploration of the results.
Collapse
Affiliation(s)
- Xiaomei Jiang
- Department of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, P. R. China
| | - Yan Wang
- Department of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, P. R. China
| | - Jia Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P. R. China
| |
Collapse
|
23
|
El-Sayed RM, Fawzy MN, Zaki HF, Abd El-Haleim EA. Neuroprotection impact of biochanin A against pentylenetetrazol-kindled mice: Targeting NLRP3 inflammasome/TXNIP pathway and autophagy modulation. Int Immunopharmacol 2023; 115:109711. [PMID: 36640710 DOI: 10.1016/j.intimp.2023.109711] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
Recurrent seizures characterize epilepsy, a complicated and multifaceted neurological disease. Several neurological alterations, such as cell death and the growth of gorse fibers, have been linked to epilepsy. The dentate gyrus of the hippocampus is particularly vulnerable to neuronal loss and abnormal neuroplastic changes in the pentylenetetrazol (PTZ) kindling model. Biochanin A has potent anti-inflammatory and antioxidant properties, according to previous evidence and its possible impact in epilepsy has never previously been claimed. The current work aimed to investigate biochanin A's anti-epileptic potential in PTZ-induced kindling model in mice. Chronic epilepsy was established in mice by giving PTZ (35 mg/kg, i.p) every other day for 21 days. Biochanin A (20 mg/kg) was given daily till the end of the experiment. Biochanin A pretreatment significantly reduced the severity of epileptogenesis by 51.7% and downregulated the histological changes in the CA3 region of the hippocampus by 42% along with displaying antioxidant/anti-inflammatory efficacy through upregulated hemeoxygenase-1 (HO-1) and, erythroid 2-related factor 2 (Nrf2) levels in the brain by 1.9-fold and 2-fold respectively, parallel to reduction of malondialdehyde (MDA), myeloperoxidase (MPO), glial fibrillary acidic protein (GFAP) and L-glutamate/IL-1β/TXNIB/NLRP3 axis. Moreover, biochanin A suppressed neuronal damage by reducing the astrocytes' activation and significantly attenuated the PTZ-induced increase in LC3 levels by 55.5%. Furthermore, molecular docking findings revealed that BIOCHANIN A has a higher affinity for phosphoinositide 3-kinase (PI3k), threonine kinase2 (AKT2), and mammalian target of rapamycin complex 1 (mTORC1) indicating the neuroprotective and anti-epileptic characteristics of biochanin A in the brain tissue of PTZ-kindled mice.
Collapse
Affiliation(s)
- Rehab M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El-Arish, Egypt
| | - Mohamed N Fawzy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El-Arish, Egypt.
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Enas A Abd El-Haleim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
24
|
García-García L, Gomez F, Delgado M, Fernández de la Rosa R, Pozo MÁ. The vasodilator naftidrofuryl attenuates short-term brain glucose hypometabolism in the lithium-pilocarpine rat model of status epilepticus without providing neuroprotection. Eur J Pharmacol 2023; 939:175453. [PMID: 36516936 DOI: 10.1016/j.ejphar.2022.175453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/17/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Status epilepticus (SE) triggered by lithium-pilocarpine is a model of epileptogenesis widely used in rats, reproducing many of the pathological features of human temporal lobe epilepsy (TLE). After the SE, a silent period takes place that precedes the occurrence of recurrent spontaneous seizures. This latent stage is characterized by brain glucose hypometabolism and intense neuronal damage, especially at the hippocampus. Importantly, interictal hypometabolism in humans is a predictive marker of epileptogenesis, being correlated to the extent and severity of neuronal damage. Among the potential mechanisms underpinning glucose metabolism impairment and the subsequent brain damage, a reduction of cerebral blood flow has been proposed. Accordingly, our goal was to evaluate the potential beneficial effects of naftidrofuryl (25 mg/kg i.p., twice after the insult), a vasodilator drug currently used for circulatory insufficiency-related pathologies. Thus, we measured the effects of naftidrofuryl on the short-term brain hypometabolism and hippocampal damage induced by SE in rats. 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) neuroimaging along with various neurohistochemical assays aimed to assess brain damage were performed. SE led to both severe glucose hypometabolism in key epilepsy-related areas and hippocampal neuronal damage. Although naftidrofuryl showed no anticonvulsant properties, it ameliorated the short-term brain hypometabolism induced by pilocarpine. Strikingly, the latter was neither accompanied by neuroprotective nor by anti-inflammatory effects. We suggest that naftidrofuryl, by acutely enhancing brain blood flow around the time of SE improves the brain metabolic state but this effect is not enough to protect from the damage induced by SE.
Collapse
Affiliation(s)
- Luis García-García
- Department of Pharmacology, Pharmacognosy and Botany. Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Brain Mapping Unit, Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain; Health Research Institute, Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - Francisca Gomez
- Department of Pharmacology, Pharmacognosy and Botany. Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Brain Mapping Unit, Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain
| | | | - Rubén Fernández de la Rosa
- Brain Mapping Unit, Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain; BIOIMAC, Complutense University of Madrid, Madrid, Spain
| | - Miguel Ángel Pozo
- Brain Mapping Unit, Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain; Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain; Health Research Institute, Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
25
|
Tallarico M, Leo A, Russo E, Citraro R, Palma E, De Sarro G. Seizure susceptibility to various convulsant stimuli in the BTBR mouse model of autism spectrum disorders. Front Pharmacol 2023; 14:1155729. [PMID: 37153775 PMCID: PMC10157402 DOI: 10.3389/fphar.2023.1155729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/07/2023] [Indexed: 05/10/2023] Open
Abstract
Background: Autism spectrum disorders (ASDs) are one of the most severe chronic childhood disorders in terms of prevalence, morbidity, and impact on society. Interestingly, several systematic reviews and meta-analyses documented a bidirectional link between epilepsy and ASD, supporting the hypothesis that both disorders may have common neurobiological pathways. According to this hypothesis, an imbalance of the excitatory/inhibitory (E/I) ratio in several brain regions may represent a causal mechanism underpinning the co-occurrence of these neurological diseases. Methods: To investigate this bidirectional link, we first tested the seizure susceptibility to chemoconvulsants acting on GABAergic and glutamatergic systems in the BTBR mice, in which an imbalance between E/I has been previously demonstrated. Subsequently, we performed the PTZ kindling protocol to study the impact of seizures on autistic-like behavior and other neurological deficits in BTBR mice. Results: We found that BTBR mice have an increased susceptibility to seizures induced by chemoconvulsants impairing GABAA neurotransmission in comparison to C57BL/6J control mice, whereas no significant difference in seizure susceptibility was observed after administration of AMPA, NMDA, and Kainate. This data suggests that deficits in GABAergic neurotransmission can increase seizure susceptibility in this strain of mice. Interestingly, BTBR mice showed a longer latency in the development of kindling compared to control mice. Furthermore, PTZ-kindling did not influence autistic-like behavior in BTBR mice, whereas it was able to significantly increase anxiety and worsen cognitive performance in this strain of mice. Interestingly, C57BL/6J displayed reduced sociability after PTZ injections, supporting the hypothesis that a tight connection exists between ASD and epilepsy. Conclusion: BTBR mice can be considered a good model to study epilepsy and ASD contemporarily. However, future studies should shed light on the mechanisms underpinning the co-occurrence of these neurological disorders in the BTBR model.
