1
|
Manoharan
Nair Sudha Kumari S, Thankappan Suryabai X. Sensing the Future-Frontiers in Biosensors: Exploring Classifications, Principles, and Recent Advances. ACS OMEGA 2024; 9:48918-48987. [PMID: 39713646 PMCID: PMC11656264 DOI: 10.1021/acsomega.4c07991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024]
Abstract
Biosensors are transforming healthcare by delivering swift, precise, and economical diagnostic solutions. These analytical instruments combine biological indicators with physical transducers to identify and quantify biomarkers, thereby improving illness detection, management, and patient surveillance. Biosensors are widely utilized in healthcare for the diagnosis of chronic and infectious diseases, tailored treatment, and real-time health monitoring. This thorough overview examines several categories of biosensors and their uses in the detection of numerous biomarkers, including glucose, proteins, nucleic acids, and infections. Biosensors are commonly classified based on the type of transducer employed or the specific biorecognition element utilized. This review introduces a novel classification based on substrate morphology, offering a comprehensive perspective on biosensor categorization. Considerable emphasis is placed on the advancement of point-of-care biosensors, facilitating decentralized diagnostics and alleviating the strain on centralized healthcare systems. Recent advancements in nanotechnology have significantly improved the sensitivity, selectivity, and downsizing of biosensors, rendering them more efficient and accessible. The study examines problems such as stability, reproducibility, and regulatory approval that must be addressed to enable the widespread implementation of biosensors in clinical environments. The study examines the amalgamation of biosensors with wearable devices and smartphones, emphasizing the prospects for ongoing health surveillance and individualized medical care. This viewpoint clarifies the distinct types of biosensors and their particular roles, together with recent developments in the "smart biosensor" sector, facilitated by artificial intelligence and the Internet of Medical Things (IoMT). This novel approach seeks to deliver a comprehensive evaluation of the present condition of biosensor technology in healthcare, recent developments, and prospective paths, emphasizing their significance in influencing the future of medical diagnostics and patient care.
Collapse
Affiliation(s)
- Sumitha Manoharan
Nair Sudha Kumari
- Centre for
Advanced Materials Research, Department of Physics, Government College for Women, Thiruvananthapuram, University of Kerala, Kerala 695014, India
| | - Xavier Thankappan Suryabai
- Centre for
Advanced Materials Research, Department of Physics, Government College for Women, Thiruvananthapuram, University of Kerala, Kerala 695014, India
| |
Collapse
|
2
|
Jin H, Ma Q, Dou T, Jin S, Jiang L. Raman Spectroscopy of Emulsions and Emulsion Chemistry. Crit Rev Anal Chem 2023; 54:3128-3140. [PMID: 37393560 DOI: 10.1080/10408347.2023.2228411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Emulsions are dispersed systems widely used in various industries. In recent years, Raman spectroscopy (RS), as a spectroscopic technique, has gained much attention for measuring and monitoring emulsions. In this review, we explore the use of RS on emulsion structures and emulsification, important reactions that use emulsions such as emulsion polymerization, catalysis and cascading reactions, as well as various applications of emulsions. We explore how RS is used in emulsions, reactions and applications. RS is a powerful and versatile tool for studying emulsions, but there are also challenges in using RS to monitor emulsion processes, especially if they are rapid or volatile. We also explore these challenges and difficulties, as well as possible designs that can be used to overcome them.
Collapse
Affiliation(s)
- Huaizhou Jin
- Key Laboratory of Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou, China
| | - Qifei Ma
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou China
- Key Lab of Zhejiang Province on Modern Measurement Technology and Instruments, Hangzhou, China
| | - Tingting Dou
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou China
- Key Lab of Zhejiang Province on Modern Measurement Technology and Instruments, Hangzhou, China
| | - Shangzhong Jin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou China
- Key Lab of Zhejiang Province on Modern Measurement Technology and Instruments, Hangzhou, China
| | - Li Jiang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou China
- Key Lab of Zhejiang Province on Modern Measurement Technology and Instruments, Hangzhou, China
| |
Collapse
|
3
|
Peis L, He G, Jost D, Rager G, Hackl R. Polarized tip-enhanced Raman spectroscopy at liquid He temperature in ultrahigh vacuum using an off-axis parabolic mirror. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:063701. [PMID: 37862477 DOI: 10.1063/5.0139667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/13/2023] [Indexed: 10/22/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS) combines inelastic light scattering well below the diffraction limit down to the nanometer range and scanning probe microscopy and, possibly, spectroscopy. In this way, topographic and spectroscopic as well as single- and two-particle information may simultaneously be collected. While single molecules can now be studied successfully, bulk solids are still not meaningfully accessible. It is the purpose of the work presented here to outline approaches toward this objective. We describe a home-built, liquid helium cooled, ultrahigh vacuum TERS. The setup is based on a scanning tunneling microscope and, as an innovation, an off-axis parabolic mirror having a high numerical aperture of ∼0.85 and a large working distance. The system is equipped with a fast load-lock chamber, a chamber for the in situ preparation of tips, substrates, and samples, and a TERS chamber. Base pressure and temperature in the TERS chamber were ∼3 × 10-11 mbar and 15 K, respectively. Polarization dependent tip-enhanced Raman spectra of the vibration modes of carbon nanotubes were successfully acquired at cryogenic temperature. The new features described here including very low pressure and temperature and the external access to the light polarizations, thus the selection rules, may pave the way toward the investigation of bulk and surface materials.
