1
|
Wang C, Tian W, Zhou K. Ab Initio Simulation of Liquid Water without Artificial High Temperature. J Chem Theory Comput 2024. [PMID: 39219067 DOI: 10.1021/acs.jctc.4c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Comprehending the structure and dynamics of water is crucial in various fields, such as water desalination, ion separation, electrocatalysis, and biochemical processes. While reported works show that the ab initio molecular dynamics (AIMD) can accurately portray water's structure, the artificial high temperature (AHT) from 120 to 30 K is needed to mimic the quantum nature of hydrogen-bond network from GGA, metaGGA to hybrid functionals. The AHT proves to be an inadequate approach for systems involving aqueous multiphase mixtures, such as water-solid interfaces and aqueous solutions. This is due to the activation of additional phonons in other phases, which can lead to an overestimation of the dynamics of nearby water molecules. In this work, we find that the regularized SCAN (rSCAN) functional effectively captures both the structure and dynamics of liquid water at ambient conditions without AHT. Moreover, rSCAN closely matches experimental results for the hydration structures of alkali, alkali earth, and halide ions. We anticipate that the versatile and accurate rSCAN functional will emerge as a key tool based on ab initio simulation for investigating chemical processes in aqueous environments.
Collapse
Affiliation(s)
- Chenyu Wang
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Wei Tian
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Ke Zhou
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| |
Collapse
|
2
|
Listyarini R, Kriesche BM, Hofer TS. Characterization of the Coordination and Solvation Dynamics of Solvated Systems─Implications for the Analysis of Molecular Interactions in Solutions and Pure H 2O. J Chem Theory Comput 2024; 20:3028-3045. [PMID: 38595064 PMCID: PMC11044269 DOI: 10.1021/acs.jctc.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
The characterization of solvation shells of atoms, ions, and molecules in solution is essential to relate solvation properties to chemical phenomena such as complex formation and reactivity. Different definitions of the first-shell coordination sphere from simulation data can lead to potentially conflicting data on the structural properties and associated ligand exchange dynamics. The definition of a solvation shell is typically based on a given threshold distance determined from the respective solute-solvent pair distribution function g(r) (i.e., GC). Alternatively, a nearest neighbor (NN) assignment based on geometric properties of the coordination complex without the need for a predetermined cutoff criterion, such as the relative angular distance (RAD) or the modified Voronoi (MV) tessellation, can be applied. In this study, the effect of different NN algorithms on the coordination number and ligand exchange dynamics evaluated for a series of monatomic ions in aqueous solution, carbon dioxide in aqueous and dichloromethane solutions, and pure liquid water has been investigated. In the case of the monatomic ions, the RAD approach is superior in achieving a well separated definition of the first solvation layer. In contrast, the MV algorithm provides a better separation of the NNs from a molecular point of view, leading to better results in the case of solvated CO2. When analyzing the coordination environment in pure water, the cutoff-based GC framework was found to be the most reliable approach. By comparison of the number of ligand exchange reactions and the associated mean ligand residence times (MRTs) with the properties of the coordination number autocorrelation functions, it is shown that although the average coordination numbers are sensitive to the different definitions of the first solvation shell, highly consistent estimates for the associated MRT of the solvated system are obtained in the majority of cases.
Collapse
Affiliation(s)
- Risnita
Vicky Listyarini
- Institute
of General, Inorganic and Theoretical Chemistry Center for Chemistry
and Biomedicine, University of Innsbruck Innrain 80-82, A-6020 Innsbruck, Austria
- Chemistry
Education Study Program Sanata Dharma University, Yogyakarta 55282, Indonesia
| | - Bernhard M. Kriesche
- Institute
of General, Inorganic and Theoretical Chemistry Center for Chemistry
and Biomedicine, University of Innsbruck Innrain 80-82, A-6020 Innsbruck, Austria
| | - Thomas S. Hofer
- Institute
of General, Inorganic and Theoretical Chemistry Center for Chemistry
and Biomedicine, University of Innsbruck Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
3
|
Jindal A, Schienbein P, Marx D. Revealing the Molecular Origin of Anisotropy around Chloride Ions in Bulk Water. J Phys Chem Lett 2024; 15:3037-3042. [PMID: 38466241 DOI: 10.1021/acs.jpclett.3c03585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
A clear picture of the local solvation structure around halide anions in liquid water remains elusive. This discussion has been stimulated by pioneering simulation results that proposed a "hydrophobic cavity" around anions in the bulk, which is analogous to air at the air-water interface. However, there is also sound experimental and theoretical evidence that halide ions are rather symmetrically solvated in the bulk, leading to a different viewpoint. Using extensive ab initio molecular dynamics simulations of an aqueous Cl- solution, we indeed find an anisotropic arrangement of H-bonded versus interstitial water molecules. The latter are not H-bonded to the anions and thus do not couple much electronically to Cl-. The resulting purely electronic anisotropy of the local solvation environment correlates with that structural anisotropy, which however should not be understood as an empty cavity─as it would be at the air-water interface─but rather contains interstitial water molecules.
Collapse
Affiliation(s)
- Aman Jindal
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Philipp Schienbein
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
4
|
Kar R, Mandal S, Thakkur V, Meyer B, Nair NN. Speeding-up Hybrid Functional-Based Ab Initio Molecular Dynamics Using Multiple Time-stepping and Resonance-Free Thermostat. J Chem Theory Comput 2023; 19:8351-8364. [PMID: 37933121 DOI: 10.1021/acs.jctc.3c00964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Ab initio molecular dynamics (AIMD) based on density functional theory (DFT) has become a workhorse for studying the structure, dynamics, and reactions in condensed matter systems. Currently, AIMD simulations are primarily carried out at the level of generalized gradient approximation (GGA), which is at the second rung of DFT functionals in terms of accuracy. Hybrid DFT functionals, which form the fourth rung in the accuracy ladder, are not commonly used in AIMD simulations as the computational cost involved is 100 times or higher. To facilitate AIMD simulations with hybrid functionals, we propose here an approach using multiple time stepping with adaptively compressed exchange operator and resonance-free thermostat, that could speed up the calculations by ∼30 times or more for systems with a few hundred of atoms. We demonstrate that by achieving this significant speed up and making the compute time of hybrid functional-based AIMD simulations at par with that of GGA functionals, we are able to study several complex condensed matter systems and model chemical reactions in solution with hybrid functionals that were earlier unthinkable to be performed.