Collapse
Affiliation(s)
- Martina Tallarico
- Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Leo,
| | - Emilio Russo
- Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Ernesto Palma
- Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giovambattista De Sarro
- Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
26
|
Zhang XL, Zhou JY, Zhang P, Lin L, Mei R, Zhang FL, Chen YM, Li R. Clptm1, a new target in suppressing epileptic seizure by regulating GABA A R-mediated inhibitory synaptic transmission in a PTZ-induced epilepsy model. Kaohsiung J Med Sci 2023; 39:61-69. [PMID: 36519412 DOI: 10.1002/kjm2.12629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/16/2022] [Accepted: 10/24/2022] [Indexed: 12/23/2022] Open
Abstract
Disruption of gamma-amino butyric acid type A receptors (GABAA Rs) synaptic clustering and a decrease in the number of GABAA Rs in the plasma membrane are thought to contribute to alteration of the balance between excitatory and inhibitory neurotransmission, which promotes seizure induction and propagation. The multipass transmembrane protein cleft lip and palate transmembrane protein 1 (Clptm1) controls the forward trafficking of GABAA R, thus decaying miniature inhibitory postsynaptic current (mIPSC) of inhibitory synapses. In this study, using a pentylenetetrazol (PTZ)-induced epilepsy rat model, we found that Clptm1 regulates epileptic seizures by modulating GABAA R-mediated inhibitory synaptic transmission. First, we showed that Clptm1 expression was elevated in the PTZ-induced epileptic rats. Subsequently, we found that downregulation of Clptm1 expression protected against PTZ-induced seizures, which was attributed to an increase in the number of GABAA Rγ2s in the plasma membrane and the amplitude of mIPSC. Taken together, our findings identify a new anti-seizure target that provides a theoretical basis for the development of novel strategies for the prevention and treatment of epilepsy.
Collapse
Affiliation(s)
- Xiao-Lin Zhang
- Department of Neurology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jin-Yu Zhou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lan Lin
- Department of Neurology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Rong Mei
- Department of Neurology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Feng-Li Zhang
- Department of Neurology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yang-Mei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rong Li
- Department of Neurology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
27
|
Manna SSS. Dual effects of anandamide in the antiepileptic activity of diazepam in pentylenetetrazole-induced seizures in mice. Behav Pharmacol 2022; 33:527-541. [PMID: 36094027 DOI: 10.1097/fbp.0000000000000700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prototype endocannabinoid, anandamide activates both CB 1 and transient receptor potential vanilloid type 1 channels (TRPV1) receptor at different concentrations. At high concentrations, anandamide-mediated TRPV1 effects are opposite to its effects at low concentrations via CB 1 receptor. Thus, synaptic concentrations of anandamide govern the neuronal activity and consequently might affect the response of a drug. This study was undertaken to investigate the influence of high and low doses of anandamide on the anticonvulsant action of diazepam on the subcutaneous dose of pentylenetetrazole (PTZ) in Swiss mice weighing 20-25 g. Results revealed that intracerebroventricular administration of capsazepine (a TRPV1 antagonist: 1, 10, or 100 µg/mouse) and the low doses (10 µg/mouse) of anandamide, AM404 (anandamide transport inhibitor), or URB597 (fatty acid amide hydrolase inhibitor) augmented the anticonvulsant effect of diazepam. Conversely, higher dose of anandamide, AM404, URB597 (100 µg/mouse) as well as capsaicin (a TRPV1 agonist: 1, 10, or 100 µg/mouse) attenuated the protective effect of diazepam against PTZ-induced seizures. Thus, this study demonstrates that the effects of diazepam may be augmented by activating CB 1 receptors or dampened via TRPV1 receptors. The findings of the present study can be extrapolated to understand the use of TRPV1 blockers alone or in combination of benzodiazepines in the treatment of benzodiazepines-refractory status epilepticus, a condition associated with maladaptive trafficking of synaptic gamma-aminobutyric acid and glutamate receptors. However, potential clinical applications are needed to further support such preclinical studies.
Collapse
|
28
|
Pentylenetetrazol-induced seizures are followed by a reduction in the multiunitary activity of hippocampal CA1 pyramidal neurons in adult rats. Epilepsy Behav 2022; 137:108922. [PMID: 36279807 DOI: 10.1016/j.yebeh.2022.108922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 01/05/2023]
Abstract
Pentylenetetrazol (PTZ) blocks the inhibitory action of GABA, triggering a Glu-mediated hyperexcitation of the dendritic spines in hippocampal CA1 pyramidal neurons that leads to the generation of epileptiform seizures. The aim of this work was to determine the effect of PTZ on the electrical activity of the hippocampal pyramidal neurons in male rats. Bipolar electrodes were implanted stereotaxically in the right and left hippocampal CA1 fields of adults, and PTZ (65 mg/kg) was administered i.p. Simultaneous recordings of the field activity and the firing rate (multiunitary activity, MUA) were analyzed at 10, 20, and 30 min post-administration of PTZ. Only rats that presented tonic-clonic seizures during the first 1-5 min after PTZ treatment were included in the study. The recordings of the field activity were analyzed in 4 frequency bands. In both the right and left hippocampal CA1 fields, the relative power corresponding to the slow waves (4-7 Hz) increased, while in the bands 13-30 Hz and 31-50 Hz, it decreased at 10, 20, and 30 min post-PTZ. MUA recordings were analyzed at four levels. The highest levels corresponded to larger amplitudes of the action potentials in the pyramidal neurons. The firing rates of the PTZ-treated rats did not differ from baseline but presented a significant decrement at 10, 20, and 30 min post-PTZ. The decreased firing rate of the hippocampal CA1 pyramidal neurons after PTZ treatment could be associated with plastic changes of dendritic spines along with some microenvironmental adaptations at synaptic level, after neuronal PTZ-mediated hyperexcitation.
Collapse
|
29
|
Ahlatcı A, Yıldızhan K, Tülüce Y, Bektaş M. Valproic Acid Attenuated PTZ-induced Oxidative Stress, Inflammation, and Apoptosis in the SH-SY5Y Cells via Modulating the TRPM2 Channel. Neurotox Res 2022; 40:1979-1988. [PMID: 36536269 DOI: 10.1007/s12640-022-00622-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Valproic acid (VPA) is one of the most widely used antiepileptic drugs. The protective role of VPA and the role of the TRPM2 channel in this mechanism in developing neuronal damage due to increased pentylenetetrazol (PTZ)-induced neurotoxicity in SH-SY5Y cells were not clarified. Here, we investigated the role of VPA via modulation of TRPM2 channel on cell death and oxidative neurotoxicity in SH-SY5Y cells. The SH-SY5Y cell toxicity model was constructed by treating SH-SY5Y cells with PTZ. The VPA and TRPM2 channel antagonist N-(p-amylcinnamoyl) anthranilic acid (ACA) were added to prevent neurotoxicity in PTZ-induced SH-SY5Y cells. The role of the VPA and TRPM2 channel was evaluated using an ELISA kit and patch-clamp. Primarily, antioxidant (GSH and GSH-Px) and oxidative stress (MDA and ROS) levels and inflammatory factors (IL-1β, IL-6, and TNF-α) in cells were determined by ELISA kits. Then, TRPM2 channel activation in cells was detected using both the ELISA kit and patch-clamp methods. In addition, apoptosis and cell viability levels in cells were determined by performing PARP1, caspase-3, caspase-9, and CCK-8 assays by ELISA kits. Our results showed that the TRPM2 channel is vital in damage formation in PTZ-induced cells. Furthermore, we observed that VPA attenuated PTZ-induced neurotoxicity by suppressing cells' oxidative stress and inflammation, and reducing TRPM2 channel activation. In our study, in which the protective effect of VPA and the role of the TRPM2 channel in PTZ-induced SH-SY5Y cells were investigated for the first time, we can conclude that VPA treatment and TRPM2 channel blockade can suppress PTZ-induced neurotoxicity.