Collapse
Affiliation(s)
- L Peis
- Walther Meissner Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany
- School of Natural Sciences, Technische Universität München, 85748 Garching, Germany
- IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - G He
- Walther Meissner Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany
| | - D Jost
- Walther Meissner Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany
- School of Natural Sciences, Technische Universität München, 85748 Garching, Germany
| | - G Rager
- Walther Meissner Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany
- School of Natural Sciences, Technische Universität München, 85748 Garching, Germany
| | - R Hackl
- Walther Meissner Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany
- School of Natural Sciences, Technische Universität München, 85748 Garching, Germany
- IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| |
Collapse
|
4
|
Liu SH, Lin XM, Yang ZL, Wen BY, Zhang FL, Zhang YJ, Li JF. Label-free SERS strategy for rapid detection of capsaicin for identification of waste oils. Talanta 2022; 245:123488. [PMID: 35453096 DOI: 10.1016/j.talanta.2022.123488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 12/31/2022]
Abstract
Identification of waste oils is challenging in the field of food safety due to the lack of common markers and straightforward analytical methods. Herein, we developed a novel label-free surface-enhanced Raman spectroscopy (SERS) strategy to identify waste oils using Ag nanoparticles solution (Ag NPs sol.) as a SERS substrate to significantly enhance the Raman signal of capsaicin marker molecule usually contained in the waste oils. The enhanced signal was directly detected by a portable Raman spectrometer with the limit of detection (LOD) of 2.9 μg L-1 within 10 min. Concentration-dependent SERS investigation showed the linear relationship between the SERS signal intensity of the characteristic peaks and the concentrations of capsaicin in the range of 10-2500 μg L-1 and the correlation coefficient was 0.9895. Our findings show the sensitivity, accessibility, and reliability of this method for the rapid identification of waste oils and furthermore for the practical applications in the field of food safety.
Collapse
Affiliation(s)
- Sheng-Hong Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen, 361005, China
| | - Xiu-Mei Lin
- Department of Chemistry and Environment Science, Fujian Province University Key Laboratory of Analytical Science, Minnan Normal University, Zhangzhou, 363000, China
| | - Zhi-Lan Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen, 361005, China
| | - Bao-Ying Wen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen, 361005, China
| | - Fan-Li Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China.
| | - Yue-Jiao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen, 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen, 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| |
Collapse
|
5
|
Lee J, Tallarida N, Rios L, Ara Apkarian V. The Raman Spectrum of a Single Molecule on an Electrochemically Etched Silver Tip. APPLIED SPECTROSCOPY 2020; 74:1414-1422. [PMID: 32705875 DOI: 10.1177/0003702820949274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We recorded the Raman spectrum of a single azobenzene thiol molecule upon picking it up from an atomically flat gold surface, using an electrochemically etched silver tip, in an ultrahigh vacuum cryogenic scanning tunneling microscope. While suppressed at the junction, the stationary spectrum appeared once the molecule was transferred to the tip, with line intensities that increased by a factor of ∼5 as the tip was retracted from 1 nm to 161 nm. The effect, and the enhanced tensorial Raman spectrum was reproduced using an explicit treatment of the electromagnetic fields to identify a cis-azobenzene thiol molecule, adsorbed on a nanometric asperity removed from the tip apex, lying in the plane normal to the tip z-axis, with enhanced incident and radiative local fields polarized in the same plane. Tips decorated with asperities break the rules and give unique insights on Raman driven by cavity modes of a plasmonic junction.
Collapse
Affiliation(s)
- Joonhee Lee
- Department of Physics, University of Nevada, Reno, NV, USA
| | - Nicholas Tallarida
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Laura Rios
- Department of Physics, California Polytechnic State University, San Luis Obispo, CA, USA
| | - V Ara Apkarian
- Department of Chemistry, University of California, Irvine, CA, USA
| |
Collapse
|
6
|
Localized surface curvature artifacts in tip-enhanced nanospectroscopy imaging. Ultramicroscopy 2019; 206:112811. [PMID: 31310887 DOI: 10.1016/j.ultramic.2019.112811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/26/2019] [Accepted: 07/04/2019] [Indexed: 01/27/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS) allows the chemical analysis with a spatial resolution at the nanoscale, well beyond what the diffraction limit of light makes possible. We can further boost the TERS sensitivity by using a metallic substrate in the so-called gap-mode TERS. In this context, the goal of this work is to provide a generalized view of imaging artifacts in TERS and near-field imaging that occur due to tip-sample coupling. Contrary to the case of gap-mode with a flat substrate where the size of the enhanced region is smaller than the tip size when visualizing 3D nanostructures the tip convolution effect may broaden the observed dimensions due to the local curvature of the sample. This effect is particularly critical considering that most works on gap-mode TERS consider a perfectly flat substrate which is rarely the case in actual experiments. We investigate a range of substrates to evidence these geometrical effects and to obtain an understanding of the nanoscale curvature role in TERS imaging. Our experimental results are complemented by numerical simulations and an analogy with atomic force microscopy artifacts is introduced. As a result, this work offers a useful analysis of gap-mode TERS imaging with tip- and substrate-related artifacts furthering our understanding and the reliability of near-field optical nanospectroscopy.
Collapse
|
7
|
Dendisová M, Palounek D, Švecová M, Prokopec V. SERS study of fluorescent and non-fluorescent flavonoids: what is the role of excitation wavelength on SERS optical response? CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00757-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Hermann RJ, Gordon MJ. Nanoscale Optical Microscopy and Spectroscopy Using Near-Field Probes. Annu Rev Chem Biomol Eng 2018; 9:365-387. [DOI: 10.1146/annurev-chembioeng-060817-084150] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Light-matter interactions can provide a wealth of detailed information about the structural, electronic, optical, and chemical properties of materials through various excitation and scattering processes that occur over different length, energy, and timescales. Unfortunately, the wavelike nature of light limits the achievable spatial resolution for interrogation and imaging of materials to roughly λ/2 because of diffraction. Scanning near-field optical microscopy (SNOM) breaks this diffraction limit by coupling light to nanostructures that are specifically designed to manipulate, enhance, and/or extract optical signals from very small regions of space. Progress in the SNOM field over the past 30 years has led to the development of many methods to optically characterize materials at lateral spatial resolutions well below 100 nm. We review these exciting developments and demonstrate how SNOM is truly extending optical imaging and spectroscopy to the nanoscale.
Collapse
Affiliation(s)
- Richard J. Hermann
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA;,
| | - Michael J. Gordon
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA;,
| |
Collapse
|
9
|
Kolhatkar G, Merlen A, Zhang J, Dab C, Wallace GQ, Lagugné-Labarthet F, Ruediger A. Optical near-field mapping of plasmonic nanostructures prepared by nanosphere lithography. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:1536-1543. [PMID: 29977686 PMCID: PMC6009220 DOI: 10.3762/bjnano.9.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
We introduce a simple, fast, efficient and non-destructive method to study the optical near-field properties of plasmonic nanotriangles prepared by nanosphere lithography. Using a rectangular Fourier filter on the blurred signal together with filtering of the lower spatial frequencies to remove the far-field contribution, the pure near-field contributions of the optical images were extracted. We performed measurements using two excitation wavelengths (532.1 nm and 632.8 nm) and two different polarizations. After the processing of the optical images, the distribution of hot spots can be correlated with the topography of the structures, as indicated by the presence of brighter spots at the apexes of the nanostructures. This technique is validated by comparison of the results to numerical simulations, where agreement is obtained, thereby confirming the near-field nature of the images. Our approach does not require any advanced equipment and we suggest that it could be applied to any type of sample, while keeping the measurement times reasonably short.
