1
|
Zhang H, Li L, Zhang X, Ru G, Zang W. Role of the Dorsal Raphe Nucleus in Pain Processing. Brain Sci 2024; 14:982. [PMID: 39451996 PMCID: PMC11506261 DOI: 10.3390/brainsci14100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
The dorsal raphe nucleus (DRN) has gained attention owing to its involvement in various physiological functions, such as sleep-awake, feeding, and emotion, with its analgesic role being particularly significant. It is described as the "pain inhibitory nucleus" in the brain. The DRN has diverse projections from hypothalamus, midbrain, and pons. In turn, the DRN is a major source of projections to diverse cortex, limbic forebrain thalamus, and the midbrain and contains highly heterogeneous neuronal subtypes. The activation of DRN neurons in mice prevents the establishment of neuropathic, chronic pain symptoms. Chemogenetic or optogenetic inhibition neurons in the DRN are sufficient to establish pain phenotypes, including long-lasting tactile allodynia, that scale with the extent of stimulation, thereby promoting nociplastic pain. Recent progress has been made in identifying the neural circuits and cellular mechanisms in the DRN that are responsible for sensory modulation. However, there is still a lack of comprehensive review addressing the specific neuron types in the DRN involved in pain modulation. This review summarizes the function of specific cell types within DRN in the pain regulation, and aims to improve understanding of the mechanisms underlying pain regulation in the DRN, ultimately offering insights for further exploration.
Collapse
Affiliation(s)
- Huijie Zhang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (H.Z.); (L.L.)
| | - Lei Li
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (H.Z.); (L.L.)
| | - Xujie Zhang
- Department of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China;
| | - Guanqi Ru
- Department of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Weidong Zang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (H.Z.); (L.L.)
| |
Collapse
|
2
|
Guo B, Zhang W, Zhou Y, Zhang J, Zeng C, Sun P, Liu B. Fucoxanthin restructures the gut microbiota and metabolic functions of non-obese individuals in an in vitro fermentation model. Food Funct 2024; 15:4805-4817. [PMID: 38563411 DOI: 10.1039/d3fo05671f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Fucoxanthin, a carotenoid exclusively derived from algae, exerts its bioactivities with the modulation of the gut microbiota in mice. However, mechanisms through which fucoxanthin regulates the gut microbiota and its derived metabolites/metabolism in humans remain unclear. In this study, we investigated the effects of fucoxanthin on the gut microbiota and metabolism of non-obese individuals using an in vitro simulated digestion-fermentation cascade model. The results showed that about half of the fucoxanthin was not absorbed in the intestine, thus reaching the colon. The gut microbiota from fecal samples underwent significant changes after 48 or 72 hours in vitro fermentation. Specifically, fucoxanthin significantly enhanced the relative abundance of Bacteroidota and Parabacteroides, leading to improved functions of the gut microbiota in its development, glycan biosynthesis and metabolism as well as in improving the digestive system, endocrine system and immune system. The recovery of fucoxanthin during fermentation showed a decreasing trend with the slight bio-conversion of fucoxanthinol. Notably, fucoxanthin supplementation significantly altered metabolites, especially bile acids and indoles in the simulated human gut ecosystem. Correlation analysis indicated the involvement of the gut microbiota in the manipulation of these metabolites by fucoxanthin. Moreover, all these altered metabolites revealed the improvement in the capacity of fucoxanthin in manipulating gut metabolism, especially lipid metabolism. Overall, fucoxanthin determinedly reshaped the gut microbiota and metabolism, implying its potential health benefits in non-obese individuals.
Collapse
Affiliation(s)
- Bingbing Guo
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Weihao Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Yonghui Zhou
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Jingyi Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Chengchu Zeng
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Peipei Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China.
| |
Collapse
|
3
|
Vijayakumar BG, Ramesh D, Kumari S, Maity A, Pinnaka AK, Kannan T. Enhancing antifungal properties of chitosan by attaching isatin-piperazine-sulfonyl-acetamide pendant groups via novel imidamide linkage. Int J Biol Macromol 2023:125428. [PMID: 37330090 DOI: 10.1016/j.ijbiomac.2023.125428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
World health organization listed fungi as priority pathogens in 2022 to counter their adverse effects on human well-being. The use of antimicrobial biopolymers is a sustainable alternative to toxic antifungal agents. In this study, we explore chitosan as an antifungal agent by grafting a novel compound N-(4-((4-((isatinyl)methyl)piperazin-1-yl)sulfonyl)phenyl) acetamide (IS). The acetimidamide linkage of IS to chitosan herein was confirmed by 13C NMR and is a new branch in chitosan pendant group chemistry. The modified chitosan films (ISCH) were studied using thermal, tensile, and spectroscopic methods. The ISCH derivatives strongly inhibit fungal pathogens of agricultural and human importance, namely Fusarium solani, Colletotrichum gloeosporioides, Myrothecium verrucaria, Penicillium oxalicum, and Candida albicans. ISCH80 showed an IC50 value of 0.85 μg/ml against M. verrucaria and ISCH100 with IC50 of 1.55 μg/ml is comparable to the commercial antifungal IC50 values of Triadiamenol (3.6 μg/ml) and Trifloxystrobin (3 μg/ml). Interestingly, the ISCH series remained non-toxic up to 2000 μg/ml against L929 mouse fibroblast cells. The ISCH series showed long-standing antifungal action, superior to our lowest observed antifungal IC50 values of plain chitosan and IS at 12.09 μg/ml and 3.14 μg/ml, respectively. ISCH films are thus suitable for fungal inhibition in an agricultural setting or food preservation.