Collapse
Affiliation(s)
- Adem Ahlatcı
- Department of Biophysics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Kenan Yıldızhan
- Department of Biophysics, Faculty of Medicine, Van Yuzuncu Yil University, TR- 65080, Van, Turkey.
| | - Yasin Tülüce
- Department of Medical Biology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Muhammet Bektaş
- Department of Biophysics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
30
|
Zhao X, Cheng P, Xu R, Meng K, Liao S, Jia P, Zheng X, Xiao C. Insights into the development of pentylenetetrazole-induced epileptic seizures from dynamic metabolomic changes. Metab Brain Dis 2022; 37:2441-2455. [PMID: 35838870 DOI: 10.1007/s11011-022-01018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/26/2022] [Indexed: 10/17/2022]
Abstract
Epilepsy is often considered to be a progressive neurological disease, and the nature of this progression remains unclear. Understanding the overall and common metabolic changes of epileptic seizures can provide novel clues for their control and prevention. Herein, a chronic kindling animal model was established to obtain generalized tonic-clonic seizures via the repeated injections of pentylenetetrazole (PTZ) at subconvulsive dose. Dynamic metabolomic changes in plasma and urine from PTZ-kindled rats at the different kindling phases were explored using NMR-based metabolomics, in combination with behavioral assessment, brain neurotransmitter measurement, electroencephalography and histopathology. The increased levels of glucose, lactate, glutamate, creatine and creatinine, together with the decreased levels of pyruvate, citrate and succinate, ketone bodies, asparagine, alanine, leucine, valine and isoleucine in plasma and/or urine were involved in the development and progression of seizures. These altered metabolites reflected the pathophysiological processes including the compromised energy metabolism, the disturbed amino acid metabolism, the peripheral inflammation and changes in gut microbiota functions. NMR-based metabolomics could provide brain disease information by the dynamic plasma and urinary metabolic changes during chronic epileptic seizures, yielding classification of seizure stages and profound insights into controlling epilepsy via targeting deficient energy metabolism.
Collapse
Affiliation(s)
- Xue Zhao
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Peixuan Cheng
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Ru Xu
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Kaili Meng
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Sha Liao
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Pu Jia
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Xiaohui Zheng
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Chaoni Xiao
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China.
| |
Collapse
|
31
|
Anticonvulsant Action and Long-Term Effects of Chronic Cannabidiol Treatment in the Rat Pentylenetetrazole-Kindling Model of Epilepsy. Biomedicines 2022; 10:biomedicines10081811. [PMID: 36009358 PMCID: PMC9405483 DOI: 10.3390/biomedicines10081811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cannabidiol (CBD) showed anticonvulsant action in several preclinical models and is currently approved by regulatory agencies to treat childhood epilepsy syndromes. However, CBD treatment has limited benefits, and its long-term effects on cognition are not fully understood yet. This study aimed to examine the impact of long-term CBD treatment in the pentylenetetrazole (PTZ)-kindling model of epilepsy. Adult male Wistar rats (N = 24) received PTZ (35 mg/kg intraperitoneally) every other day until two consecutive generalized seizures occurred. CBD (60 mg/kg body weight) was administered daily by the oral route until the kindled state was achieved (n = 12). To confirm that the formulation and administration techniques were not of concern, liquid chromatography–mass spectrometry was performed to test the brain penetration of the CBD formula. As a result of CBD treatment, a lower mortality rate and significantly prolonged generalized seizure latency (925.3 ± 120.0 vs. 550.1 ± 69.62 s) were observed, while the frequency and duration of generalized seizures were not influenced. The CBD-treated group showed a significant decrease in vertical exploration in the open field test and a significant decrease in the discrimination index in the novel object recognition (NOR) test (−0.01 ± 0.17 vs. 0.57 ± 0.15, p = 0.04). The observed behavioral characteristics may be connected to the decreased thickness of the stratum pyramidale or the decreased astrogliosis observed in the hippocampus. In conclusion, CBD treatment did not prevent kindling, nor did it affect seizure frequency or duration. However, it did increase the latency to the first seizure and decreased the prolonged status epilepticus-related mortality in PTZ-kindled rats. The cognitive impairment observed in the NOR test may be related to the high dose used in this study, which may warrant further investigation.
Collapse
|
32
|
Varela T, Varela D, Martins G, Conceição N, Cancela ML. Cdkl5 mutant zebrafish shows skeletal and neuronal alterations mimicking human CDKL5 deficiency disorder. Sci Rep 2022; 12:9325. [PMID: 35665761 PMCID: PMC9167277 DOI: 10.1038/s41598-022-13364-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/12/2022] [Indexed: 12/17/2022] Open
Abstract
CDKL5 deficiency disorder (CDD) is a rare neurodevelopmental condition characterized primarily by seizures and impairment of cognitive and motor skills. Additional phenotypes include microcephaly, dysmorphic facial features, and scoliosis. Mutations in cyclin-dependent kinase-like 5 (CDKL5) gene, encoding a kinase essential for normal brain development and function, are responsible for CDD. Zebrafish is an accepted biomedical model for the study of several genetic diseases and has many advantages over other models. Therefore, this work aimed to characterize the phenotypic, behavioral, and molecular consequences of the Cdkl5 protein disruption in a cdkl5 mutant zebrafish line (sa21938). cdkl5sa21938 mutants displayed a reduced head size, suggesting microcephaly, a feature frequently observed in CDD individuals. Double staining revealed shorter craniofacial cartilage structures and decrease bone mineralization in cdkl5 homozygous zebrafish indicating an abnormal craniofacial cartilage development and impaired skeletal development. Motor behavior analysis showed that cdkl5sa21938 embryos had less frequency of double coiling suggesting impaired glutamatergic neurotransmission. Locomotor behavior analysis revealed that homozygous embryos swim shorter distances, indicative of impaired motor activity which is one of the main traits of CCD. Although no apparent spontaneous seizures were observed in these models, upon treatment with pentylenetetrazole, seizure behavior and an increase in the distance travelled were observed. Quantitative PCR showed that neuronal markers, including glutamatergic genes were dysregulated in cdkl5sa21938 mutant embryos. In conclusion, homozygous cdkl5sa21938 zebrafish mimic several characteristics of CDD, thus validating them as a suitable animal model to better understand the physiopathology of this disorder.
Collapse
Affiliation(s)
- Tatiana Varela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Débora Varela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Gil Martins
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Natércia Conceição
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.
- Algarve Biomedical Center, University of Algarve, Faro, Portugal.
| | - M Leonor Cancela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.