Collapse
Affiliation(s)
- Gitanjali Kolhatkar
- Institut National de la Recherche Scientifique - Énergie, Matériaux, Télécommunications, 1650 Boulevard Lionel-Boulet, J3X 1S2, Varennes, Québec, Canada
| | - Alexandre Merlen
- IM2NP, UMR CNRS 7334, Aix Marseille Université et Université de Toulon, Site de l’Université de Toulon, 83957 La Garde Cedex, France
- Institut Fresnel UMR 7249, Aix-Marseille Université, CNRS, École Centrale de Marseille, 13013 Marseille, France
| | - Jiawei Zhang
- Institut National de la Recherche Scientifique - Énergie, Matériaux, Télécommunications, 1650 Boulevard Lionel-Boulet, J3X 1S2, Varennes, Québec, Canada
| | - Chahinez Dab
- Institut National de la Recherche Scientifique - Énergie, Matériaux, Télécommunications, 1650 Boulevard Lionel-Boulet, J3X 1S2, Varennes, Québec, Canada
| | - Gregory Q Wallace
- Western University (The University of Western Ontario), Chemistry Department and Centre for Materials and Biomaterials, 1151 Richmond Street, London, ON, N6A5B7, Canada
| | - François Lagugné-Labarthet
- Western University (The University of Western Ontario), Chemistry Department and Centre for Materials and Biomaterials, 1151 Richmond Street, London, ON, N6A5B7, Canada
| | - Andreas Ruediger
- Institut National de la Recherche Scientifique - Énergie, Matériaux, Télécommunications, 1650 Boulevard Lionel-Boulet, J3X 1S2, Varennes, Québec, Canada
| |
Collapse
|
10
|
Sheng S, Li W, Gou J, Cheng P, Chen L, Wu K. Low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy combined with molecular beam epitaxy for in situ two-dimensional materials' studies. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:053107. [PMID: 29864859 DOI: 10.1063/1.5019802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS), which combines scanning probe microscopy with the Raman spectroscopy, is capable to access the local structure and chemical information simultaneously. However, the application of ambient TERS is limited by the unstable and poorly controllable experimental conditions. Here, we designed a high performance TERS system based on a low-temperature ultrahigh-vacuum scanning tunneling microscope (LT-UHV-STM) and combined with a molecular beam epitaxy (MBE) system. It can be used for growing two-dimensional (2D) materials and for in situ STM and TERS characterization. Using a 2D silicene sheet on the Ag(111) surface as a model system, we achieved an unprecedented 109 Raman single enhancement factor in combination with a TERS spatial resolution down to 0.5 nm. The results show that TERS combined with a MBE system can be a powerful tool to study low dimensional materials and surface science.
Collapse
Affiliation(s)
- Shaoxiang Sheng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenbin Li
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian Gou
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peng Cheng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lan Chen
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Kehui Wu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Kolhatkar G, Plathier J, Pignolet A, Ruediger A. Effect of the gold crystallinity on the enhanced luminescence signal of scanning probe tips in apertureless near-field optical microscopy. OPTICS EXPRESS 2017; 25:25929-25937. [PMID: 29041255 DOI: 10.1364/oe.25.025929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
The effect of gold tip crystallinity on their spectral amplification characteristics, monitored through the luminescence enhanced by surface plasmon resonance (SPR), is investigated experimentally. As the tip radius increases, the grains composing polycrystalline tips become larger, resulting in a blueshift of the emission while a redshift of the SPR was predicted for monocrystalline gold. This reveals that the effect of the grain size, a parameter that has not been considered so far, is dominant over that of the tip radius. This study is significant to apertureless scanning near-field optical microscopy, where the gold tip emission defines the spectral antenna range.
Collapse
|
12
|
Paschalis EP, Gamsjaeger S, Klaushofer K. Vibrational spectroscopic techniques to assess bone quality. Osteoporos Int 2017; 28:2275-2291. [PMID: 28378291 DOI: 10.1007/s00198-017-4019-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/27/2017] [Indexed: 12/18/2022]
Abstract
Although musculoskeletal diseases such as osteoporosis are diagnosed and treatment outcome is evaluated based mainly on routine clinical outcomes of bone mineral density (BMD) by DXA and biochemical markers, it is recognized that these two indicators, as valuable as they have proven to be in the everyday clinical practice, do not fully account for manifested bone strength. Thus, the term bone quality was introduced, to complement considerations based on bone turnover rates and BMD. Bone quality is an "umbrella" term that incorporates the structural and material/compositional characteristics of bone tissue. Vibrational spectroscopic techniques such as Fourier transform infrared microspectroscopy (FTIRM) and imaging (FTIRI), and Raman spectroscopy, are suitable analytical tools for the determination of bone quality as they provide simultaneous, quantitative, and qualitative information on all main bone tissue components (mineral, organic matrix, tissue water), in a spatially resolved manner. Moreover, the results of such analyses may be readily combined with the outcomes of other techniques such as histology/histomorphometry, small angle X-ray scattering, quantitative backscattered electron imaging, and nanoindentation.
Collapse
Affiliation(s)
- E P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, 1140, Vienna, Austria.
| | - S Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, 1140, Vienna, Austria
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, 1140, Vienna, Austria
| |
Collapse
|
13
|
Pozzi EA, Goubert G, Chiang N, Jiang N, Chapman CT, McAnally MO, Henry AI, Seideman T, Schatz GC, Hersam MC, Duyne RPV. Ultrahigh-Vacuum Tip-Enhanced Raman Spectroscopy. Chem Rev 2016; 117:4961-4982. [DOI: 10.1021/acs.chemrev.6b00343] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | - Nan Jiang
- Department
of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Tip-enhanced Raman spectroscopy (TERS), a combination of Raman spectroscopy and apertureless near-field scanning optical microscopy using a metallic tip which resonates with the local mode of the surface plasmon, can provide a high-sensitive and high-spatial-resolution optical analytical approach. The basic principle of TERS, common experimental setups, various SPM technologies, and excitation/collection configurations are introduced as well as recent research progress with respect to TERS.