Collapse
Affiliation(s)
- Ritama Kar
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur 208016, India
| | - Sagarmoy Mandal
- Interdisciplinary Center for Molecular Materials and Computer Chemistry Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nägelsbachstr. 25, Erlangen 91052, Germany
- Erlangen National High Performance Computing Center (NHR@FAU), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 1, Erlangen 91058, Germany
| | - Vaishali Thakkur
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur 208016, India
| | - Bernd Meyer
- Interdisciplinary Center for Molecular Materials and Computer Chemistry Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nägelsbachstr. 25, Erlangen 91052, Germany
- Erlangen National High Performance Computing Center (NHR@FAU), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 1, Erlangen 91058, Germany
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur 208016, India
| |
Collapse
|
5
|
Ho TH, Do TH, Tong HD, Meijer EJ, Trinh TT. The Role of Chloride ion in the Silicate Condensation Reaction from ab Initio Molecular Dynamics Simulations. J Phys Chem B 2023; 127:7748-7757. [PMID: 37647302 PMCID: PMC10510376 DOI: 10.1021/acs.jpcb.3c04256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/24/2023] [Indexed: 09/01/2023]
Abstract
The comprehension of silicate oligomer formation during the initial stage of zeolite synthesis is of significant importance. In this study, we investigated the effect of chloride ions (Cl-) on silicate oligomerization using ab initio molecular dynamics simulations with explicit water molecules. The results show that the presence of Cl- increases the free energy barriers of all reactions compared to the case without the anion. The formation of the 4-ring structure has the lowest free energy barrier (73 kJ/mol), while the formation of the 3-ring structure has the highest barrier (98 kJ/mol) in the presence of Cl-. These findings suggest that Cl- suppresses the formation of 3-rings and favors the formation of larger oligomers in the process of zeolite synthesis. Our study provides important insights into the directing role of Cl- in silicate oligomerization by regulating thermodynamic and kinetic parameters. An important point to consider is the impact of the anion on aqueous reactions, particularly in altering the hydrogen bond network around reactive species. These results also provide a basis for further studies of the formations of larger silicate oligomers in solution.
Collapse
Affiliation(s)
- Thi H. Ho
- Laboratory
for Computational Physics Institute for Computational Science and
Artificial Intelligence, Van Lang University, Ho Chi Minh City 700000, Vietnam
- Faculty
of Mechanical - Electrical and Computer Engineering School of Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam
| | - Tuong Ha Do
- Faculty
of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho, Tan Phong ward
District 7, Ho Chi Minh City 700000, Vietnam
| | - Hien Duy Tong
- Faculty
of Engineering, Vietnamese-German University
(VGU), Thu Dau
Mot City, Binh Duong Province 75000, Vietnam
| | - Evert Jan Meijer
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam 1012 WX, The Netherlands
| | - Thuat T. Trinh
- Porelab,
Department of Chemistry, Norwegian University
of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
6
|
Ko HY, Calegari Andrade MF, Sparrow ZM, Zhang JA, DiStasio RA. High-Throughput Condensed-Phase Hybrid Density Functional Theory for Large-Scale Finite-Gap Systems: The SeA Approach. J Chem Theory Comput 2023. [PMID: 37385014 DOI: 10.1021/acs.jctc.2c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
High-throughput electronic structure calculations (often performed using density functional theory (DFT)) play a central role in screening existing and novel materials, sampling potential energy surfaces, and generating data for machine learning applications. By including a fraction of exact exchange (EXX), hybrid functionals reduce the self-interaction error in semilocal DFT and furnish a more accurate description of the underlying electronic structure, albeit at a computational cost that often prohibits such high-throughput applications. To address this challenge, we have constructed a robust, accurate, and computationally efficient framework for high-throughput condensed-phase hybrid DFT and implemented this approach in the PWSCF module of Quantum ESPRESSO (QE). The resulting SeA approach (SeA = SCDM + exx + ACE) combines and seamlessly integrates: (i) the selected columns of the density matrix method (SCDM, a robust noniterative orbital localization scheme that sidesteps system-dependent optimization protocols), (ii) a recently extended version of exx (a black-box linear-scaling EXX algorithm that exploits sparsity between localized orbitals in real space when evaluating the action of the standard/full-rank V^xx operator), and (iii) adaptively compressed exchange (ACE, a low-rank V^xx approximation). In doing so, SeA harnesses three levels of computational savings: pair selection and domain truncation from SCDM + exx (which only considers spatially overlapping orbitals on orbital-pair-specific and system-size-independent domains) and low-rank V^xx approximation from ACE (which reduces the number of calls to SCDM + exx during the self-consistent field (SCF) procedure). Across a diverse set of 200 nonequilibrium (H2O)64 configurations (with densities spanning 0.4-1.7 g/cm3), SeA provides a 1-2 order-of-magnitude speedup in the overall time-to-solution, i.e., ≈8-26× compared to the convolution-based PWSCF(ACE) implementation in QE and ≈78-247× compared to the conventional PWSCF(Full) approach, and yields energies, ionic forces, and other properties with high fidelity. As a proof-of-principle high-throughput application, we trained a deep neural network (DNN) potential for ambient liquid water at the hybrid DFT level using SeA via an actively learned data set with ≈8,700 (H2O)64 configurations. Using an out-of-sample set of (H2O)512 configurations (at nonambient conditions), we confirmed the accuracy of this SeA-trained potential and showcased the capabilities of SeA by computing the ground-truth ionic forces in this challenging system containing >1,500 atoms.
Collapse
Affiliation(s)
- Hsin-Yu Ko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Marcos F Calegari Andrade
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Quantum Simulations Group, Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Zachary M Sparrow
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ju-An Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
7
|
Reidelbach M, Bai M, Schneeberger M, Zöllner MS, Kubicek K, Kirchberg H, Bressler C, Thorwart M, Herrmann C. Solvent Dynamics of Aqueous Halides before and after Photoionization. J Phys Chem B 2023; 127:1399-1413. [PMID: 36728132 DOI: 10.1021/acs.jpcb.2c07992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Electron transfer reactions can be strongly influenced by solvent dynamics. We study the photoionization of halides in water as a model system for such reactions. There are no internal nuclear degrees of freedom in the solute, allowing the dynamics of the solvent to be uniquely identified. We simulate the equilibrium solvent dynamics for Cl-, Br-, I-, and their respective neutral atoms in water, comparing quantum mechanical/molecular mechanical (QM/MM) and classical molecular dynamics (MD) methods. On the basis of the obtained configurations, we calculate the extended X-ray absorption fine structure (EXAFS) spectra rigorously based on the MD snapshots and compare them in detail with other theoretical and experimental results available in the literature. We find our EXAFS spectra based on QM/MM MD simulations in good agreement with their experimental counterparts for the ions. Classical MD simulations for the ions lead to EXAFS spectra that agree equally well with the experiment when it comes to the oscillatory period of the signal, even though they differ from the QM/MM radial distribution functions extracted from the MD. The amplitude is, however, considerably overestimated. This suggests that to judge the reliability of theoretical simulation methods or to elucidate fine details of the atomistic dynamics of the solvent based on EXAFS spectra, the amplitude as well as the oscillatory period need to be considered. If simulations fail qualitatively, as does the classical MD for the aqueous neutral halogen atoms, the resulting EXAFS will also be strongly affected in both oscillatory period and amplitude. The good reliability of QM/MM-based EXAFS simulations, together with clear qualitative differences in the EXAFS spectra found between halides and their atomic counterparts, suggests that a combined theory and experimental EXAFS approach is suitable for elucidating the nonequilibrium solvent dynamics in the photoionization of halides and possibly also for electron transfer reactions in more complex systems.