- Algarve Biomedical Center, University of Algarve, Faro, Portugal.
| |
Collapse
|
33
|
Karabulut S, Filiz AK, Akkaya R. Thiamine alleviates cognitive impairment and epileptogenesis by relieving brain inflammation in PTZ-induced kindling rat model. Neurol Res 2022; 44:902-909. [PMID: 35446240 DOI: 10.1080/01616412.2022.2066785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Epileptogenesis, the process by which the brain becomes epileptic, is related to neuroinflammation, hyperexcitability cognitive deficits. Evidence suggests that improving brain inflammation can inhibit the epileptogenesis process and help the emergence of new drugs for the treatment of epilepsy. Therefore, the PTZ kindling model of epilepsy was utilized to assess the neuroprotective role of thiamine in epileptogenesis. METHODS Male rats were exposed to PTZ-induced kindling and pretreated with low thiamine (25 mg/kg) or high thiamine (50 mg/kg). Cyclooxygenase (COX-1 and COX-2), interleukin 1-beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and nuclear factor-κB (NF-κB) concentrations in the brain were analyzed using biochemical assays. Cognitive function was evaluated using the passive avoidance test. RESULTS Thiamine ameliorated epileptogenesis and enhanced the rats' performance in the passive avoidance test. Also, thiamine significantly decreased the level of neuroinflammatory mediators in the brain induced by PTZ. CONCLUSION These results provide evidence that thiamine alleviates PTZ-induced neuroinflammation and cognitive impairments.
Collapse
Affiliation(s)
- Sebahattin Karabulut
- Department of Medical Services and Techniques, Vocational School of Health Services, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ahmet Kemal Filiz
- Department of Medical Physiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Recep Akkaya
- Department of Biophysics, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
34
|
Zhao X, Liang L, Xu R, Cheng P, Jia P, Bai Y, Zhang Y, Zhao X, Zheng X, Xiao C. Revealing the Antiepileptic Effect of α-Asaronol on Pentylenetetrazole-Induced Seizure Rats Using NMR-Based Metabolomics. ACS OMEGA 2022; 7:6322-6334. [PMID: 35224394 PMCID: PMC8867478 DOI: 10.1021/acsomega.1c06922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/28/2022] [Indexed: 05/04/2023]
Abstract
α-Asaronol from Acorus tatarinowii (known as "Shichangpu" in Traditional Chinese medicine) has been proved to possess more efficient antiepileptic activity and lower toxicity than α-asarone (namely "Xixinnaojiaonang" as an antiepileptic drug in China) in our previous study. However, the molecular mechanism of α-asaronol against epilepsy needs to be known if to become a novel antiepileptic medicine. Nuclear magnetic resonance (NMR)-based metabolomics was applied to investigate the metabolic patterns of plasma and the brain tissue extract from pentylenetetrazole (PTZ)-induced seizure rats when treated with α-asaronol or α-asarone. The results showed that α-asaronol can regulate the metabolomic level of epileptic rats to normal to some extent, and four metabolic pathways were associated with the antiepileptic effect of α-asaronol, including alanine, aspartate, and glutamate metabolism; synthesis and degradation of ketone bodies; glutamine and glutamate metabolism; and glycine, serine, and threonine metabolism. It was concluded that α-asaronol plays a vital role in enhancing energy metabolism, regulating the balance of excitatory and inhibitory neurotransmitters, and inhibiting cell membrane damage to prevent the occurrence of epilepsy. These findings are of great significance in developing α-asaronol into a promising antiepileptic drug derived from Traditional Chinese medicine.
Collapse
|
35
|
Bekhet MA, Ali AA, Kharshoum RM, El-Ela FIA, Salem HF. Intranasal Niosomal in situ Gel as a Novel Strategy for Improving Citicoline Efficacy and Brain Delivery in Treatment of Epilepsy: In vitro and ex vivo characterization and in vivo pharmacodynamics investigation. J Pharm Sci 2022; 111:2258-2269. [DOI: 10.1016/j.xphs.2022.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
|
36
|
Wu J, Hou Z, Wang Y, Chen L, Lian C, Meng Q, Zhang C, Li X, Huang L, Yu H. Discovery of 7-alkyloxy- [1,2,4] triazolo[1,5-a] pyrimidine derivatives as selective positive modulators of GABA A1 and GABA A4 receptors with potent antiepileptic activity. Bioorg Chem 2021; 119:105565. [PMID: 34929519 DOI: 10.1016/j.bioorg.2021.105565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022]
Abstract
A series of 7-alkoxy - [1,2,4] triazolo [1, 5-a] pyrimidine derivatives were designed and synthesized. Maximal electroshock (MES) and pentylenetetrazole (PTZ) tests were utilized to access their anticonvulsant activity. Most of the series of compounds exhibited significant anti-seizure effects. Further studies demonstrated that the anticonvulsant activity of these compounds mainly depended on their allosteric potentiation of GABAA receptors. Among them, compound 10c was picked for the mechanism study due to its potent activity. The compound is more sensitive to subunit configurations of synaptic α1β2γ2 and extrasynaptic α4β3δ GABAA receptors, but there were no effects on NMDA receptors and Nav1.2 sodium channels. Meanwhile, 10c acted on the sites of GABAA receptors distinct from commonly used anticonvulsants benzodiazepines and barbiturates. Furthermore, studies from native neurons demonstrated that compound 10c also potentiated the activity of native GABAA receptors and reduced action potential firings in cultured cortical neurons. Such structural compounds may lay a foundation for further designing novel antiepileptic molecules.
Collapse
Affiliation(s)
- Jun Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Xicheng district, Beijing 100050, China
| | - Zhipeng Hou
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Yan Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Liping Chen
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Chengxi Lian
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Qingfei Meng
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Chaoying Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Xiufen Li
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Longjiang Huang
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Xicheng district, Beijing 100050, China.
| | - Haibo Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Xicheng district, Beijing 100050, China.
| |
Collapse
|
37
|
Hussain M, Rashid H, Katyal J. Response to sertraline and antiepileptic drugs in pentylenetetrazole kindling in rats. Brain Res 2021; 1771:147645. [PMID: 34480951 DOI: 10.1016/j.brainres.2021.147645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
Anti-epileptic drugs (AEDs) are the mainstay of epilepsy treatment but these may be a potential risk factor for behavioral disturbances particularly depression which requires treatment. In this study, the effect of antidepressant sertraline (SRT) in combination with AEDs sodium valproate (SV) and levetiracetam (LEV) on seizures, cognitive impairment and oxidative stress in rats was evaluated. After administration of 24th injection of pentylenetetrazole (PTZ), 77.8% rats were kindled. Administration of SRT showed no protective effect on kindling development while SV was 100% protective. With LEV 42.9% were kindled. On combining SRT with SV or LEV 25% and 20% rats were kindled. A significant increase in latency to reach platform zone in Morris water maze(MWM), and increased transfer latencies in Elevated plus maze(EPM) was observed in PTZ kindled rats as compared to normal control on day 49 and when LEV was combined with SRT. In EPM test, however none of the drug treatments had any effect on transfer latencies except LEV pretreated kindled group. In Passive avoidance (PA) test, kindling was associated with a significant decrease in retention time(p = 0.018) while LEV and SV had no effect. The PTZ kindled rats showed significantly higher malondialdehyde(MDA) levels in brain hippocampus(p = 0.0286) while both SRT and SV were associated with significantly lower MDA levels as compared to kindled control group. In case of glutathione (GSH), kindling had no significant effect. The use of sertraline for depression in persons with epilepsy on AEDs needs to be carefully evaluated and monitored due to likelihood of individual variation.