Collapse
Affiliation(s)
- Zhenglong Zhang
- School of Mathematics and Physics, University of Science and Technology Beijing , Beijing, 100083, People's Republic of China.,School of Physics and Information Technology, Shaanxi Normal University , Xi'an, 710062, People's Republic of China.,Leibniz Institute of Photonic Technology , Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Shaoxiang Sheng
- Beijing National Laboratory for Condensed Matter Physics, Beijing Key Laboratory for Nanomaterials and Nanodevices, Institute of Physics, Chinese Academy of Sciences , Beijing, 100190, People's Republic of China
| | - Rongming Wang
- School of Mathematics and Physics, University of Science and Technology Beijing , Beijing, 100083, People's Republic of China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing , Beijing, 100083, People's Republic of China.,Beijing National Laboratory for Condensed Matter Physics, Beijing Key Laboratory for Nanomaterials and Nanodevices, Institute of Physics, Chinese Academy of Sciences , Beijing, 100190, People's Republic of China
| |
Collapse
|
15
|
Chen BQ, Zhang C, Li J, Li ZY, Xia Y. On the critical role of Rayleigh scattering in single-molecule surface-enhanced Raman scattering via a plasmonic nanogap. NANOSCALE 2016; 8:15730-15736. [PMID: 27526632 DOI: 10.1039/c6nr04574j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electromagnetic and chemical enhancement mechanisms are commonly used to account for single-molecule surface-enhanced Raman scattering (SM-SERS). Due to many practical limitations, however, the overall enhancement factor summed up from these two mechanisms is typically 5-6 orders of magnitude below the level of 10(14)-10(15) required for SM-SERS. Here, we demonstrate that the multiple elastic Rayleigh scattering of a molecule could play a critical role in further enhancing the Raman signal, when the molecule is trapped in a 2 nm gap between two Ag nanoparticles, pushing the overall enhancement factor close to the level needed for SM-SERS. As a universal physical process for all molecules interacting with light, we believe that Rayleigh scattering plays a pivotal and as yet unrecognized role in SERS, in particular, for enabling single-molecule sensitivity.
Collapse
Affiliation(s)
- Bao-Qin Chen
- College of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China and Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190, China.
| | - Chao Zhang
- Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190, China.
| | - Jiafang Li
- Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190, China.
| | - Zhi-Yuan Li
- College of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China and Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190, China.
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
16
|
Hartman T, Wondergem C, Kumar N, van den
Berg A, Weckhuysen BM. Surface- and Tip-Enhanced Raman Spectroscopy in Catalysis. J Phys Chem Lett 2016; 7:1570-84. [PMID: 27075515 PMCID: PMC4902183 DOI: 10.1021/acs.jpclett.6b00147] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/31/2016] [Indexed: 05/19/2023]
Abstract
Surface- and tip-enhanced Raman spectroscopy (SERS and TERS) techniques exhibit highly localized chemical sensitivity, making them ideal for studying chemical reactions, including processes at catalytic surfaces. Catalyst structures, adsorbates, and reaction intermediates can be observed in low quantities at hot spots where electromagnetic fields are the strongest, providing ample opportunities to elucidate reaction mechanisms. Moreover, under ideal measurement conditions, it can even be used to trigger chemical reactions. However, factors such as substrate instability and insufficient signal enhancement still limit the applicability of SERS and TERS in the field of catalysis. By the use of sophisticated colloidal synthesis methods and advanced techniques, such as shell-isolated nanoparticle-enhanced Raman spectroscopy, these challenges could be overcome.
Collapse
Affiliation(s)
- Thomas Hartman
- Faculty
of Science, Debye Institute for
Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Caterina
S. Wondergem
- Faculty
of Science, Debye Institute for
Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Naresh Kumar
- Faculty
of Science, Debye Institute for
Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- National
Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, U.K.
| | - Albert van den
Berg
- BIOS
Lab on a Chip Group and MESA+ Institute for Nanotechnology, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Bert M. Weckhuysen
- Faculty
of Science, Debye Institute for
Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- E-mail:
| |
Collapse
|
17
|
Tallarida N, Rios L, Apkarian VA, Lee J. Isomerization of One Molecule Observed through Tip-Enhanced Raman Spectroscopy. NANO LETTERS 2015; 15:6386-6394. [PMID: 26348440 DOI: 10.1021/acs.nanolett.5b01543] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
While exploring photoisomerization of azobenzyl thiols (ABT) adsorbed on Au(111), through joint scanning tunneling microscopy (STM) and tip-enhanced Raman scattering (TERS) studies, the reversible photoisomerization of one molecule is captured in TERS trajectories. The unique signature of single molecule isomerization is observed in the form of anticorrelated flip-flops between two distinct spectra with two discrete, on- and off-levels. The apparently heterogeneously photocatalyzed reaction is assigned to cis-trans isomerization of an outlier, which is chemisorbed on the silver tip of the STM. Otherwise, the ensemble of ABT molecules that lie flat on Au(111) remain strongly coupled to the surface, excluding the possibility of photoisomerization or detection through TERS.
Collapse
Affiliation(s)
- Nicholas Tallarida
- Department of Chemistry, University of California, Irvine , Irvine, California 92617-2025, United States
| | - Laura Rios
- Department of Chemistry, University of California, Irvine , Irvine, California 92617-2025, United States
| | - Vartkess A Apkarian
- Department of Chemistry, University of California, Irvine , Irvine, California 92617-2025, United States
| | - Joonhee Lee
- Department of Chemistry, University of California, Irvine , Irvine, California 92617-2025, United States
| |
Collapse
|
18
|
Zhang Z, Deckert-Gaudig T, Deckert V. Label-free monitoring of plasmonic catalysis on the nanoscale. Analyst 2015; 140:4325-35. [PMID: 26000344 DOI: 10.1039/c5an00630a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plasmonics is the description of specific light matter interactions of metallic structures. In general the size of such structures is well in the nanometer regime and also determines such specific characteristics as color, field confinement etc. Plasmon-induced hot electrons play a vital role in so-called plasmonic catalysis, a field that has recently attracted attention as a new reaction platform. Current reports introduce such nanoscale catalysis as an effective approach to concentrate the energy of visible light and direct it to adsorbed molecules, thereby increasing the chemical reaction rate, and controlling the reaction selectivity. In this review, we present various plasmon-catalyzed reactions specifically monitored with Raman spectroscopy, namely surface-enhanced Raman scattering (SERS), remote SERS (Re-SERS) and tip-enhanced Raman scattering (TERS). These techniques utilize the signal enhancing effect of the metal nanoparticles. However, at the same time they can be used to control the actual reactivity. In the first part, the mechanism of plasmonic catalysis is introduced. Then it is shown how catalytic reactions can be spectroscopically investigated far beyond the diffraction limit using TERS. Finally, the sensitivity of the methods is discussed.