Collapse
Affiliation(s)
- Marco Reidelbach
- Department of Chemistry, Universität Hamburg, Harbor Bldg. 610, Luruper Chaussee 149, 22761Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany
| | - Mei Bai
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,I. Institut für Theoretische Physik, Universität Hamburg, Notkestr. 9, 22607Hamburg, Germany
| | - Michaela Schneeberger
- Department of Chemistry, Universität Hamburg, Harbor Bldg. 610, Luruper Chaussee 149, 22761Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany
| | - Martin Sebastian Zöllner
- Department of Chemistry, Universität Hamburg, Harbor Bldg. 610, Luruper Chaussee 149, 22761Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany
| | - Katharina Kubicek
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,Department of Physics, Universität Hamburg, Notkestr. 85, 22607Hamburg, Germany.,European XFEL, Holzkoppel 4, 22869Schenefeld, Germany
| | - Henning Kirchberg
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,I. Institut für Theoretische Physik, Universität Hamburg, Notkestr. 9, 22607Hamburg, Germany
| | - Christian Bressler
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,Department of Physics, Universität Hamburg, Notkestr. 85, 22607Hamburg, Germany.,European XFEL, Holzkoppel 4, 22869Schenefeld, Germany
| | - Michael Thorwart
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,I. Institut für Theoretische Physik, Universität Hamburg, Notkestr. 9, 22607Hamburg, Germany
| | - Carmen Herrmann
- Department of Chemistry, Universität Hamburg, Harbor Bldg. 610, Luruper Chaussee 149, 22761Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany
| |
Collapse
|
8
|
Molecular dynamics simulations of LiCl ion pairs in high temperature aqueous solutions by deep learning potential. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Petrov AI. Quantum chemical modeling of the thermodynamics of the formation of Au(III), Pd(II), and Pt(II) chloride complexes. J Mol Model 2022; 28:391. [DOI: 10.1007/s00894-022-05381-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
|
10
|
Smirnov PR, Grechin OV, Vashurin AS. Ion Coordination in Aqueous Lanthanum Chloride and Lanthanum Nitrate Solutions as Probed by X-ray Diffraction. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622030111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Mandal S, Kar R, Klöffel T, Meyer B, Nair NN. Improving the scaling and performance of multiple time stepping-based molecular dynamics with hybrid density functionals. J Comput Chem 2022; 43:588-597. [PMID: 35147988 DOI: 10.1002/jcc.26816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 12/18/2022]
Abstract
Density functionals at the level of the generalized gradient approximation (GGA) and a plane-wave basis set are widely used today to perform ab initio molecular dynamics (AIMD) simulations. Going up in the ladder of accuracy of density functionals from GGA (second rung) to hybrid density functionals (fourth rung) is much desired pertaining to the accuracy of the latter in describing structure, dynamics, and energetics of molecular and condensed matter systems. On the other hand, hybrid density functional based AIMD simulations are about two orders of magnitude slower than GGA based AIMD for systems containing ~100 atoms using ~100 compute cores. Two methods, namely MTACE and s-MTACE, based on a multiple time step integrator and adaptively compressed exchange operator formalism are able to provide a speed-up of about 7-9 in performing hybrid density functional based AIMD. In this work, we report an implementation of these methods using a task-group based parallelization within the CPMD program package, with the intention to take advantage of the large number of compute cores available on modern high-performance computing platforms. We present here the boost in performance achieved through this algorithm. This work also identifies the computational bottleneck in the s-MTACE method and proposes a way to overcome it.
Collapse
Affiliation(s)
- Sagarmoy Mandal
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur, India.,Interdisciplinary Center for Molecular Materials and Computer Chemistry Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Erlangen National High Performance Computing Center (NHR@FAU), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ritama Kar
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur, India
| | - Tobias Klöffel
- Interdisciplinary Center for Molecular Materials and Computer Chemistry Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Erlangen National High Performance Computing Center (NHR@FAU), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bernd Meyer
- Interdisciplinary Center for Molecular Materials and Computer Chemistry Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Erlangen National High Performance Computing Center (NHR@FAU), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur, India
| |
Collapse
|
12
|
Luin U, Arčon I, Valant M. Structure and Population of Complex Ionic Species in FeCl 2 Aqueous Solution by X-ray Absorption Spectroscopy. Molecules 2022; 27:642. [PMID: 35163907 PMCID: PMC8839570 DOI: 10.3390/molecules27030642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Technologies for mass production require cheap and abundant materials such as ferrous chloride (FeCl2). The literature survey shows the lack of experimental studies to validate theoretical conclusions related to the population of ionic Fe-species in the aqueous FeCl2 solution. Here, we present an in situ X-ray absorption study of the structure of the ionic species in the FeCl2 aqueous solution at different concentrations (1-4 molL-1) and temperatures (25-80 °C). We found that at low temperature and low FeCl2 concentration, the octahedral first coordination sphere around Fe is occupied by one Cl ion at a distance of 2.33 (±0.02) Å and five water molecules at a distance of 2.095 (±0.005) Å. The structure of the ionic complex gradually changes with an increase in temperature and/or concentration. The apical water molecule is substituted by a chlorine ion to yield a neutral Fe[Cl2(H2O)4]0. The observed substitutional mechanism is facilitated by the presence of the intramolecular hydrogen bonds as well as entropic reasons. The transition from the single charged Fe[Cl(H2O)5]+ to the neutral Fe[Cl2(H2O)4]0 causes a significant drop in the solution conductivity, which well correlates with the existing conductivity models.
Collapse
Affiliation(s)
- Uroš Luin
- Materials Research Laboratory, University of Nova Gorica, Vipavska 13, SI-5001 Nova Gorica, Slovenia; (U.L.); (I.A.)
| | - Iztok Arčon
- Materials Research Laboratory, University of Nova Gorica, Vipavska 13, SI-5001 Nova Gorica, Slovenia; (U.L.); (I.A.)
- Department of Low and Medium Energy Physics, J. Stefan Institute, Jamova 39, SI-1001 Ljubljana, Slovenia
| | - Matjaz Valant
- Materials Research Laboratory, University of Nova Gorica, Vipavska 13, SI-5001 Nova Gorica, Slovenia; (U.L.); (I.A.)
| |
Collapse
|
13
|
Abstract
One challenge in chemistry is the plethora of often disparate models for rationalizing the electronic structure of molecules. Chemical concepts abound, but their connections are often frail. This work describes a quantum-mechanical framework that enables a combination of ideas from three approaches common for the analysis of chemical bonds: energy decomposition analysis (EDA), quantum chemical topology, and molecular orbital (MO) theory. The glue to our theory is the electron energy density, interpretable as one part electrons and one part electronegativity. We present a three-dimensional analysis of the electron energy density and use it to redefine what constitutes an atom in a molecule. Definitions of atomic partial charge and electronegativity follow in a way that connects these concepts to the total energy of a molecule. The formation of polar bonds is predicted to cause inversion of electronegativity, and a new perspective of bonding in diborane and guanine-cytosine base-pairing is presented. The electronegativity of atoms inside molecules is shown to be predictive of pKa .