Collapse
Affiliation(s)
- Md Hussain
- Neuropharmacology Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Haroon Rashid
- Neuropharmacology Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jatinder Katyal
- Neuropharmacology Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
38
|
Chindo BA, Howes MJR, Abuhamdah S, Yakubu MI, Ayuba GI, Battison A, Chazot PL. New Insights Into the Anticonvulsant Effects of Essential Oil From Melissa officinalis L. (Lemon Balm). Front Pharmacol 2021; 12:760674. [PMID: 34721045 PMCID: PMC8551917 DOI: 10.3389/fphar.2021.760674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
Melissa officinalis L. is used in traditional European and Iranian folk medicines to treat a plethora of neurological diseases including epilepsy. We utilized the in vitro and in vivo models of epilepsy to probe the anticonvulsant potentials of essential oil from M. officinalis (MO) to gain insight into the scientific basis for its applications in traditional medicine for the management of convulsive disorders. MO was evaluated for effects on maximal electroshock (MES) and pentylenetetrazole (PTZ) -induced seizures in mice, on 4–aminopyridine (4-AP)-brain slice model of epilepsy and sustained repetitive firing of current clamped neurons; and its ameliorative effects were examined on seizure severity, anxiety, depression, cognitive dysfunction, oxidative stress and neuronal cell loss in PTZ-kindled rats. MO reversibly blocked spontaneous ictal-like discharges in the 4-AP-brain slice model of epilepsy and secondary spikes from sustained repetitive firing, suggesting anticonvulsant effects and voltage-gated sodium channel blockade. MO protected mice from PTZ– and MES–induced seizures and mortality, and ameliorated seizure severity, fear-avoidance, depressive-like behavior, cognitive deficits, oxidative stress and neuronal cell loss in PTZ–kindled rats. The findings warrant further study for the potential use of MO and/or its constituent(s) as adjunctive therapy for epileptic patients.
Collapse
Affiliation(s)
- Ben A Chindo
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna, Nigeria
| | | | - Sawsan Abuhamdah
- Department of Biosciences, Durham University, Durham, United Kingdom.,College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates.,Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| | - Musa I Yakubu
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna, Nigeria
| | - Godwin I Ayuba
- Department of Anatomic Pathology and Forensic Medicine, College of Medicine, Kaduna State University, Kaduna, Nigeria
| | | | - Paul L Chazot
- Department of Biosciences, Durham University, Durham, United Kingdom
| |
Collapse
|
39
|
Akyuz E, Koklu B, Uner A, Angelopoulou E, Paudel YN. Envisioning the role of inwardly rectifying potassium (Kir) channel in epilepsy. J Neurosci Res 2021; 100:413-443. [PMID: 34713909 DOI: 10.1002/jnr.24985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 01/29/2023]
Abstract
Epilepsy is a devastating neurological disorder characterized by recurrent seizures attributed to the disruption of the dynamic excitatory and inhibitory balance in the brain. Epilepsy has emerged as a global health concern affecting about 70 million people worldwide. Despite recent advances in pre-clinical and clinical research, its etiopathogenesis remains obscure, and there are still no treatment strategies modifying disease progression. Although the precise molecular mechanisms underlying epileptogenesis have not been clarified yet, the role of ion channels as regulators of cellular excitability has increasingly gained attention. In this regard, emerging evidence highlights the potential implication of inwardly rectifying potassium (Kir) channels in epileptogenesis. Kir channels consist of seven different subfamilies (Kir1-Kir7), and they are highly expressed in both neuronal and glial cells in the central nervous system. These channels control the cell volume and excitability. In this review, we discuss preclinical and clinical evidence on the role of the several subfamilies of Kir channels in epileptogenesis, aiming to shed more light on the pathogenesis of this disorder and pave the way for future novel therapeutic approaches.
Collapse
Affiliation(s)
- Enes Akyuz
- Faculty of International Medicine, Department of Biophysics, University of Health Sciences, Istanbul, Turkey
| | - Betul Koklu
- Faculty of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Arda Uner
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
40
|
Fokoua AR, Ajayi AM, Ben-Azu B, Chouna R, Folarin O, Olopade J, Nkeng-Efouet PA, Aderibigbe AO, Umukoro S, Nguelefack TB. The antioxidant and neuroprotective effects of the Psychotria camptopus Verd. Hook. (Rubiaceae) stem bark methanol extract contributes to its antiepileptogenic activity against pentylenetetrazol kindling in male Wistar rats. Metab Brain Dis 2021; 36:2015-2027. [PMID: 34460047 DOI: 10.1007/s11011-021-00825-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
A substantial number of epileptic patients are resistant to the current medication thus necessitating the search for alternative therapies for intractable forms of the disease. Previous studies demonstrated the acute anticonvulsant properties of the methanol extract of the stem bark of Psychotria camptopus (MEPC) in rats. This study investigated the effects of MEPC on pentylenetetrazole-kindled Wistar rats. Kindling was induced by intraperitoneal injection of pentylenetetrazole (37.5 mg/kg) on every alternate day, 1 h after each daily oral pretreatment of rats (8 ≤ n ≤ 10) with MEPC (40, 80 and 120 mg/kg), vehicle or diazepam (3 mg/kg) for 43 days. The kindling development was monitored based on seizure episodes and severity. Rats' brains were collected on day 43 for the determination of oxidative stress parameters. The histomorphological features and neuronal cell viability of the prefrontal cortex (PFC) and hippocampus were also assessed using H&E and Cresyl violet stains. Chronic administration of pentylenetetrazole time-dependently decreased the latency to myoclonic and generalized seizures, and increased seizure scores and the number of kindled rats. MEPC and diazepam significantly increased the latencies to myoclonic jerks and generalized tonic-clonic seizures. These substances also reduced seizure score and the number of rats with PTZ-kindling. MEPC improved glutathione status and decreased lipid peroxidation in the brains of kindled rats. MEPC also exhibited neuroprotection against pentylenetetrazole-induced hippocampal and PFC neuronal damages. These results suggest that P. camptopus has antiepileptogenic activity, which might be related to the augmentation of antioxidant and neuroprotective defense mechanisms, and further confirm its usefulness in the management of epilepsy.
Collapse
Affiliation(s)
- Aliance Romain Fokoua
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Sciences, University of Dschang, Dschang, Cameroon
- Fondation Alango-Reference Hospital of African medicine, Dschang, Cameroon
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Laboratory, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benneth Ben-Azu
- Neuropharmacology Laboratory, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, Delta State University, Abraka, Nigeria
| | - Rodolphe Chouna
- Fondation Alango-Reference Hospital of African medicine, Dschang, Cameroon
- Laboratory of Applied and Environmental Chemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Oluwabusayo Folarin
- Neuroscience Unit, Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - James Olopade
- Neuroscience Unit, Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - Pepin Alango Nkeng-Efouet
- Fondation Alango-Reference Hospital of African medicine, Dschang, Cameroon
- Laboratory of Applied and Environmental Chemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Adegbuyi Oladele Aderibigbe
- Neuropharmacology Laboratory, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Solomon Umukoro
- Neuropharmacology Laboratory, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Télesphore Benoît Nguelefack
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Sciences, University of Dschang, Dschang, Cameroon.
| |
Collapse
|
41
|
Shahpari M, Hajji M, Mirnajafi-Zadeh J, Setoodeh P. Modeling plasticity during epileptogenesis by long short term memory neural networks. Cogn Neurodyn 2021; 16:401-409. [PMID: 35401870 PMCID: PMC8934824 DOI: 10.1007/s11571-021-09698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 05/30/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022] Open
Abstract
Understanding the pathogenesis of epilepsy including changes in synaptic pathways can improve our knowledge about epilepsy and development of new treatments. In this regard, data-driven models such as artificial neural networks, which are able to capture the effects of synaptic plasticity, can play an important role. This paper proposes long short term memory (LSTM) as the ideal architecture for modeling plasticity changes, and validates this proposal via experimental data. As a special class of recurrent neural networks (RNNs), LSTM is able to track information through time and control its flow via several gating mechanisms, which allow for maintaining the relevant and forgetting the irrelevant information. In our experiments, potentiation and depotentiation of motor circuit and perforant pathway as two forms of plasticity were respectively induced by kindled and kindled + transcranial magnetic stimulation of animal groups. In kindling, both procedure duration and gradual synaptic changes play critical roles. The stimulation of both groups continued for six days. Both after-discharge (AD) and seizure behavior as two biologically measurable effects of plasticity were recorded immediately post each stimulation. Three classes of artificial neural networks-LSTM, RNN, and feedforward neural network (FFNN)-were trained to predict AD and seizure behavior as indicators of plasticity during these six days. Results obtained from the collected data confirm the superiority of LSTM. For seizure behavior, the prediction accuracies achieved by these three models were 0.91 ± 0.01, 0.77 ± 0.02, and 0.59 ± 0.02%, respectively, and for AD, the prediction accuracies were 0.82 ± 0.01, 0.74 ± 0.08 and 0.42 ± 0.1, respectively.