Collapse
Affiliation(s)
- Zhenglong Zhang
- Leibniz Institute of Photonic Technology - IPHT, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | | | | |
Collapse
|
19
|
Zheng X, Zong C, Xu M, Wang X, Ren B. Raman Imaging from Microscopy to Nanoscopy, and to Macroscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3395-3406. [PMID: 25873340 DOI: 10.1002/smll.201403804] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/08/2015] [Indexed: 06/04/2023]
Abstract
Raman spectroscopy can not only provide intrinsic fingerprint information about a sample, but also utilize the merits of the narrow bandwidth and low background of Raman spectra, offering itself as a promising multiplex analytical technique. Raman microscopy has become particularly attractive recently because it has demonstrated itself as an important imaging technique for various samples, from biological samples and chemical systems to industrially important silicon-based wafers. In this Concept article, some of the most recent advances in Raman imaging techniques are critically reviewed, and the advantages and problems associated with the current techniques are discussed. Particular emphasis is placed on its future directions, from both the technical and application sides.
Collapse
Affiliation(s)
- Xiaoshan Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Cheng Zong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mengxi Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
20
|
|
21
|
Suzuki S. Development of a Novel Surface Elemental Analysis Methodology: X-ray-Aided Noncontact Atomic Force Microscopy (XANAM). BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2015. [DOI: 10.1246/bcsj.20140286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shushi Suzuki
- Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University
| |
Collapse
|
22
|
Merlen A, Chaigneau M, Coussan S. Vibrational modes of aminothiophenol: a TERS and DFT study. Phys Chem Chem Phys 2015; 17:19134-8. [DOI: 10.1039/c5cp01579k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report Tip Enhanced Raman Spectroscopy (TERS) mapping and Density Functional (DFT) calculations of aminothiophenol (ATP) grafted on a gold surface.
Collapse
Affiliation(s)
- A. Merlen
- IM2NP
- UMR-CNRS 7334
- Site de l'Université de Toulon
- 83957 La Garde Cedex
- France
| | - M. Chaigneau
- LPICM
- UMR-CNRS 7647
- Ecole Polytechnique
- Palaiseau
- France
| | - S. Coussan
- Laboratoire Physique des Interactions Ioniques et Moléculaires
- UMR 7345-CNRS
- Aix-Marseille Université
- Centre St-Jérôme
- 13397 Marseille Cedex 20
| |
Collapse
|
23
|
Gamsjaeger S, Mendelsohn R, Boskey AL, Gourion-Arsiquaud S, Klaushofer K, Paschalis EP. Vibrational spectroscopic imaging for the evaluation of matrix and mineral chemistry. Curr Osteoporos Rep 2014; 12:454-64. [PMID: 25240579 PMCID: PMC4638121 DOI: 10.1007/s11914-014-0238-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Metabolic bone diseases manifesting fragility fractures (such as osteoporosis) are routinely diagnosed based on bone mineral density (BMD) measurements, and the effect of various therapies also evaluated based on the same outcome. Although useful, it is well recognized that this metric does not fully account for either fracture incidence or the effect of various therapies on fracture incidence, thus, the emergence of bone quality as a contributing factor in the determination of bone strength. Infrared and Raman vibrational spectroscopic techniques are particularly well-suited for the determination of bone quality as they provide quantitative and qualitative information of the mineral and organic matrix bone components, simultaneously. Through the use of microspectroscopic techniques, this information is available in a spatially resolved manner, thus, the outcomes may be easily correlated with outcomes from techniques such as histology, histomorphometry, and nanoindentation, linking metabolic status with material properties.
Collapse
Affiliation(s)
- S. Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital, of WGKK and AUVA Trauma Centre Meidling, 1st Medical, Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | | | | | | | - K. Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital, of WGKK and AUVA Trauma Centre Meidling, 1st Medical, Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - E. P. Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital, of WGKK and AUVA Trauma Centre Meidling, 1st Medical, Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria,
| |
Collapse
|
24
|
|
25
|
|
26
|
Chen L, Zhai T, Zhang X, Unger C, Koch J, Chichkov BN, Klar PJ. Polarization-dependent SERS effects of laser-generated sub-100 nm antenna structures. NANOTECHNOLOGY 2014; 25:265302. [PMID: 24915959 DOI: 10.1088/0957-4484/25/26/265302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Sub-100 nm antenna arrays consisting of a star-like ridge or dome-like structures with needles in their centers are prepared in thin gold films on glass substrates using femtosecond laser pulses. The needles can be bent mechanically to be horizontally aligned to the substrate surface. Controlled variation of the pulse energy allows one to obtain nanostructures of different defined morphologies. These arrays of nanostructures are covered with a thin homogeneous layer of rhodamine molecules. Raman spectra using linearly polarized laser light of 632.8 nm are taken with the laser spot centered on individual nanostructures and at positions on the unstructured film. The average Raman enhancement within the laser spot focused onto a nanostructure is two orders of magnitude higher than on the unstructured film. The nanostructures with bent needles exhibit a polarization dependence of the SERS effect, i.e., typically the enhancement is larger by about a factor of two for excitation light polarized parallel to the needle direction than for the perpendicular case. The enhancement factor of the star-like ridge structures with needles is analyzed by the finite-element method, which agrees with the experiment. We show that the variation of the SERS activity of almost similar structures arises from the inherent randomness of the hot spots created in the fabrication process. Nevertheless, these antenna structures may be useful as elements in novel SERS devices as they can be accurately positioned on a device using a cheap fabrication process compatible with microfabrication technology.