Collapse
Affiliation(s)
- Stefano Racioppi
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyKemigården 441258GothenburgSweden
| | - Martin Rahm
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyKemigården 441258GothenburgSweden
| |
Collapse
|
14
|
Ko HY, Santra B, DiStasio RA. Enabling Large-Scale Condensed-Phase Hybrid Density Functional Theory-Based Ab Initio Molecular Dynamics II: Extensions to the Isobaric-Isoenthalpic and Isobaric-Isothermal Ensembles. J Chem Theory Comput 2021; 17:7789-7813. [PMID: 34775753 DOI: 10.1021/acs.jctc.0c01194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the previous paper of this series [Ko, H.-Y. et al. J. Chem. Theory Comput. 2020, 16, 3757-3785], we presented a theoretical and algorithmic framework based on a localized representation of the occupied space that exploits the inherent sparsity in the real-space evaluation of the exact exchange (EXX) interaction in finite-gap systems. This was accompanied by a detailed description of exx, a massively parallel hybrid message-passing interface MPI/OpenMP implementation of this approach in Quantum ESPRESSO (QE) that enables linear scaling hybrid density functional theory (DFT)-based ab initio molecular dynamics (AIMD) in the microcanonical/canonical (NVE/NVT) ensembles of condensed-phase systems containing 500-1000 atoms (in fixed orthorhombic cells) with a wall time cost comparable to semi-local DFT. In this work, we extend the current capabilities of exx to enable hybrid DFT-based AIMD simulations of large-scale condensed-phase systems with general and fluctuating cells in the isobaric-isoenthalpic/isobaric-isothermal (NpH/NpT) ensembles. The theoretical extensions to this approach include an analytical derivation of the EXX contribution to the stress tensor for systems in general simulation cells with a computational complexity that scales linearly with system size. The corresponding algorithmic extensions to exx include optimized routines that (i) handle both static and fluctuating simulation cells with non-orthogonal lattice symmetries, (ii) solve Poisson's equation in general/non-orthogonal cells via an automated selection of the auxiliary grid directions in the Natan-Kronik representation of the discrete Laplacian operator, and (iii) evaluate the EXX contribution to the stress tensor. Using this approach, we perform a case study on a variety of condensed-phase systems (including liquid water, a benzene molecular crystal polymorph, and semi-conducting crystalline silicon) and demonstrate that the EXX contributions to the energy and stress tensor simultaneously converge with an appropriate choice of exx parameters. This is followed by a critical assessment of the computational performance of the extended exx module across several different high-performance computing architectures via case studies on (i) the computational complexity due to lattice symmetry during NpT simulations of three different ice polymorphs (i.e., ice Ih, II, and III) and (ii) the strong/weak parallel scaling during large-scale NpT simulations of liquid water. We demonstrate that the robust and highly scalable implementation of this approach in the extended exx module is capable of evaluating the EXX contribution to the stress tensor with negligible cost (<1%) as well as all other EXX-related quantities needed during NpT simulations of liquid water (with a very tight 150 Ry planewave cutoff) in ≈5.2 s ((H2O)128) and ≈6.8 s ((H2O)256) per AIMD step. As such, the extended exx module presented in this work brings us another step closer to routinely performing hybrid DFT-based AIMD simulations of sufficient duration for large-scale condensed-phase systems across a wide range of thermodynamic conditions.
Collapse
Affiliation(s)
- Hsin-Yu Ko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Biswajit Santra
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
15
|
Orabi EA, Öztürk TN, Bernhardt N, Faraldo-Gómez JD. Corrections in the CHARMM36 Parametrization of Chloride Interactions with Proteins, Lipids, and Alkali Cations, and Extension to Other Halide Anions. J Chem Theory Comput 2021; 17:6240-6261. [PMID: 34516741 DOI: 10.1021/acs.jctc.1c00550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nonpolarizable CHARMM force field is one of the most widely used energy functions for all-atom biomolecular simulations. Chloride is the only halide ion included in the latest version, CHARMM36m, and is used widely in simulation studies, often as an electrolyte ion but also as the biological substrate of transport proteins and enzymes. Here, we find that existing parameters systematically underestimate the interaction of Cl- with proteins and lipids. Accordingly, when examined in solution, little to no Cl-association can be observed with most components of the protein, including backbone, polar side chains and aromatic rings. The strength of the interaction with cationic side chains and with alkali ions is also incongruent with experimental measurements, specifically osmotic coefficients of concentrated solutions. Consistent with these findings, a 4-μs trajectory of the Cl--specific transport protein CLC-ec1 shows irreversible Cl- dissociation from the so-called Scen binding site, even in a 150 mM NaCl buffer. To correct for these deficiencies, we formulate a series of pair-specific Lennard-Jones parameters that override those resulting from the conventional Lorentz-Berthelot combination rules. These parameters, referred to as NBFIX, are systematically calibrated against available experimental data as well as ab initio geometry optimizations and energy evaluations, for a wide set of binary and ternary Cl- complexes with protein and lipid analogs and alkali cations. Analogously, we also formulate parameter sets for the other three biological halide ions, namely, fluoride, bromide, and iodide. The resulting parameters are used to calculate the potential of mean force defining the interaction of each anion and each of the protein and lipid analogues in bulk water, revealing association free energies in the range of -0.3 to -3.3 kcal/mol, with the F- complexes being the least stable. The NBFIX corrections also preserve the Cl- occupancy of CLC-ec1 in a second 4-μs trajectory. We posit that these optimized molecular-mechanics models provide a more realistic foundation for all-atom simulation studies of processes entailing changes in hydration, recognition, or transport of halide anions.
Collapse
Affiliation(s)
- Esam A Orabi
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20814, United States
| | - Tuǧba N Öztürk
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20814, United States.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Nathan Bernhardt
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20814, United States
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20814, United States
| |
Collapse
|
16
|
Damyanov D, Nikolova V, Angelova S, Dudev T. Halide anion solvation and recognition by bambusurils: A DFT study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Mandal S, Thakkur V, Nair NN. Achieving an Order of Magnitude Speedup in Hybrid-Functional- and Plane-Wave-Based Ab Initio Molecular Dynamics: Applications to Proton-Transfer Reactions in Enzymes and in Solution. J Chem Theory Comput 2021; 17:2244-2255. [PMID: 33740375 DOI: 10.1021/acs.jctc.1c00009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ab initio molecular dynamics (MD) with hybrid density functionals and a plane wave basis is computationally expensive due to the high computational cost of exact exchange energy evaluation. Recently, we proposed a strategy to combine adaptively compressed exchange (ACE) operator formulation and a multiple time step integration scheme to reduce the computational cost significantly [J. Chem. Phys. 2019, 151, 151102 ]. However, it was found that the construction of the ACE operator, which has to be done at least once in every MD time step, is computationally expensive. In the present work, systematic improvements are introduced to further speed up by employing localized orbitals for the construction of the ACE operator. By this, we could achieve a computational speedup of an order of magnitude for a periodic system containing 32 water molecules. Benchmark calculations were carried out to show the accuracy and efficiency of the method in predicting the structural and dynamical properties of bulk water. To demonstrate the applicability, computationally intensive free-energy computations at the level of hybrid density functional theory were performed to investigate (a) methyl formate hydrolysis reaction in neutral aqueous media and (b) proton-transfer reaction within the active-site residues of the class C β-lactamase enzyme.