Collapse
Affiliation(s)
| | - Deepthi Ramesh
- Dept of Chemistry, Pondicherry University, Kalapet, Pondicherry 605014, India
| | - Sumeeta Kumari
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Akashpratim Maity
- Dept of Chemistry, Pondicherry University, Kalapet, Pondicherry 605014, India
| | - Anil Kumar Pinnaka
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | | |
Collapse
|
4
|
Wang H, Guo F, Du M, Wang G, Cao C. A novel method for drug-target interaction prediction based on graph transformers model. BMC Bioinformatics 2022; 23:459. [PMID: 36329406 PMCID: PMC9635108 DOI: 10.1186/s12859-022-04812-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/23/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Drug-target interactions (DTIs) prediction becomes more and more important for accelerating drug research and drug repositioning. Drug-target interaction network is a typical model for DTIs prediction. As many different types of relationships exist between drug and target, drug-target interaction network can be used for modeling drug-target interaction relationship. Recent works on drug-target interaction network are mostly concentrate on drug node or target node and neglecting the relationships between drug-target. RESULTS We propose a novel prediction method for modeling the relationship between drug and target independently. Firstly, we use different level relationships of drugs and targets to construct feature of drug-target interaction. Then, we use line graph to model drug-target interaction. After that, we introduce graph transformer network to predict drug-target interaction. CONCLUSIONS This method introduces a line graph to model the relationship between drug and target. After transforming drug-target interactions from links to nodes, a graph transformer network is used to accomplish the task of predicting drug-target interactions.
Collapse
Affiliation(s)
- Hongmei Wang
- College of Computer Science and Engineering, Changchun University of Technology, Changchun, China
| | - Fang Guo
- College of Computer Science and Engineering, Changchun University of Technology, Changchun, China
| | - Mengyan Du
- College of Computer Science and Engineering, Changchun University of Technology, Changchun, China
| | - Guishen Wang
- College of Computer Science and Engineering, Changchun University of Technology, Changchun, China.
| | - Chen Cao
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China. .,Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.
| |
Collapse
|
5
|
Wang Z, Li H, Kang Y, Liu Y, Shan L, Wang F. Risks of Digestive System Side-Effects of Selective Serotonin Reuptake Inhibitors in Patients with Depression: A Network Meta-Analysis. Ther Clin Risk Manag 2022; 18:799-812. [PMID: 35992228 PMCID: PMC9386738 DOI: 10.2147/tcrm.s363404] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/29/2022] [Indexed: 12/05/2022] Open
Abstract
PURPOSE Selective serotonin reuptake inhibitors (SSRIs) are the preferred treatments for depression. The most common adverse drug reactions are symptoms involving the digestive system, leading to low compliance in patients with depression. Therefore, it is important to assess the safety of SSRIs with respect to the digestive system. Several meta-analyses have compared the risks of digestive side effects of SSRIs and other antidepressants. We aimed to compare the risks of various SSRIs (fluoxetine, escitalopram, citalopram, paroxetine, and sertraline) for adverse reactions of the digestive system. METHODS Systematic searches returned 30 randomized controlled trials (n = 5004) of five antidepressants and placebos. RESULTS Fluoxetine had the lowest probability of digestive side effects, ranking fifth at 0.548. Sertraline had the highest probability of digestive side effects, with a probability of 0.611. For gastrointestinal tolerability, escitalopram was better than paroxetine (odds ratio [OR] =0.62, 95% confidence interval [CI] 0.43-0.87) and sertraline (OR=0.56, 95% CI 0.32-0.99). CONCLUSION Fluoxetine exhibited distinct advantages compared to other SSRIs, while sertraline had the greatest likelihood of digestive system side effects. These findings will help doctors understand the relative advantages of various antidepressants.