Collapse
Affiliation(s)
- Limei Chen
- I. Institute of Physics, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 16, Giessen, D-35392, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Schlücker S. Oberflächenverstärkte Raman-Spektroskopie: Konzepte und chemische Anwendungen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201205748] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Schlücker S. Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications. Angew Chem Int Ed Engl 2014; 53:4756-95. [DOI: 10.1002/anie.201205748] [Citation(s) in RCA: 1634] [Impact Index Per Article: 148.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/03/2012] [Indexed: 01/10/2023]
|
29
|
Abstract
Super-resolution imaging defeats the diffraction-limit of light, allowing the spatial origin and intensity of SERS signals to be determined with <5 nm resolution.
Collapse
|
30
|
Ould Agha Y, Demichel O, Girard C, Bouhelier A, des Francs GC. NEAR-FIELD PROPERTIES OF PLASMONIC NANOSTRUCTURES WITH HIGH ASPECT RATIO. ACTA ACUST UNITED AC 2014. [DOI: 10.2528/pier14012904] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Derom S, Berthelot A, Pillonnet A, Benamara O, Jurdyc AM, Girard C, Colas des Francs G. Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles. NANOTECHNOLOGY 2013; 24:495704. [PMID: 24231223 DOI: 10.1088/0957-4484/24/49/495704] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We theoretically and numerically investigate metal enhanced fluorescence of plasmonic core-shell nanoparticles doped with rare earth (RE) ions. Particle shape and size are engineered to maximize the average enhancement factor (AEF) of the overall doped shell. We show that the highest enhancement (11 in the visible and 7 in the near-infrared) is achieved by tuning either the dipolar or the quadrupolar particle resonance to the rare earth ion's excitation wavelength. Additionally, the calculated AEFs are compared to experimental data reported in the literature, obtained in similar conditions (plasmon mediated enhancement) or when a metal-RE energy transfer mechanism is involved.
Collapse
Affiliation(s)
- S Derom
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université de Bourgogne, 9 Avenue A. Savary, BP 47 870, F-21078 Dijon, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Surface enhanced spectroscopy encompasses a broad field of linear and nonlinear optical techniques that arose with the discovery of the surface-enhanced Raman scattering (SERS) effect. SERS enabled ultrasensitive and single molecule detection with molecular fingerprint specificity, opening the door for a large variety of chemical sensing applications. Basically, from the beginning it was realized that the necessary condition for SERS to be observed was the presence of a metallic nanostructure, and with this condition, the optical enhancement found a home in the field of plasmonics. Although plasmonic practitioners claim that SERS is "the most spectacular application of plasmonics", perhaps it is more appropriate to say that the spectacular development of plasmonics is due to SERS. Here is a brief recollection from surface enhanced spectroscopy to plasmon enhanced spectroscopy.
Collapse
Affiliation(s)
- Ricardo F Aroca
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada.
| |
Collapse
|
33
|
Willets KA. New Tools for Investigating Electromagnetic Hot Spots in Single‐Molecule Surface‐Enhanced Raman Scattering. Chemphyschem 2013; 14:3186-95. [DOI: 10.1002/cphc.201300297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/01/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Katherine A. Willets
- Department of Chemistry, University of Texas at Austin, Welch Hall 1.202,105 E 24th ST, A5300, Austin TX 78712 (USA), Fax: (+1) 512‐471‐0985
| |
Collapse
|
34
|
Wackenhut F, Failla AV, Meixner AJ. Sensing dielectric media on the nanoscale with freely oriented gold nanorods. Phys Chem Chem Phys 2013; 15:5407-14. [PMID: 23420177 DOI: 10.1039/c3cp43988g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work we demonstrate that freely oriented individual gold nanorods (GNRs) can be used for sensing variations of the refractive index at the interface between two dielectric media. Both the elastic scattering and the luminescence signal of individual GNRs have been used to characterize the dielectric medium surrounding the particles. The scattering signal depends strongly on the distance from the focusing interface and the refractive index mismatch at the focusing interface, while the luminescence signal is only influenced by the last parameter. We used radially and azimuthally polarized light as an excitation source to directly determine the orientation of individual gold nanorods embedded within a dielectric medium.
Collapse
Affiliation(s)
- Frank Wackenhut
- Eberhard Karls University Tübingen, Institute of Physical and Theoretical Chemistry, 72076 Tübingen, Germany
| | | | | |
Collapse
|
35
|
Jackson G. Editorial – Topical Review. Mol Phys 2013. [DOI: 10.1080/00268976.2013.804281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Wang Y, Irudayaraj J. Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology. Philos Trans R Soc Lond B Biol Sci 2012; 368:20120026. [PMID: 23267180 DOI: 10.1098/rstb.2012.0026] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Single-molecule (SM) spectroscopy has been an exciting area of research offering significant promise and hope in the field of sensor development to detect targets at ultra-low levels down to SM resolution. To the experts and developers in the field of surface-enhanced Raman spectroscopy (SERS), this has often been a challenge and a significant opportunity for exploration. Needless to say, the opportunities and excitement of this multidisciplinary area impacts span the fields of physics, chemistry and engineering, along with a significant thrust in applications constituting areas in medicine, biology, environment and agriculture among others. In this review, we will attempt to provide a quick snapshot of the basics of SM-SERS, nanostructures and devices that can enable SM Raman measurement. We will conclude with a discussion on SERS implications in biomedical sciences.
Collapse
Affiliation(s)
- Yuling Wang
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
37
|
Han XX, Ozaki Y, Zhao B. Label-free detection in biological applications of surface-enhanced Raman scattering. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2012.05.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
38
|
Advances in TERS (tip-enhanced Raman scattering) for biochemical applications. Biochem Soc Trans 2012; 40:609-14. [DOI: 10.1042/bst20120033] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TERS (tip-enhanced Raman scattering) provides exceptional spatial resolution without any need for labelling and has become a versatile tool for biochemical analysis. Two examples will be highlighted here. On the one hand, TERS measurements on a single mitochondrion are discussed, monitoring the oxidation state of the central iron ion of cytochrome c, leading towards a single protein characterization scheme in a natural environment. On the other hand, a novel approach of single molecule analysis is discussed, again based on TERS experiments on DNA and RNA, further highlighting the resolution capabilities of this method.