Collapse
Affiliation(s)
- Sagarmoy Mandal
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur 208016, India.,Interdisciplinary Center for Molecular Materials and Computer Chemistry Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nägelsbachstr. 25, Erlangen 91052, Germany
| | - Vaishali Thakkur
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur 208016, India
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur 208016, India
| |
Collapse
|
18
|
Wagle K, Santra B, Bhattarai P, Shahi C, Pederson MR, Jackson KA, Perdew JP. Self-interaction correction in water–ion clusters. J Chem Phys 2021; 154:094302. [DOI: 10.1063/5.0041620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kamal Wagle
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Biswajit Santra
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Puskar Bhattarai
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Chandra Shahi
- Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| | - Mark R. Pederson
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Koblar A. Jackson
- Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| | - John P. Perdew
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
19
|
Neklyudov V, Freger V. Water and Ion Transfer to Narrow Carbon Nanotubes: Roles of Exterior and Interior. J Phys Chem Lett 2021; 12:185-190. [PMID: 33325707 DOI: 10.1021/acs.jpclett.0c03093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Narrow carbon nanotubes (CNTs) desalinate water, mimicking water channels of biological membranes, yet the physics behind selectivity, especially the effect of the membrane embedding CNTs on water and ion transfer, is still unclear. Here, we report ab initio analysis of the energies involved in transfer of water and K+ and Cl- ions from solution to empty and water-filled 0.68 nm CNTs for different dielectric constants (ϵ) of the surrounding matrix. The transfer energies computed for 1 ≤ ϵ < ∞ permit a transparent breakdown of the transfer energy to three main contributions: binding to CNT, intra-CNT hydration, and dielectric polarization of the matrix. The latter scales inversely with ϵ and is of the order 102/ϵ kJ/mol for both ions, which may change ion transfer from favorable to unfavorable, depending on ion, ϵ, and CNT diameter. This may have broad implications for designing and tuning selectivity of nanochannel-based devices.
Collapse
Affiliation(s)
- Vadim Neklyudov
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa 32000, Israel
| | - Viatcheslav Freger
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa 32000, Israel
- Russel Berrie Nanotechnology Institute, Technion - IIT, Haifa 32000, Israel
- Grand Technion Energy Program, Technion - IIT, Haifa 32000, Israel
| |
Collapse
|
20
|
Lucht K, Morgenstern K. Polymorphic arrangement of an organic molecule in its hydration environment. J Chem Phys 2021; 154:014701. [PMID: 33412865 DOI: 10.1063/5.0033081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the polymorphism of complexes formed by the hydration of a functionalized azobenzene molecule by low-temperature scanning tunneling microscopy. Under conditions at which the water-less azobenzene molecules remain as monomers on Au(111), co-adsorption of water leads to water-azobenzene complexes. These complexes prefer to adopt linear arrangements of the azobenzene mediated by its functionalized end groups. Such structures may serve as model systems for investigating the influence of a solvent on a surface reaction.
Collapse
Affiliation(s)
- Karsten Lucht
- Ruhr-Universität Bochum, Lehrstuhl für Physikalische Chemie I, Universitätsstr. 150, D-44801 Bochum, Germany
| | - Karina Morgenstern
- Ruhr-Universität Bochum, Lehrstuhl für Physikalische Chemie I, Universitätsstr. 150, D-44801 Bochum, Germany
| |
Collapse
|
21
|
Marin TW, Janik I, Bartels DM, Chipman DM. Failure of molecular dynamics to provide appropriate structures for quantum mechanical description of the aqueous chloride ion charge-transfer-to-solvent ultraviolet spectrum. Phys Chem Chem Phys 2021; 23:9109-9120. [PMID: 33885094 DOI: 10.1039/d1cp00930c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The lowest band in the charge-transfer-to-solvent ultraviolet absorption spectrum of aqueous chloride ion is studied by experiment and computation. Interestingly, the experiments indicate that at concentrations up to at least 0.25 M, where calculations indicate ion pairing to be significant, there is no notable effect of ionic strength on the spectrum. The experimental spectra are fitted to aid comparison with computations. Classical molecular dynamic simulations are carried out on dilute aqueous Cl-, Na+, and NaCl, producing radial distribution functions in reasonable agreement with experiment and, for NaCl, clear evidence of ion pairing. Clusters are extracted from the simulations for quantum mechanical excited state calculations. Accurate ab initio coupled-cluster benchmark calculations on a small number of representative clusters are carried out and used to identify and validate an efficient protocol based on time-dependent density functional theory. The latter is used to carry out quantum mechanical calculations on thousands of clusters. The resulting computed spectrum is in excellent agreement with experiment for the peak position, with little influence from ion pairing, but is in qualitative disagreement on the width, being only about half as wide. It is concluded that simulation by classical molecular dynamics fails to provide an adequate variety of structures to explain the experimental CTTS spectrum of aqueous Cl-.
Collapse
Affiliation(s)
- Timothy W Marin
- Department of Physical Sciences, Benedictine University, 5700 College Rd, Lisle, IL 60532, USA
| | | | | | | |
Collapse
|
22
|
Mandal S, Nair NN. Efficient computation of free energy surfaces of chemical reactions using ab initio molecular dynamics with hybrid functionals and plane waves. J Comput Chem 2020; 41:1790-1797. [PMID: 32407582 DOI: 10.1002/jcc.26222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/06/2020] [Accepted: 04/29/2020] [Indexed: 11/10/2022]
Abstract
Ab initio molecular dynamics (AIMD) simulations employing density functional theory (DFT) and plane waves are routinely carried out using density functionals at the level of generalized gradient approximation (GGA). AIMD simulations employing hybrid density functionals are of great interest as it offers a more accurate description of structural and dynamic properties than the GGA functionals. However, the computational cost for carrying out calculations using hybrid functionals and plane wave basis set is at least two orders of magnitude higher than that using GGA functionals. Recently, we proposed a strategy that combined the adaptively compressed exchange operator formulation and the multiple time step integration scheme to reduce the computational cost by an order of magnitude [J. Chem. Phys. 151, 151102 (2019)]. In this work, we demonstrate the application of this method to study chemical reactions, in particular, formamide hydrolysis in an alkaline aqueous medium. By actuating our implementation with the well-sliced metadynamics scheme, we can compute the two-dimensional free energy surface of this reaction at the level of hybrid-DFT. This work also investigates the accuracy of the PBE0 (hybrid) and the PBE (GGA) functionals in predicting the free energetics of this chemical reaction.