Collapse
|
42
|
Stegmayr C, Surges R, Choi CH, Burda N, Stoffels G, Filß C, Willuweit A, Neumaier B, Heinzel A, Shah NJ, Mottaghy FM, Langen KJ. Investigation of Cerebral O-(2-[ 18F]Fluoroethyl)-L-Tyrosine Uptake in Rat Epilepsy Models. Mol Imaging Biol 2021; 22:1255-1265. [PMID: 32409931 PMCID: PMC7497431 DOI: 10.1007/s11307-020-01503-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE A recent study reported on high, longer lasting and finally reversible cerebral uptake of O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) induced by epileptic activity. Therefore, we examined cerebral [18F]FET uptake in two chemically induced rat epilepsy models and in patients with focal epilepsy to further investigate whether this phenomenon represents a major pitfall in brain tumor diagnostics and whether [18F]FET may be a potential marker to localize epileptic foci. PROCEDURES Five rats underwent kainic acid titration to exhibit 3 to 3.5 h of class IV-V motor seizures (status epilepticus, SE). Rats underwent 4× [18F]FET PET and 4× MRI on the following 25 days. Six rats underwent kindling with pentylenetetrazol (PTZ) 3 to 8×/week over 10 weeks, and hence, seizures increased from class I to class IV. [18F]FET PET and MRI were performed regularly on days with and without seizures. Four rats served as healthy controls. Additionally, five patients with focal epilepsy underwent [18F]FET PET within 12 days after the last documented seizure. RESULTS No abnormalities in [18F]FET PET or MRI were detected in the kindling model. The SE model showed significantly decreased [18F]FET uptake 3 days after SE in all examined brain regions, and especially in the amygdala region, which normalized within 2 weeks. Corresponding signal alterations in T2-weighted MRI were noted in the amygdala and hippocampus, which recovered 24 days post-SE. No abnormality of cerebral [18F]FET uptake was noted in the epilepsy patients. CONCLUSIONS There was no evidence for increased cerebral [18F]FET uptake after epileptic seizures neither in the rat models nor in patients. The SE model even showed decreased [18F]FET uptake throughout the brain. We conclude that epileptic seizures per se do not cause a longer lasting increased [18F]FET accumulation and are unlikely to be a major cause of pitfall for brain tumor diagnostics.
Collapse
Affiliation(s)
- Carina Stegmayr
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Rainer Surges
- Department of Neurology, RWTH University Aachen, Aachen, Germany.,Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Chang-Hoon Choi
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Nicole Burda
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Christian Filß
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany.,Department of Nuclear Medicine, RWTH University Hospital Aachen, Aachen, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Bernd Neumaier
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Alexander Heinzel
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany.,Department of Nuclear Medicine, RWTH University Hospital Aachen, Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany.,Department of Neurology, RWTH University Aachen, Aachen, Germany.,JARA - BRAIN - Translational Medicine, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, RWTH University Hospital Aachen, Aachen, Germany.,Centre of Integrated Oncology (CIO), University of Aachen, Bonn, Cologne and Düsseldorf, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany.,Department of Nuclear Medicine, RWTH University Hospital Aachen, Aachen, Germany.,JARA - BRAIN - Translational Medicine, Aachen, Germany.,Centre of Integrated Oncology (CIO), University of Aachen, Bonn, Cologne and Düsseldorf, Germany
| |
Collapse
|
43
|
Multi-omics in mesial temporal lobe epilepsy with hippocampal sclerosis: Clues into the underlying mechanisms leading to disease. Seizure 2021; 90:34-50. [DOI: 10.1016/j.seizure.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
|
44
|
Yang J, Jia Z, Xiao Z, Zhao J, Lu Y, Chu L, Shao H, Pei L, Zhang S, Chen Y. Baicalin Rescues Cognitive Dysfunction, Mitigates Neurodegeneration, and Exerts Anti-Epileptic Effects Through Activating TLR4/MYD88/Caspase-3 Pathway in Rats. Drug Des Devel Ther 2021; 15:3163-3180. [PMID: 34321866 PMCID: PMC8312624 DOI: 10.2147/dddt.s314076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose This study aims to evaluate the beneficial effects of anti-epileptic mechanisms of baicalin (BA) on cognitive dysfunction and neurodegeneration in pentylenetetrazol (PTZ)-induced epileptic rats. Methods First, PTZ-induced epileptic rats were administered intraperitoneally a sub-convulsive dose of PTZ (40 mg/kg) daily, and the seizure susceptibility (the degree of seizures and latency) was evaluated using Racine’s criterion. Then, classical behavioral experiments were performed to test whether BA ameliorated cognitive dysfunction. Neurodegeneration was assessed using Fluoro Jade-B (FJB), and NeuN staining was used to determine whether BA offered a neuroprotective role. After BA had been proven to possess anti-epileptic effects, its possible mechanisms were analyzed through network pharmacology. Finally, the key targets for predictive mechanisms were experimentally verified. Results The epileptic model was successfully established, and BA had anti-epileptic effects. Epileptic rats displayed significant cognitive dysfunction, and BA markedly ameliorated cognitive dysfunction. Further, we also discovered that BA treatment mitigated neurodegeneration of the hippocampus CA3 regions, thereby ameliorated cognitive dysfunction of epileptic rats. Subsequent network pharmacology analysis was implemented to reveal a possible mechanism of BA in the anti-epileptic process and the TLR4/MYD88/Caspase-3 pathway was predicted. Finally, experimental studies showed that BA exerted an anti-epileptic effect by activating the TLR4/MYD88/Caspase-3 pathway in PTZ-induced epileptic rats. Conclusion In conclusion, BA had a protective effect against PTZ-induced seizures. BA improved cognitive dysfunction and exerted a neuroprotective action. The anti-epileptic effects of BA may be potentially through activation of the TLR4/MYD88/Caspase-3 pathway.