Collapse
|
39
|
Deckert-Gaudig T, Böhme R, Freier E, Sebesta A, Merkendorf T, Popp J, Gerwert K, Deckert V. Nanoscale distinction of membrane patches--a TERS study of Halobacterium salinarum. JOURNAL OF BIOPHOTONICS 2012; 5:582-91. [PMID: 22371320 DOI: 10.1002/jbio.201100131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 05/25/2023]
Abstract
The structural organization of cellular membranes has an essential influence on their functionality. The membrane surfaces currently are considered to consist of various distinct patches, which play an important role in many processes, however, not all parameters such as size and distribution are fully determined. In this study, purple membrane (PM) patches isolated from Halobacterium salinarum were investigated in a first step using TERS (tip-enhanced Raman spectroscopy). The characteristic Raman modes of the resonantly enhanced component of the purple membrane lattice, the retinal moiety of bacteriorhodopsin, were found to be suitable as PM markers. In a subsequent experiment a single Halobacterium salinarum was investigated with TERS. By means of the PM marker bands it was feasible to identify and localize PM patches on the bacterial surface. The size of these areas was determined to be a few hundred nanometers.
Collapse
Affiliation(s)
- Tanja Deckert-Gaudig
- Institute of Photonic Technology-IPHT, Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Nicklaus M, Nauenheim C, Krayev A, Gavrilyuk V, Belyaev A, Ruediger A. Note: tip enhanced Raman spectroscopy with objective scanner on opaque samples. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:066102. [PMID: 22755668 DOI: 10.1063/1.4725528] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report on 14 nm lateral resolution in tip-enhanced Raman spectroscopy mapping of carbon nanotubes with an experimental setup that has been designed for the analysis of opaque samples in confocal side-access through a novel piezo-driven objective scanner. The objective scanner allows for fast and stable laser-to-tip alignment and for the adjustment of the focus position with sub-wavelength precision to optimize the excitation of surface plasmons. It also offers the additional benefit of imaging the near-field generated Raman scattering at the gap between tip and sample as direct control of the tip enhancement.
Collapse
Affiliation(s)
- Mischa Nicklaus
- Laboratory of Ferroelectric Nanoelectronics, INRS-EMT, 1650 Boul. Lionel-Boulet, Varennes J3X1S2 Québec, Canada.
| | | | | | | | | | | |
Collapse
|
41
|
Weidner T, Dubey M, Breen NF, Ash J, Baio JE, Jaye C, Fischer DA, Drobny GP, Castner DG. Direct observation of phenylalanine orientations in statherin bound to hydroxyapatite surfaces. J Am Chem Soc 2012; 134:8750-3. [PMID: 22563672 DOI: 10.1021/ja301711w] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extracellular biomineralization proteins such as salivary statherin control the growth of hydroxyapatite (HAP), the principal component of teeth and bones. Despite the important role that statherin plays in the regulation of hard tissue formation in humans, the surface recognition mechanisms involved are poorly understood. The protein-surface interaction likely involves very specific contacts between the surface atoms and the key protein side chains. This study demonstrates for the first time the power of combining near-edge X-ray absorption fine structure (NEXAFS) spectroscopy with element labeling to quantify the orientation of individual side chains. In this work, the 15 amino acid N-terminal binding domain of statherin has been adsorbed onto HAP surfaces, and the orientations of phenylalanine rings F7 and F14 have been determined using NEXAFS analysis and fluorine labels at individual phenylalanine sites. The NEXAFS-derived phenylalanine tilt angles have been verified with sum frequency generation spectroscopy.
Collapse
Affiliation(s)
- Tobias Weidner
- National ESCA and Surface Analysis Center for Biomedical Problems, Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zeiri L, Rechav K, Porat Z, Zeiri Y. Silver nanoparticles deposited on porous silicon as a surface-enhanced Raman scattering (SERS) active substrate. APPLIED SPECTROSCOPY 2012; 66:294-299. [PMID: 22449306 DOI: 10.1366/11-06476] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Silver nanoparticles were deposited spontaneously from their aqueous solution on a porous silicon (PS) layer. The PS acts both as a reducing agent and as the substrate on which the nanoparticles nucleate. At higher silver ion concentrations, layers of nanoparticle aggregates were formed on the PS surface. The morphology of the metallic layers and their SERS activity were influenced by the concentrations of the silver ion solutions used for deposition. Raman measurements of rhodamine 6G (R6G) and crystal violet (CV) adsorbed on these surfaces showed remarkable enhancement of up to about 10 orders of magnitude.
Collapse
Affiliation(s)
- Leila Zeiri
- Department of Chemistry, Ben-Gurion University, Be'er-Sheva 84105, Israel
| | | | | | | |
Collapse
|
43
|
Pettinger B, Schambach P, Villagómez CJ, Scott N. Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules. Annu Rev Phys Chem 2012; 63:379-99. [PMID: 22263910 DOI: 10.1146/annurev-physchem-032511-143807] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tip-enhanced Raman spectroscopy (TERS) is a very powerful variant of surface-enhanced Raman spectroscopy (SERS). In a sense, TERS overcomes most of the drawbacks of SERS but keeps its advantages, such as its high sensitivity. TERS offers the additional advantages of high spatial resolution, much beyond the Abbe limit, and the possibility to correlate TER and other scanning probe microscope images, i.e., to correlate topographic and chemical data. TERS finds application in a number of fields, such as surface science, material science, and biology. Single-molecule TERS has been observed even for TERS enhancements of "only" 10(6)-10(7). In this review, TERS enhancements are discussed in some detail, including a condensed overview of measured contrasts and estimated total enhancements. Finally, recent developments for TERS under ultrahigh vacuum conditions are presented, including TERS on a C(60) island with a diameter of a few tens of nanometers, deposited on a smooth Au(111) surface.