Collapse
Affiliation(s)
- Sagarmoy Mandal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
23
|
Lu QB. Reaction Cycles of Halogen Species in the Immune Defense: Implications for Human Health and Diseases and the Pathology and Treatment of COVID-19. Cells 2020; 9:cells9061461. [PMID: 32545714 PMCID: PMC7349336 DOI: 10.3390/cells9061461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
There is no vaccine or specific antiviral treatment for COVID-19, which is causing a global pandemic. One current focus is drug repurposing research, but those drugs have limited therapeutic efficacies and known adverse effects. The pathology of COVID-19 is essentially unknown. Without this understanding, it is challenging to discover a successful treatment to be approved for clinical use. This paper addresses several key biological processes of reactive oxygen, halogen and nitrogen species (ROS, RHS and RNS) that play crucial physiological roles in organisms from plants to humans. These include why superoxide dismutases, the enzymes to catalyze the formation of H2O2, are required for protecting ROS-induced injury in cell metabolism, why the amount of ROS/RNS produced by ionizing radiation at clinically relevant doses is ~1000 fold lower than the endogenous ROS/RNS level routinely produced in the cell and why a low level of endogenous RHS plays a crucial role in phagocytosis for immune defense. Herein we propose a plausible amplification mechanism in immune defense: ozone-depleting-like halogen cyclic reactions enhancing RHS effects are responsible for all the mentioned physiological functions, which are activated by H2O2 and deactivated by NO signaling molecule. Our results show that the reaction cycles can be repeated thousands of times and amplify the RHS pathogen-killing (defense) effects by 100,000 fold in phagocytosis, resembling the cyclic ozone-depleting reactions in the stratosphere. It is unraveled that H2O2 is a required protective signaling molecule (angel) in the defense system for human health and its dysfunction can cause many diseases or conditions such as autoimmune disorders, aging and cancer. We also identify a class of potent drugs for effective treatment of invading pathogens such as HIV and SARS-CoV-2 (COVID-19), cancer and other diseases, and provide a molecular mechanism of action of the drugs or candidates.
Collapse
Affiliation(s)
- Qing-Bin Lu
- Department of Physics and Astronomy and Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
24
|
Ko HY, Jia J, Santra B, Wu X, Car R, DiStasio RA. Enabling Large-Scale Condensed-Phase Hybrid Density Functional Theory Based Ab Initio Molecular Dynamics. 1. Theory, Algorithm, and Performance. J Chem Theory Comput 2020; 16:3757-3785. [PMID: 32045232 DOI: 10.1021/acs.jctc.9b01167] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By including a fraction of exact exchange (EXX), hybrid functionals reduce the self-interaction error in semilocal density functional theory (DFT) and thereby furnish a more accurate and reliable description of the underlying electronic structure in systems throughout biology, chemistry, physics, and materials science. However, the high computational cost associated with the evaluation of all required EXX quantities has limited the applicability of hybrid DFT in the treatment of large molecules and complex condensed-phase materials. To overcome this limitation, we describe a linear-scaling approach that utilizes a local representation of the occupied orbitals (e.g., maximally localized Wannier functions (MLWFs)) to exploit the sparsity in the real-space evaluation of the quantum mechanical exchange interaction in finite-gap systems. In this work, we present a detailed description of the theoretical and algorithmic advances required to perform MLWF-based ab initio molecular dynamics (AIMD) simulations of large-scale condensed-phase systems of interest at the hybrid DFT level. We focus our theoretical discussion on the integration of this approach into the framework of Car-Parrinello AIMD, and highlight the central role played by the MLWF-product potential (i.e., the solution of Poisson's equation for each corresponding MLWF-product density) in the evaluation of the EXX energy and wave function forces. We then provide a comprehensive description of the exx algorithm implemented in the open-source Quantum ESPRESSO program, which employs a hybrid MPI/OpenMP parallelization scheme to efficiently utilize the high-performance computing (HPC) resources available on current- and next-generation supercomputer architectures. This is followed by a critical assessment of the accuracy and parallel performance (e.g., strong and weak scaling) of this approach when AIMD simulations of liquid water are performed in the canonical (NVT) ensemble. With access to HPC resources, we demonstrate that exx enables hybrid DFT-based AIMD simulations of condensed-phase systems containing 500-1000 atoms (e.g., (H2O)256) with a wall time cost that is comparable to that of semilocal DFT. In doing so, exx takes us one step closer to routinely performing AIMD simulations of complex and large-scale condensed-phase systems for sufficiently long time scales at the hybrid DFT level of theory.
Collapse
Affiliation(s)
- Hsin-Yu Ko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Junteng Jia
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Biswajit Santra
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Xifan Wu
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Roberto Car
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Physics, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
25
|
Fedorov DG. Three-Body Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method. J Phys Chem A 2020; 124:4956-4971. [DOI: 10.1021/acs.jpca.0c03085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dmitri G. Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
26
|
Chaudhari MI, Vanegas JM, Pratt LR, Muralidharan A, Rempe SB. Hydration Mimicry by Membrane Ion Channels. Annu Rev Phys Chem 2020; 71:461-484. [PMID: 32155383 DOI: 10.1146/annurev-physchem-012320-015457] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ions transiting biomembranes might pass readily from water through ion-specific membrane proteins if these protein channels provide environments similar to the aqueous solution hydration environment. Indeed, bulk aqueous solution is an important reference condition for the ion permeation process. Assessment of this hydration mimicry concept depends on understanding the hydration structure and free energies of metal ions in water in order to provide a comparison for the membrane channel environment. To refine these considerations, we review local hydration structures of ions in bulk water and the molecular quasi-chemical theory that provides hydration free energies. In doing so, we note some current views of ion binding to membrane channels and suggest new physical chemical calculations and experiments that might further clarify the hydration mimicry concept.
Collapse
Affiliation(s)
- Mangesh I Chaudhari
- Department of Computational Biology and Biophysics, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA;
| | - Juan M Vanegas
- Department of Computational Biology and Biophysics, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA; .,Current affiliation: Department of Physics, University of Vermont, Burlington, Vermont 05405, USA
| | - L R Pratt
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, USA
| | - Ajay Muralidharan
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, USA.,Current affiliation: Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Susan B Rempe
- Department of Computational Biology and Biophysics, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA;
| |
Collapse
|
27
|
DelloStritto M, Xu J, Wu X, Klein ML. Aqueous solvation of the chloride ion revisited with density functional theory: impact of correlation and exchange approximations. Phys Chem Chem Phys 2020; 22:10666-10675. [DOI: 10.1039/c9cp06821j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aqueous chloride is simulated using PBE-D3, PBE0-D3, and SCAN to investigate the impact of exchange and correlation approximations; we find the exact exchange fraction strongly impacts the energetics and polarizability of solvated chloride.
Collapse
Affiliation(s)
- Mark DelloStritto
- Institute for Computational Molecular Science
- Temple University SERC
- Philadelphia
- USA
| | - Jianhang Xu
- Department of Physics
- Temple University SERC
- Philadelphia
- USA
| | - Xifan Wu
- Department of Physics
- Temple University SERC
- Philadelphia
- USA
| | - Michael L. Klein
- Institute for Computational Molecular Science
- Temple University SERC
- Philadelphia
- USA
| |
Collapse
|
28
|
Dočkal J, Svoboda M, Lísal M, Moučka F. A general hydrogen bonding definition based on three-dimensional spatial distribution functions and its extension to quantitative structural analysis of solutions and general intermolecular bonds. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Zhou L, Xu J, Xu L, Wu X. Importance of van der Waals effects on the hydration of metal ions from the Hofmeister series. J Chem Phys 2019; 150:124505. [PMID: 30927898 DOI: 10.1063/1.5086939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The van der Waals (vdW) interaction plays a crucial role in the description of liquid water. Based on ab initio molecular dynamics simulations, including the non-local and fully self-consistent density-dependent implementation of the Tkatchenko-Scheffler dispersion correction, we systematically studied the aqueous solutions of metal ions (K+, Na+, and Ca2+) from the Hofmeister series. Similar to liquid water, the vdW interactions strengthen the attractions among water molecules in the long-range, leading to the hydrogen bond networks softened in all the ion solutions. However, the degree that the hydration structure is revised by the vdW interactions is distinct for different ions, depending on the strength of short-range interactions between the hydrated ion and surrounding water molecules. Such revisions by the vdW interactions are important for the understanding of biological functionalities of ion channels.