Collapse
Affiliation(s)
- Jiali Yang
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Zhixia Jia
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Zhigang Xiao
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Jing Zhao
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Ye Lu
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Hui Shao
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China.,Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Lin Pei
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China.,Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Shaodan Zhang
- Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Yuan Chen
- Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| |
Collapse
|
45
|
Wang T, Zhou M, Zhang Q, Zhang C, Peng G. ubtor Mutation Causes Motor Hyperactivity by Activating mTOR Signaling in Zebrafish. Neurosci Bull 2021; 37:1658-1670. [PMID: 34309811 PMCID: PMC8643380 DOI: 10.1007/s12264-021-00755-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/08/2021] [Indexed: 01/20/2023] Open
Abstract
Mechanistic target of rapamycin (mTOR) signaling governs important physiological and pathological processes key to cellular life. Loss of mTOR negative regulators and subsequent over-activation of mTOR signaling are major causes underlying epileptic encephalopathy. Our previous studies showed that UBTOR/KIAA1024/MINAR1 acts as a negative regulator of mTOR signaling, but whether UBTOR plays a role in neurological diseases remains largely unknown. We therefore examined a zebrafish model and found that ubtor disruption caused increased spontaneous embryonic movement and neuronal activity in spinal interneurons, as well as the expected hyperactivation of mTOR signaling in early zebrafish embryos. In addition, mutant ubtor larvae showed increased sensitivity to the convulsant pentylenetetrazol, and both the motor activity and the neuronal activity were up-regulated. These phenotypic abnormalities in zebrafish embryos and larvae were rescued by treatment with the mTORC1 inhibitor rapamycin. Taken together, our findings show that ubtor regulates motor hyperactivity and epilepsy-like behaviors by elevating neuronal activity and activating mTOR signaling.
Collapse
Affiliation(s)
- Tiantian Wang
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Mingshan Zhou
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Quan Zhang
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Cuizhen Zhang
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Gang Peng
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
46
|
Dos Santos FM, Pflüger PF, Lazzarotto L, Uczay M, de Aguida WR, da Silva LS, Boaretto FBM, de Sousa JT, Picada JN, da Silva Torres IL, Pereira P. Gamma-Decanolactone Alters the Expression of GluN2B, A 1 Receptors, and COX-2 and Reduces DNA Damage in the PTZ-Induced Seizure Model After Subchronic Treatment in Mice. Neurochem Res 2021; 46:2066-2078. [PMID: 34019198 DOI: 10.1007/s11064-021-03345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022]
Abstract
Gamma-decanolactone (GD) has been shown to reduce epileptic behavior in different models, inflammatory decreasing, oxidative stress, and genotoxic parameters. This study assessed the GD effect on the pentylenetetrazole (PTZ) model after acute and subchronic treatment. We evaluated the expression of the inflammatory marker cyclooxygenase-2 (COX-2), GluN2B, a subunit of the NMDA glutamate receptor, adenosine A1 receptor, and GD genotoxicity and mutagenicity. Male and female mice were treated with GD (300 mg/kg) for 12 days. On the tenth day, they were tested in the Hot Plate test. On the thirteenth day, all animals received PTZ (90 mg/kg), and epileptic behavior PTZ-induced was observed for 30 min. Pregabalin (PGB) (30 mg/kg) was used as a positive control. Samples of the hippocampus and blood were collected for Western Blotting analyses and Comet Assay and bone marrow to the Micronucleus test. Only the acute treatment of GD reduced the seizure occurrence and increased the latency to the first stage 3 seizures. Males treated with GD for 12 days demonstrated a significant increase in the expression of the GluN2B receptor and a decrease in the COX-2 expression. Acute and subchronic treatment with GD and PGB reduced the DNA damage produced by PTZ in males and females. There is no increase in the micronucleus frequency in bone marrow after subchronic treatment. This study suggests that GD, after 12 days, could not reduce PTZ-induced seizures, but it has been shown to protect against DNA damage, reduce COX-2 and increase GluN2B expression.
Collapse
Affiliation(s)
- Fernanda Marcelia Dos Santos
- Laboratory of Neuropharmacology and Preclinical Toxicology, Health Basic Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pricila Fernandes Pflüger
- Laboratory of Neuropharmacology and Preclinical Toxicology, Health Basic Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Leticia Lazzarotto
- Laboratory of Neuropharmacology and Preclinical Toxicology, Health Basic Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mariana Uczay
- Laboratory of Neuropharmacology and Preclinical Toxicology, Health Basic Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Wesley Roberto de Aguida
- Laboratory of Neuropharmacology and Preclinical Toxicology, Health Basic Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lisiane Santos da Silva
- Laboratory of Pain Pharmacology and Neuromodulation: Pre-Clinical Research. Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | - Iraci Lucena da Silva Torres
- Laboratory of Pain Pharmacology and Neuromodulation: Pre-Clinical Research. Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Pereira
- Laboratory of Neuropharmacology and Preclinical Toxicology, Health Basic Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Laboratory of Neuropharmacology and Preclinical Toxicology, Department of Pharmacology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Sarmento Leite 500/305, Porto Alegre, RS, CEP 90050-170, Brazil.
| |
Collapse
|
47
|
Acutain MF, Griebler Luft J, Vazquez CA, Popik B, Cercato MC, Epstein A, Salvetti A, Jerusalinsky DA, de Oliveira Alvares L, Baez MV. Reduced Expression of Hippocampal GluN2A-NMDAR Increases Seizure Susceptibility and Causes Deficits in Contextual Memory. Front Neurosci 2021; 15:644100. [PMID: 33897358 PMCID: PMC8064689 DOI: 10.3389/fnins.2021.644100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/08/2021] [Indexed: 12/23/2022] Open
Abstract
N-methyl-D-aspartate receptors are heterotetramers composed of two GluN1 obligatory subunits and two regulatory subunits. In cognitive-related brain structures, GluN2A and GluN2B are the most abundant regulatory subunits, and their expression is subjected to tight regulation. During development, GluN2B expression is characteristic of immature synapses, whereas GluN2A is present in mature ones. This change in expression induces a shift in GluN2A/GluN2B ratio known as developmental switch. Moreover, modifications in this relationship have been associated with learning and memory, as well as different pathologies. In this work, we used a specific shRNA to induce a reduction in GluN2A expression after the developmental switch, both in vitro in primary cultured hippocampal neurons and in vivo in adult male Wistar rats. After in vitro characterization, we performed a cognitive profile and evaluated seizure susceptibility in vivo. Our in vitro results showed that the decrease in the expression of GluN2A changes GluN2A/GluN2B ratio without altering the expression of other regulatory subunits. Moreover, rats expressing the anti-GluN2A shRNA in vivo displayed an impaired contextual fear-conditioning memory. In addition, these animals showed increased seizure susceptibility, in terms of both time and intensity, which led us to conclude that deregulation in GluN2A expression at the hippocampus is associated with seizure susceptibility and learning–memory mechanisms.
