1
|
Uvarov MN, Kobeleva ES, Degtyarenko KM, Zinovyev VA, Popov AA, Mostovich EA, Kulik LV. Fast Recombination of Charge-Transfer State in Organic Photovoltaic Composite of P3HT and Semiconducting Carbon Nanotubes Is the Reason for Its Poor Photovoltaic Performance. Int J Mol Sci 2023; 24:ijms24044098. [PMID: 36835508 PMCID: PMC9961616 DOI: 10.3390/ijms24044098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Although the photovoltaic performance of the composite of poly-3-hexylthiophene (P3HT) with semiconducting single-walled carbon nanotubes (s-SWCNT) is promising, the short-circuit current density jSC is much lower than that for typical polymer/fullerene composites. Out-of-phase electron spin echo (ESE) technique with laser excitation of the P3HT/s-SWCNT composite was used to clarify the origin of the poor photogeneration of free charges. The appearance of out-of-phase ESE signal is a solid proof that the charge-transfer state of P3HT+/s-SWCNT- is formed upon photoexcitation and the electron spins of P3HT+ and s-SWCNT- are correlated. No out-of-phase ESE signal was detected in the same experiment with pristine P3HT film. The out-of-phase ESE envelope modulation trace for P3HT/s-SWCNT composite was close to that for the polymer/fullerene photovoltaic composite PCDTBT/PC70BM, which implies a similar distance of initial charge separation in the range 2-4 nm. However, out-of-phase ESE signal decay with delay after laser flash increase for P3HT/s-SWCNT composite was much faster, with a characteristic time of 10 µs at 30 K. This points to the higher geminate recombination rate for the P3HT/s-SWCNT composite, which may be one of the reasons for the relatively poor photovoltaic performance of this system.
Collapse
Affiliation(s)
- Mikhail N. Uvarov
- Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena S. Kobeleva
- Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | | | - Vladimir A. Zinovyev
- Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexander A. Popov
- Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Laboratory of Organic Optoelectronics of the Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Evgeny A. Mostovich
- Laboratory of Organic Optoelectronics of the Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Leonid V. Kulik
- Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
2
|
Kobeleva E, Popov A, Baranov D, Uvarov M, Nevostruev D, Degtyarenko K, Gadirov R, Sukhikh A, Kulik L. Origin of poor photovoltaic performance of bis(tetracyanoantrathiophene) non-fullerene acceptor. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Kim T, Kim J, Ke XS, Brewster JT, Oh J, Sessler JL, Kim D. Magnetic-Field-Induced Modulation of Charge-Recombination Dynamics in a Rosarin-Fullerene Complex. Angew Chem Int Ed Engl 2021; 60:9379-9383. [PMID: 33590640 DOI: 10.1002/anie.202017332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 11/10/2022]
Abstract
Charge-recombination processes are critical for photovoltaic applications and should be suppressed for efficient charge transport. Here, we report that an applied magnetic field (0-1 T) can be used control the charge-recombination dynamics in an expanded rosarin-C60 complex. In the low magnetic field regime (<100 mT), the charge-recombination rate slows down due to hyperfine coupling, as inferred from transient absorption spectroscopic analyses. In contrast, in the high field regime, i.e., over 500 mT, the charge-recombination rate recovers and increases because the Δg mechanism facilitates spin conversion to a triplet charge-separated state (S to T0 ) that undergoes rapid charge-recombination to a localized rosarin triplet state. Therefore, we highlight the charge-recombination rate and the localized triplet state population can be modulated by the magnetic field in charge donor/acceptor non-covalent complexes.
Collapse
Affiliation(s)
- Taeyeon Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Republic of Korea.,Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois, 60208-3113, United States
| | - Juno Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Xian-Sheng Ke
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712-1224, USA
| | - James T Brewster
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712-1224, USA
| | - Juwon Oh
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Republic of Korea.,Department of Chemistry, Soonchunhyang University, Chungnam, 31538, Republic of Korea
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712-1224, USA
| | - Dongho Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
4
|
Kim T, Kim J, Ke X, Brewster JT, Oh J, Sessler JL, Kim D. Magnetic‐Field‐Induced Modulation of Charge‐Recombination Dynamics in a Rosarin‐Fullerene Complex. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Taeyeon Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University Seoul 03722 Republic of Korea
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern Northwestern University Evanston, Illinois 60208-3113 United States
| | - Juno Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University Seoul 03722 Republic of Korea
| | - Xian‐Sheng Ke
- Department of Chemistry The University of Texas at Austin Austin TX 78712-1224 USA
| | - James T. Brewster
- Department of Chemistry The University of Texas at Austin Austin TX 78712-1224 USA
| | - Juwon Oh
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University Seoul 03722 Republic of Korea
- Department of Chemistry Soonchunhyang University Chungnam 31538 Republic of Korea
| | - Jonathan L. Sessler
- Department of Chemistry The University of Texas at Austin Austin TX 78712-1224 USA
| | - Dongho Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
5
|
Beletskaya EA, Lukina EA, Uvarov MN, Popov AA, Kulik LV. Geminate recombination in organic photovoltaic blend PCDTBT/PC 71BM studied by out-of-phase electron spin echo spectroscopy. J Chem Phys 2020; 152:044706. [PMID: 32007084 DOI: 10.1063/1.5131855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The key process in organic solar cell operation is charge separation under light illumination. Due to the low dielectric constant of organic materials, the Coulomb attraction energy within the interfacial charge-transfer state (CTS) is larger than the thermal energy. Understanding the mechanism of charge separation at the organic donor/acceptor interface still remains a challenge and requires knowledge of the CTS temporal evolution. To address this problem, the CTS in the benchmark photovoltaic blend PCDTBT/PC71BM was studied by the out-of-phase Electron Spin Echo (ESE). The protocol for determining the CTS geminate recombination rate for certain electron-hole distances was developed. Simulating the out-of-phase ESE trace for the CTS in the PCDTBT/PC71BM blend allows precise determination of the electron-hole distance distribution function and its evolution with the increase in the delay after the laser flash. Distances of charge separation up to 6 nm were detected upon thermalization at a temperature of 20 K. Assuming the exponential decay of the recombination rate, the attenuation factor β = 0.08 Å-1 is estimated for the PCDTBT/PC71BM blend. Such a low attenuation factor is probably caused by a high degree of hole delocalization along the PCDTBT chain.
Collapse
Affiliation(s)
- E A Beletskaya
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya Str. 3, 630090 Novosibirsk, Russia
| | - E A Lukina
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya Str. 3, 630090 Novosibirsk, Russia
| | - M N Uvarov
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya Str. 3, 630090 Novosibirsk, Russia
| | - A A Popov
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya Str. 3, 630090 Novosibirsk, Russia
| | - L V Kulik
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya Str. 3, 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
Krinichnyi VI, Yudanova EI, Bogatyrenko VR. Light-induced EPR study of spin-assisted charge transport in PFOT:PC61BM composite. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.12.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|