Collapse
Affiliation(s)
- Liying Zhou
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Jianhang Xu
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Limei Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Xifan Wu
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
30
|
Remsing RC, Klein ML. Exponential Scaling of Water Exchange Rates with Ion Interaction Strength from the Perspective of Dynamic Facilitation Theory. J Phys Chem A 2019; 123:1077-1084. [PMID: 30609371 DOI: 10.1021/acs.jpca.8b09667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Richard C. Remsing
- Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Michael L. Klein
- Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
31
|
Mandal S, Debnath J, Meyer B, Nair NN. Enhanced sampling and free energy calculations with hybrid functionals and plane waves for chemical reactions. J Chem Phys 2018; 149:144113. [DOI: 10.1063/1.5049700] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sagarmoy Mandal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Jayashrita Debnath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Bernd Meyer
- Interdisciplinary Center of Molecular Materials (ICMM) and Computer-Chemistry-Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany
| | - Nisanth N. Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
32
|
Zheng L, Chen M, Sun Z, Ko HY, Santra B, Dhuvad P, Wu X. Structural, electronic, and dynamical properties of liquid water by ab initio molecular dynamics based on SCAN functional within the canonical ensemble. J Chem Phys 2018; 148:164505. [DOI: 10.1063/1.5023611] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lixin Zheng
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Mohan Chen
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Zhaoru Sun
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Hsin-Yu Ko
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Biswajit Santra
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Pratikkumar Dhuvad
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Xifan Wu
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
33
|
Śmiechowski M. Unusual Influence of Fluorinated Anions on the Stretching Vibrations of Liquid Water. J Phys Chem B 2018. [PMID: 29513989 DOI: 10.1021/acs.jpcb.7b11334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infrared (IR) spectroscopy is a commonly used and invaluable tool in the studies of solvation phenomena in aqueous solutions. Concurrently, ab initio molecular dynamics (AIMD) simulations deliver the solvation shell picture at a molecular detail level and allow for a consistent decomposition of the theoretical IR spectrum into underlying spatial correlations. Here, we demonstrate how the novel spectral decomposition techniques can extract important information from the computed IR spectra of aqueous solutions of BF4- and PF6-, interesting weakly coordinating anions that have been known for a long time to alter the IR spectrum of water in an unusual manner. The distance-dependent spectra of both ions are analyzed using the spectral similarity method that provides a quantitative picture of both the spectrum of the solute-affected solvent and the number of solvent molecules thus altered. We find, in accordance with previous experiments, a considerable blue shift of the νOH stretching band of liquid water by 264 cm-1 for BF4- and 306 cm-1 for PF6-, with the affected numbers being 3.7 and 4.2, respectively. Considering also the additional information on solute-solvent dipolar couplings delivered by radially and spatially resolved IR spectra, the computational IR spectroscopy based on AIMD simulations is shown to be a viable predictive tool with strong interpretative power.
Collapse
Affiliation(s)
- Maciej Śmiechowski
- Department of Physical Chemistry, Chemical Faculty , Gdańsk University of Technology , Narutowicza 11/12 , 80-233 Gdańsk , Poland
| |
Collapse
|
34
|
Dovesi R, Erba A, Orlando R, Zicovich‐Wilson CM, Civalleri B, Maschio L, Rérat M, Casassa S, Baima J, Salustro S, Kirtman B. Quantum‐mechanical condensed matter simulations with CRYSTAL. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1360] [Citation(s) in RCA: 834] [Impact Index Per Article: 119.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | | | | | | | | | - Michel Rérat
- Equipe de Chimie Physique, IPREM UMR5254Université de Pau et des Pays de l’AdourPauFrance
| | | | - Jacopo Baima
- Dipartimento di ChimicaUniversità di TorinoTorinoItaly
| | | | - Bernard Kirtman
- Department of Chemistry and BiochemistryUniversity of CaliforniaSanta Barbara, California
| |
Collapse
|
35
|
Lucht K, Loose D, Ruschmeier M, Strotkötter V, Dyker G, Morgenstern K. Hydrophilicity and Microsolvation of an Organic Molecule Resolved on the Sub-molecular Level by Scanning Tunneling Microscopy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Karsten Lucht
- Physikalische Chemie I; Ruhr-Universität Bochum; Universitätsstraße 150 44801 Bochum Germany
| | - Dirk Loose
- Organische Chemie II; Ruhr-Universität Bochum; Universitätsstraße 150 44801 Bochum Germany
| | - Maximilian Ruschmeier
- Physikalische Chemie I; Ruhr-Universität Bochum; Universitätsstraße 150 44801 Bochum Germany
| | - Valerie Strotkötter
- Physikalische Chemie I; Ruhr-Universität Bochum; Universitätsstraße 150 44801 Bochum Germany
| | - Gerald Dyker
- Organische Chemie II; Ruhr-Universität Bochum; Universitätsstraße 150 44801 Bochum Germany
| | - Karina Morgenstern
- Physikalische Chemie I; Ruhr-Universität Bochum; Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
36
|
Lucht K, Loose D, Ruschmeier M, Strotkötter V, Dyker G, Morgenstern K. Hydrophilicity and Microsolvation of an Organic Molecule Resolved on the Sub-molecular Level by Scanning Tunneling Microscopy. Angew Chem Int Ed Engl 2018; 57:1266-1270. [PMID: 29207212 DOI: 10.1002/anie.201711062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/29/2017] [Indexed: 11/08/2022]
Abstract
Low-temperature scanning tunneling microscopy was used to follow the formation of a solvation shell around an adsorbed functionalized azo dye from the attachment of the first water molecule to a fully solvated molecule. Specific functional groups bind initially one water molecule each, which act as anchor points for additional water molecules. Further water attachment occurs in areas close to these functional groups even when the functional groups themselves are already saturated. In contrast, water molecules surround the hydrophobic parts of the molecule only when the two-dimensional solvation shell closes around them. This study thus traces hydrophilic and hydrophobic properties of an organic molecule down to a sub-molecular length scale.
Collapse
Affiliation(s)
- Karsten Lucht
- Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Dirk Loose
- Organische Chemie II, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Maximilian Ruschmeier
- Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Valerie Strotkötter
- Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Gerald Dyker
- Organische Chemie II, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Karina Morgenstern
- Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
37
|
Erba A. Self-consistent hybrid functionals for solids: a fully-automated implementation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:314001. [PMID: 28594334 DOI: 10.1088/1361-648x/aa7823] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A fully-automated algorithm for the determination of the system-specific optimal fraction of exact exchange in self-consistent hybrid functionals of the density-functional-theory is illustrated, as implemented into the public Crystal program. The exchange fraction of this new class of functionals is self-consistently updated proportionally to the inverse of the dielectric response of the system within an iterative procedure (Skone et al 2014 Phys. Rev. B 89, 195112). Each iteration of the present scheme, in turn, implies convergence of a self-consistent-field (SCF) and a coupled-perturbed-Hartree-Fock/Kohn-Sham (CPHF/KS) procedure. The present implementation, beside improving the user-friendliness of self-consistent hybrids, exploits the unperturbed and electric-field perturbed density matrices from previous iterations as guesses for subsequent SCF and CPHF/KS iterations, which is documented to reduce the overall computational cost of the whole process by a factor of 2.