Collapse
Affiliation(s)
- Maria Florencia Acutain
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN, CONICET-UBA), Buenos Aires, Argentina
| | - Jordana Griebler Luft
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cecila Alejandra Vazquez
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN, CONICET-UBA), Buenos Aires, Argentina
| | - Bruno Popik
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Magalí C Cercato
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN, CONICET-UBA), Buenos Aires, Argentina
| | | | - Anna Salvetti
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Diana A Jerusalinsky
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN, CONICET-UBA), Buenos Aires, Argentina
| | | | - Maria Verónica Baez
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN, CONICET-UBA), Buenos Aires, Argentina.,1° U.A. Departamento de Histologia, Embriología, Biologia Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
48
|
Akyuz E, Doganyigit Z, Paudel YN, Koklu B, Kaymak E, Villa C, Arulsamy A, Shaikh MF, Devinsky O. Immunoreactivity of Muscarinic Acetylcholine M2 and Serotonin 5-HT2B Receptors, Norepinephrine Transporter and Kir Channels in a Model of Epilepsy. Life (Basel) 2021; 11:life11040276. [PMID: 33810231 PMCID: PMC8066555 DOI: 10.3390/life11040276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
Abstract
Epilepsy is characterized by an imbalance in neurotransmitter activity; an increased excitatory to an inhibitory activity. Acetylcholine (ACh), serotonin, and norepinephrine (NE) may modulate neural activity via several mechanisms, mainly through its receptors/transporter activity and alterations in the extracellular potassium (K+) concentration via K+ ion channels. Seizures may disrupt the regulation of inwardly rectifying K+ (Kir) channels and alter the receptor/transporter activity. However, there are limited data present on the immunoreactivity pattern of these neurotransmitter receptors/transporters and K+ channels in chronic models of epilepsy, which therefore was the aim of this study. Changes in the immunoreactivity of epileptogenesis-related neurotransmitter receptors/transporters (M2, 5-HT2B, and NE transporter) as well as Kir channels (Kir3.1 and Kir6.2) were determined in the cortex, hippocampus and medulla of adult Wistar rats by utilizing a Pentylenetetrazol (PTZ)-kindling chronic epilepsy model. Increased immunoreactivity of the NE transporter, M2, and 5-HT2B receptors was witnessed in the cortex and medulla. While the immunoreactivity of the 5-HT2B receptor was found increased in the cortex and medulla, it was decreased in the hippocampus, with no changes observed in the M2 receptor in this region. Kir3.1 and Kir6.2 staining showed increase immunoreactivity in the cerebral cortex, but channel contrasting findings in the hippocampus and medulla. Our results suggest that seizure kindling may result in significant changes in the neurotransmitter system which may contribute or propagate to future epileptogenesis, brain damage and potentially towards sudden unexpected death in epilepsy (SUDEP). Further studies on the pathogenic role of these changes in neurotransmitter receptors/transporters and K+ channel immunoreactivity may identify newer possible targets to treat seizures or prevent epilepsy-related comorbidities.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, Faculty of International Medicine, University of Health Sciences, Istanbul 34668, Turkey
- Correspondence: (E.A.); (O.D.); Tel.: +90-535-7629979 (E.A.); +1-646-558-0803 (O.D.)
| | - Zuleyha Doganyigit
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey; (Z.D.); (E.K.)
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (Y.N.P.); (A.A.); (M.F.S.)
| | - Betul Koklu
- Faculty of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey;
| | - Emin Kaymak
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey; (Z.D.); (E.K.)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Alina Arulsamy
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (Y.N.P.); (A.A.); (M.F.S.)
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (Y.N.P.); (A.A.); (M.F.S.)
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, Department of Neurology, NYU Langone School of Medicine, New York, NY 10010, USA
- Correspondence: (E.A.); (O.D.); Tel.: +90-535-7629979 (E.A.); +1-646-558-0803 (O.D.)
| |
Collapse
|
49
|
Rohani R, Aliaghaei A, Abdollahifar MA, Sadeghi Y, Zare L, Dehghan S, Heidari MH. Long-Term Effects of Hippocampal Low-Frequency Stimulation on Pro-Inflammatory Factors and Astrocytes Activity in Kindled Rats. CELL JOURNAL 2021; 23:85-92. [PMID: 33650824 PMCID: PMC7944118 DOI: 10.22074/cellj.2021.7139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/21/2019] [Indexed: 11/26/2022]
Abstract
Objective Epilepsy is accompanied by inflammation, and the anti-inflammatory agents may have anti-seizure effects. In this
investigation, the effect of deep brain stimulation, as a potential therapeutic approach in epileptic patients, was investigated
on seizure-induced inflammatory factors.
Materials and Methods In the present experimental study, rats were kindled by chronic administration of pentylenetetrazol
(PTZ; 34 mg/Kg). The animals were divided into intact, sham, low-frequency deep brain stimulation (LFS), kindled, and kindled
+LFS groups. In kindled+LFS and LFS groups, animals received four trains of intra-hippocampal low-frequency deep brain
stimulation (LFS) at 20 minutes, 6, 24, and 30 hours after the last PTZ injection. Each train of LFS contained 200 pulses at
1 Hz, 200 µA, and 0.1 ms pulse width. One week after the last PTZ injection, the Y-maze test was run, and then the rats’
brains were removed, and hippocampal samples were extracted for molecular assessments. The gene expression of two
pro-inflammatory factors [interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α)], and glial fibrillary acidic protein (GFAP)
immunoreactivity (as a biological marker of astrocytes reactivation) were evaluated.
Results Obtained results showed a significant increase in the expression of of interleukin-6 (IL-6), tumor necrosis factor
(TNF)-α, and GFAP at one-week post kindling seizures. The application of LFS had a long-lasting effect and restored all of
the measured changes toward normal values. These effects were gone along with the LFS improving the effect on working
memory in kindled animals.
Conclusion The anti-inflammatory action of LFS may have a role in its long-lasting improving effects on seizure-induced
cognitive disorders.
Collapse
Affiliation(s)
- Razieh Rohani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences and Health Services (SBMU), Tehran, Iran
| | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences and Health Services (SBMU), Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences and Health Services (SBMU), Tehran, Iran
| | - Yousef Sadeghi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences and Health Services (SBMU), Tehran, Iran
| | - Leila Zare
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Samaneh Dehghan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Hassan Heidari
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences and Health Services (SBMU), Tehran, Iran.
| |
Collapse
|
50
|
Flores-Soto M, Romero-Guerrero C, Vázquez-Hernández N, Tejeda-Martínez A, Martín-Amaya-Barajas FL, Orozco-Suárez S, González-Burgos I. Pentylenetetrazol-induced seizures in adult rats are associated with plastic changes to the dendritic spines on hippocampal CA1 pyramidal neurons. Behav Brain Res 2021; 406:113198. [PMID: 33657439 DOI: 10.1016/j.bbr.2021.113198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/29/2022]
Abstract
Epilepsy is a chronic neurobehavioral disorder whereby an imbalance between neurochemical excitation and inhibition at the synaptic level provokes seizures. Various experimental models have been used to study epilepsy, including that based on acute or chronic administration of Pentylenetetrazol (PTZ). In this study, a single PTZ dose (60 mg/kg) was administered to adult male rats and 30 min later, various neurobiological parameters were studied related to the transmission and modulation of excitatory impulses in pyramidal neurons of the hippocampal CA1 field. Rats experienced generalized seizures 1-3 min after PTZ administration, accompanied by elevated levels of Synaptophysin and Glutaminase. This response suggests presynaptic glutamate release is exacerbated to toxic levels, which eventually provokes neuronal death as witnessed by the higher levels of Caspase-3, TUNEL and GFAP. Similarly, the increase in PSD-95 suggests that viable dendritic spines are functional. Indeed, the increase in stubby and wide spines is likely related to de novo spinogenesis, and the regulation of neuronal excitability, which could represent a plastic response to the synaptic over-excitation. Furthermore, the increase in mushroom spines could be associated with the storage of cognitive information and the potentiation of thin spines until they are transformed into mushroom spines. However, the reduction in BDNF suggests that the activity of these spines would be down-regulated, may in part be responsible for the cognitive decline related to hippocampal function in patients with epilepsy.
Collapse
Affiliation(s)
- Mario Flores-Soto
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jal., Mexico
| | - Christian Romero-Guerrero
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jal., Mexico
| | - Nallely Vázquez-Hernández
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jal., Mexico
| | - Aldo Tejeda-Martínez
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jal., Mexico
| | | | - Sandra Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, CMN S-XXI, IMSS, Guadalajara, Jal., Mexico
| | - Ignacio González-Burgos
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jal., Mexico.
| |
Collapse
|