Collapse
Affiliation(s)
- Bruno Pettinger
- Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin, Germany.
| | | | | | | |
Collapse
|
44
|
Meyer SA, Auguié B, Le Ru EC, Etchegoin PG. Combined SPR and SERS microscopy in the Kretschmann configuration. J Phys Chem A 2012; 116:1000-7. [PMID: 22175443 DOI: 10.1021/jp2107507] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel hybrid spectroscopic technique is proposed, combining surface plasmon resonance (SPR) with surface-enhanced Raman scattering (SERS) microscopy. A standard Raman microscope is modified to accommodate the excitation of surface plasmon-polaritons (SPPs) on flat metallic surfaces in the Kretschmann configuration, while retaining the capabilities of Raman microscopy. The excitation of SPPs is performed as in standard SPR-microscopy; namely, a beam with TM-polarization traverses off-axis a high numerical aperture oil immersion objective, illuminating at an angle the metallic film from the (glass) substrate side. The same objective is used to collect the full Kretschmann cone containing the SERS emission on the substrate side. The angular dispersion of the plasmon resonance is measured in reflectivity for different coupling conditions and, simultaneously, SERS spectra are recorded from Nile Blue (NB) molecules adsorbed onto the surface. A trade-off is identified between the conditions of optimum coupling to SPPs and the spot size (which is related to the spatial resolution). This technique opens new horizons for SERS microscopy with uniform enhancement on flat surfaces.
Collapse
Affiliation(s)
- Stefan A Meyer
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | | | | | |
Collapse
|
45
|
Gözen I, Jesorka A. Instrumental Methods to Characterize Molecular Phospholipid Films on Solid Supports. Anal Chem 2012; 84:822-38. [DOI: 10.1021/ac203126f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Irep Gözen
- Department of Chemical and Biological
Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Göteborg, Sweden
| | - Aldo Jesorka
- Department of Chemical and Biological
Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Göteborg, Sweden
| |
Collapse
|
46
|
Abstract
A general overview of the field of single-molecule (SM) surface-enhanced Raman spectroscopy (SERS) as it stands today is provided. After years of debates on the basic aspects of SM-SERS, the technique is emerging as a well-established subfield of spectroscopy and SERS. SM-SERS is allowing the observation of subtle spectroscopic phenomena that were not hitherto accessible. Examples of the latter are natural isotopic substitutions in single molecules, observation of the true homogeneous broadening of Raman peaks, Raman excitation profiles of individual molecules, and SM electrochemistry. With background examples of the contributions produced by our group, properly interleaved with results by other practitioners in the field, we present some of the latest developments and promising new leads in this new field of spectroscopy.
Collapse
Affiliation(s)
- Eric C Le Ru
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, New Zealand.
| | | |
Collapse
|
47
|
Cialla D, März A, Böhme R, Theil F, Weber K, Schmitt M, Popp J. Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 2011; 403:27-54. [PMID: 22205182 DOI: 10.1007/s00216-011-5631-x] [Citation(s) in RCA: 431] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/10/2011] [Accepted: 12/01/2011] [Indexed: 12/12/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) combines molecular fingerprint specificity with potential single-molecule sensitivity. Therefore, the SERS technique is an attractive tool for sensing molecules in trace amounts within the field of chemical and biochemical analytics. Since SERS is an ongoing topic, which can be illustrated by the increased annual number of publications within the last few years, this review reflects the progress and trends in SERS research in approximately the last three years. The main reason why the SERS technique has not been established as a routine analytic technique, despite its high specificity and sensitivity, is due to the low reproducibility of the SERS signal. Thus, this review is dominated by the discussion of the various concepts for generating powerful, reproducible, SERS-active surfaces. Furthermore, the limit of sensitivity in SERS is introduced in the context of single-molecule spectroscopy and the calculation of the 'real' enhancement factor. In order to shed more light onto the underlying molecular processes of SERS, the theoretical description of SERS spectra is also a growing research field and will be summarized here. In addition, the recording of SERS spectra is affected by a number of parameters, such as laser power, integration time, and analyte concentration. To benefit from synergies, SERS is combined with other methods, such as scanning probe microscopy and microfluidics, which illustrates the broad applications of this powerful technique.
Collapse
Affiliation(s)
- Dana Cialla
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Head-Gordon M. Topical Review Introduction. Mol Phys 2011. [DOI: 10.1080/00268976.2011.620325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
49
|
Le Ru EC, Grand J, Sow I, Somerville WRC, Etchegoin PG, Treguer-Delapierre M, Charron G, Félidj N, Lévi G, Aubard J. A scheme for detecting every single target molecule with surface-enhanced Raman spectroscopy. NANO LETTERS 2011; 11:5013-9. [PMID: 21985399 DOI: 10.1021/nl2030344] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is now a well-established technique for the detection, under appropriate conditions, of single molecules (SM) adsorbed on metallic nanostructures. However, because of the large variations of the SERS enhancement factor on the surface, only molecules located at the positions of highest enhancement, so-called hot-spots, can be detected at the single-molecule level. As a result, in all SM-SERS studies so far only a small fraction, typically less than 1%, of molecules are actually observed. This complicates the analysis of such experiments and means that trace detection via SERS can in principle still be vastly improved. Here we propose a simple scheme, based on selective adsorption of the target analyte at the SERS hot-spots only, that allows in principle detection of every single target molecule in solution. We moreover provide a general experimental methodology, based on the comparison between average and maximum (single molecule) SERS enhancement factors, to verify the efficiency of our approach. The concepts and tools introduced in this work can readily be applied to other SERS systems aiming for detection of every single target molecule.
Collapse
Affiliation(s)
- Eric C Le Ru
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rajapaksa I, Kumar Wickramasinghe H. Raman spectroscopy and microscopy based on mechanical force detection. APPLIED PHYSICS LETTERS 2011; 99:161103-1611033. [PMID: 22087048 PMCID: PMC3215684 DOI: 10.1063/1.3652760] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/22/2011] [Indexed: 05/06/2023]
Abstract
The Raman effect is typically observed by irradiating a sample with an intense light source and detecting the minute amount of frequency shifted scattered light. We demonstrate that Raman molecular vibrational resonances can be detected directly through an entirely different mechanism-namely, a force measurement. We create a force interaction through optical parametric down conversion between stimulated, Raman excited, molecules on a surface and a cantilevered nanometer scale probe tip brought very close to it. Spectroscopy and microscopy on clusters of molecules have been performed. Single molecules within such clusters are clearly resolved in the Raman micrographs. The technique can be readily extended to perform pump probe experiments for measuring inter- and intramolecular couplings and conformational changes at the single molecule level.
Collapse
Affiliation(s)
- I Rajapaksa
- Department of Electrical Engineering and Computer Science, University of California, Irvine, California 92697, USA
| | | |
Collapse
|