Collapse
Affiliation(s)
- A Erba
- Dipartimento di Chimica, Università di Torino, Via Giuria 5, 10125 Torino, Italy
| |
Collapse
|
38
|
Mao Y, Shao Y, Dziedzic J, Skylaris CK, Head-Gordon T, Head-Gordon M. Performance of the AMOEBA Water Model in the Vicinity of QM Solutes: A Diagnosis Using Energy Decomposition Analysis. J Chem Theory Comput 2017; 13:1963-1979. [PMID: 28430427 DOI: 10.1021/acs.jctc.7b00089] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The importance of incorporating solvent polarization effects into the modeling of solvation processes has been well-recognized, and therefore a new generation of hybrid quantum mechanics/molecular mechanics (QM/MM) approaches that accounts for this effect is desirable. We present a fully self-consistent, mutually polarizable QM/MM scheme using the AMOEBA force field, in which the total energy of the system is variationally minimized with respect to both the QM electronic density and the MM induced dipoles. This QM/AMOEBA model is implemented through the Q-Chem/LibEFP code interface and then applied to the evaluation of solute-solvent interaction energies for various systems ranging from the water dimer to neutral and ionic solutes (NH3, NH4+, CN-) surrounded by increasing numbers of water molecules (up to 100). In order to analyze the resulting interaction energies, we also utilize an energy decomposition analysis (EDA) scheme which identifies contributions from permanent electrostatics, polarization, and van der Waals (vdW) interaction for the interaction between the QM solute and the solvent molecules described by AMOEBA. This facilitates a component-wise comparison against full QM calculations where the corresponding energy components are obtained via a modified version of the absolutely localized molecular orbitals (ALMO)-EDA. The results show that the present QM/AMOEBA model can yield reasonable solute-solvent interaction energies for neutral and cationic species, while further scrutiny reveals that this accuracy highly relies on the delicate balance between insufficiently favorable permanent electrostatics and softened vdW interaction. For anionic solutes where the charge penetration effect becomes more pronounced, the QM/MM interface turns out to be unbalanced. These results are consistent with and further elucidate our findings in a previous study using a slightly different QM/AMOEBA model ( Dziedzic et al. J. Chem. Phys. 2016 , 145 , 124106 ). The implications of these results for further refinement of this model are also discussed.
Collapse
Affiliation(s)
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Jacek Dziedzic
- School of Chemistry, University of Southampton , Highfield, Southampton SO17 1BJ, U.K.,Faculty of Applied Physics and Mathematics, Gdańsk University of Technology , Gdańsk 80-233, Poland
| | - Chris-Kriton Skylaris
- School of Chemistry, University of Southampton , Highfield, Southampton SO17 1BJ, U.K
| | | | - Martin Head-Gordon
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
39
|
Striolo A, Michaelides A, Joly L. The Carbon-Water Interface: Modeling Challenges and Opportunities for the Water-Energy Nexus. Annu Rev Chem Biomol Eng 2016; 7:533-56. [DOI: 10.1146/annurev-chembioeng-080615-034455] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Providing clean water and sufficient affordable energy to all without compromising the environment is a key priority in the scientific community. Many recent studies have focused on carbon-based devices in the hope of addressing this grand challenge, justifying and motivating detailed studies of water in contact with carbonaceous materials. Such studies are becoming increasingly important because of the miniaturization of newly proposed devices, with ubiquitous nanopores, large surface-to-volume ratio, and many, perhaps most of the water molecules in contact with a carbon-based surface. In this brief review, we discuss some recent advances obtained via simulations and experiments in the development of carbon-based materials for applications in water desalination. We suggest possible ways forward, with particular emphasis on the synergistic combination of experiments and simulations, with simulations now sometimes offering sufficient accuracy to provide fundamental insights. We also point the interested reader to recent works that complement our short summary on the state of the art of this important and fascinating field.
Collapse
Affiliation(s)
- Alberto Striolo
- Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Angelos Michaelides
- Thomas Young Centre, London Centre for Nanotechnology, and Department of Physics and Astronomy, University College London, London WC1H 0AH, United Kingdom
| | - Laurent Joly
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, France
| |
Collapse
|
40
|
Gaiduk AP, Govoni M, Seidel R, Skone JH, Winter B, Galli G. Photoelectron Spectra of Aqueous Solutions from First Principles. J Am Chem Soc 2016; 138:6912-5. [PMID: 27105336 DOI: 10.1021/jacs.6b00225] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a combined computational and experimental study of the photoelectron spectrum of a simple aqueous solution of NaCl. Measurements were conducted on microjets, and first-principles calculations were performed using hybrid functionals and many-body perturbation theory at the G0W0 level, starting with wave functions computed in ab initio molecular dynamics simulations. We show excellent agreement between theory and experiments for the positions of both the solute and solvent excitation energies on an absolute energy scale and for peak intensities. The best comparison was obtained using wave functions obtained with dielectric-dependent self-consistent and range-separated hybrid functionals. Our computational protocol opens the way to accurate, predictive calculations of the electronic properties of electrolytes, of interest to a variety of energy problems.
Collapse
Affiliation(s)
- Alex P Gaiduk
- Institute for Molecular Engineering, The University of Chicago , Chicago, Illinois 60637, United States
| | - Marco Govoni
- Institute for Molecular Engineering, The University of Chicago , Chicago, Illinois 60637, United States.,Materials Science Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Robert Seidel
- Methods for Material Development, Helmholtz-Zentrum Berlin für Materialien und Energie , D-12489 Berlin, Germany
| | - Jonathan H Skone
- Institute for Molecular Engineering, The University of Chicago , Chicago, Illinois 60637, United States
| | - Bernd Winter
- Methods for Material Development, Helmholtz-Zentrum Berlin für Materialien und Energie , D-12489 Berlin, Germany
| | - Giulia Galli
- Institute for Molecular Engineering, The University of Chicago , Chicago, Illinois 60637, United States.,Materials Science Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| |
Collapse
|
41
|
Sessa F, D’Angelo P, Guidoni L, Migliorati V. Hidden Hydration Structure of Halide Ions: an Insight into the Importance of Lone Pairs. J Phys Chem B 2015; 119:15729-37. [DOI: 10.1021/acs.jpcb.5b10636] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesco Sessa
- Dipartimento
di Chimica, “La Sapienza” Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Paola D’Angelo
- Dipartimento
di Chimica, “La Sapienza” Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Leonardo Guidoni
- Dipartimento
di Scienze Fisiche e Chimiche, Università degli Studi Dell’Aquila, Via Vetoio, L’Aquila, Italy
| | - Valentina Migliorati
- Dipartimento
di Chimica, “La Sapienza” Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|