Collapse
Affiliation(s)
- Zhuoyue Wang
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot, People’s Republic of China
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, People’s Republic of China
| | - Hui Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, People’s Republic of China
- Xinjiang Key Laboratory of Neurological Disorder Research, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Yimin Kang
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot, People’s Republic of China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Ligang Shan
- Department of Anesthesiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, People’s Republic of China
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, People’s Republic of China
- Xinjiang Key Laboratory of Neurological Disorder Research, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| |
Collapse
|
6
|
Rayff da Silva P, Diniz Nunes Pazos N, Karla Silva do Nascimento Gonzaga T, Cabral de Andrade J, Brito Monteiro Á, Caroline Ribeiro Portela A, Fernandes Oliveira Pires H, Dos Santos Maia M, Vilar da Fonsêca D, T Scotti M, Maria Barbosa Filho J, Pergentino de Sousa D, Francisco Bezerra Felipe C, Nóbrega de Almeida R, Scotti L. Anxiolytic and antidepressant-like effects of monoterpene tetrahydrolinalool and in silico approach of new potential targets. Curr Top Med Chem 2022; 22:1530-1552. [PMID: 35524664 DOI: 10.2174/1568026622666220505104726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION- The drugs currently available for treatment of anxiety and depression act through modulation of the neurotransmission systems involved in the neurobiology of the disorder, yet they of-ten present side effects, which can impair patient adherence to treatment. METHOD- This, has driven the search for new molecules with anxiolytic and antidepressant potential. Aromatic plants are rich in essential oils, and their chemical constituents, such as monoterpenes, are be-ing studied for these disorders. This study aims to evaluate the anxiolytic and antidepressant-like poten-tial of the monoterpene tetrahydrolinalool in in vivo animal models, and review pharmacological targets with validation through molecular docking. Male Swiss mice (Mus musculus) were treated with THL (37.5-600 mg kg-1 p.o.) and submitted to the elevated plus maze, open field, rota rod, and forced swim tests. In the elevated plus-maze, THL at doses of 37.5 and 75 mg kg-1 induced a significant increase in the percentage of entries (72.7 and 64.3% respectively), and lengths of stay (80.3 and 76.8% respective-ly) in the open arms tests. RESULT- These doses did not compromise locomotor activity or motor coordination in the animals. In the open field, rota rod tests, and the forced swimming model, treatment with THL significantly reduced immobility times at doses of 150, 300, and 600 mg kg-1, and by respective percentages of 69.3, 60.9 and 68.7%. CONCLUSION- In molecular docking assay, which investigated potential targets, THL presented sat-isfactory energy values for: nNOs, SGC, IL-6, 5-HT1A, NMDAr, and D1. These demonstrate the po-tential of THL (a derivative of natural origin) in in vivo and in silico models, making it a drug candidate.
Collapse
Affiliation(s)
- Pablo Rayff da Silva
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Natalia Diniz Nunes Pazos
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | | | - Jéssica Cabral de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Álefe Brito Monteiro
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Anne Caroline Ribeiro Portela
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Hugo Fernandes Oliveira Pires
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Mayara Dos Santos Maia
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Diogo Vilar da Fonsêca
- Collegiate of Medicine, Federal University of São Francisco Valley, 48607-190, Rua Aurora, S/N, Bahia, Brazil
| | - Marcus T Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - José Maria Barbosa Filho
- Pharmaceutical Chemistry Laboratory, Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Brazil
| | - Damião Pergentino de Sousa
- Pharmaceutical Chemistry Laboratory, Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Brazil
| | - Cícero Francisco Bezerra Felipe
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Reinaldo Nóbrega de Almeida
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Luciana Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| |
Collapse
|
7
|
Sałaciak K, Pytka K. Biased agonism in drug discovery: Is there a future for biased 5-HT 1A receptor agonists in the treatment of neuropsychiatric diseases? Pharmacol Ther 2021; 227:107872. [PMID: 33905796 DOI: 10.1016/j.pharmthera.2021.107872] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Serotonin (5-HT) is one of the fundamental neurotransmitters that contribute to the information essential for an organism's normal, physiological function. Serotonin acts centrally and systemically. The 5-HT1A receptor is the most widespread serotonin receptor, and participates in many brain-related disorders, including anxiety, depression, and cognitive impairments. The 5-HT1A receptor can activate several different biochemical pathways and signals through both G protein-dependent and G protein-independent pathways. Preclinical experiments indicate that distinct signaling pathways in specific brain regions may be crucial for antidepressant-like, anxiolytic-like, and procognitive responses. Therefore, the development of new ligands that selectively target a particular signaling pathway(s) could open new possibilities for more effective and safer pharmacotherapy. This review discusses the current state of preclinical studies focusing on the concept of functional selectivity (biased agonism) regarding the 5-HT1A receptor and its role in antidepressant-like, anxiolytic-like, and procognitive regulation. Such work highlights not only the differential effects of targeted autoreceptors, vs. heteroreceptors, but also the importance of targeting specific downstream intracellular signaling processes, thereby enhancing favorable over unfavorable signaling activation.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| |
Collapse
|