1
|
Thitla T, Kumla J, Hongsanan S, Senwanna C, Khuna S, Lumyong S, Suwannarach N. Exploring diversity rock-inhabiting fungi from northern Thailand: a new genus and three new species belonged to the family Herpotrichiellaceae. Front Cell Infect Microbiol 2023; 13:1252482. [PMID: 37692164 PMCID: PMC10485699 DOI: 10.3389/fcimb.2023.1252482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023] Open
Abstract
Members of the family Herpotrichiellaceae are distributed worldwide and can be found in various habitats including on insects, plants, rocks, and in the soil. They are also known to be opportunistic human pathogens. In this study, 12 strains of rock-inhabiting fungi that belong to Herpotrichiellaceae were isolated from rock samples collected from forests located in Lamphun and Sukhothai provinces of northern Thailand during the period from 2021 to 2022. On the basis of the morphological characteristics, growth temperature, and multi-gene phylogenetic analyses of a combination of the internal transcribed spacer, the large subunit, and the small subunit of ribosomal RNA, beta tubulin and the translation elongation factor 1-a genes, the new genus, Petriomyces gen. nov., has been established to accommodate the single species, Pe. obovoidisporus sp. nov. In addition, three new species of Cladophialophora have also been introduced, namely, Cl. rupestricola, Cl. sribuabanensis, and Cl. thailandensis. Descriptions, illustrations, and a phylogenetic trees indicating the placement of these new taxa are provided. Here, we provide updates and discussions on the phylogenetic placement of other fungal genera within Herpotrichiellaceae.
Collapse
Affiliation(s)
- Tanapol Thitla
- Master of Science Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Sinang Hongsanan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Chanokned Senwanna
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Surapong Khuna
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
2
|
Carr EC, Barton Q, Grambo S, Sullivan M, Renfro CM, Kuo A, Pangilinan J, Lipzen A, Keymanesh K, Savage E, Barry K, Grigoriev IV, Riekhof WR, Harris SD. Characterization of a novel polyextremotolerant fungus, Exophiala viscosa, with insights into its melanin regulation and ecological niche. G3 (BETHESDA, MD.) 2023; 13:jkad110. [PMID: 37221014 PMCID: PMC10411609 DOI: 10.1093/g3journal/jkad110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/25/2023]
Abstract
Black yeasts are polyextremotolerant fungi that contain high amounts of melanin in their cell wall and maintain a primar yeast form. These fungi grow in xeric, nutrient depletes environments which implies that they require highly flexible metabolisms and have been suggested to contain the ability to form lichen-like mutualisms with nearby algae and bacteria. However, the exact ecological niche and interactions between these fungi and their surrounding community are not well understood. We have isolated 2 novel black yeasts from the genus Exophiala that were recovered from dryland biological soil crusts. Despite notable differences in colony and cellular morphology, both fungi appear to be members of the same species, which has been named Exophiala viscosa (i.e. E. viscosa JF 03-3 Goopy and E. viscosa JF 03-4F Slimy). A combination of whole genome sequencing, phenotypic experiments, and melanin regulation experiments have been performed on these isolates to fully characterize these fungi and help decipher their fundamental niche within the biological soil crust consortium. Our results reveal that E. viscosa is capable of utilizing a wide variety of carbon and nitrogen sources potentially derived from symbiotic microbes, can withstand many forms of abiotic stresses, and excretes melanin which can potentially provide ultraviolet resistance to the biological soil crust community. Besides the identification of a novel species within the genus Exophiala, our study also provides new insight into the regulation of melanin production in polyextremotolerant fungi.
Collapse
Affiliation(s)
- Erin C Carr
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Quin Barton
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Sarah Grambo
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Mitchell Sullivan
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Cecile M Renfro
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Keykhosrow Keymanesh
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emily Savage
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Wayne R Riekhof
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Steven D Harris
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Torres-Garcia D, García D, Réblová M, Jurjević Ž, Hubka V, Gené J. Diversity and novel lineages of black yeasts in Chaetothyriales from freshwater sediments in Spain. PERSOONIA 2023; 51:194-228. [PMID: 38665982 PMCID: PMC11041900 DOI: 10.3767/persoonia.2023.51.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/19/2023] [Indexed: 04/28/2024]
Abstract
Black yeasts comprise a group of Ascomycota of the order Chaetothyriales with highly variable morphology, a great diversity of ecological niches and life cycles. Despite the ubiquity of these fungi, their diversity in freshwater sediments is still poorly understood. During a survey of culturable Ascomycota from river and stream sediments in various sampling sites in Spain, we obtained 47 isolates of black yeasts by using potato dextrose agar supplemented with cycloheximide. A preliminary morphological study and sequence analyses of the internal transcribed spacer region (ITS) and the large subunit (LSU) of the nuclear rDNA revealed that most of the isolates belonged to the family Herpotrichiellaceae. We have confidently identified 30 isolates representing the following species: Capronia pulcherrima, Cladophialophora emmonsii, Exophiala equina, Exophiala pisciphila, Exophiala radicis, and Phialophora americana. However, we encountered difficulty in assigning 17 cultures to any known species within Chaetothyriales. Combining phenotypic and multi-locus phylogenetic analyses based on the ITS, LSU, β-tubulin (tub2) and translation elongation factor 1-α (tef1-α) gene markers, we propose the new genus Aciculomyces in the Herpotrichiellaceae to accommodate the novel species Aciculomyces restrictus. Other novel species in this family include Cladophialophora denticulata, Cladophialophora heterospora, Cladophialophora irregularis, Exophiala candelabrata, Exophiala dehoogii, Exophiala ramosa, Exophiala verticillata and Phialophora submersa. The new species Cyphellophora spiralis, closely related to Cyphellophora suttonii, is described, and the phylogeny of the genus Anthopsis in the family Cyphellophoraceae is discussed. By utilizing these four markers, we were able to strengthen the phylogenetic resolution and provide more robust taxonomic assessments within the studied group. Our findings indicate that freshwater sediments may serve as a reservoir for intriguing black yeasts, which warrant further investigation to address gaps in phylogenetic relationships, particularly within Herpotrichiellaceae. Citation: Torres-Garcia D, García D, Réblová M, et al. 2023. Diversity and novel lineages of black yeasts in Chaetothyriales from freshwater sediments in Spain. Persoonia 51: 194-228. doi: 10.3767/persoonia.2023.51.05.
Collapse
Affiliation(s)
- D. Torres-Garcia
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut and IU-RESCAT, Unitat de Micologia i Microbiologia Ambiental, Reus, Catalonia, Spain
| | - D. García
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut and IU-RESCAT, Unitat de Micologia i Microbiologia Ambiental, Reus, Catalonia, Spain
| | - M. Réblová
- The Czech Academy of Sciences, Institute of Botany, Department of Taxonomy, Průhonice, Czech Republic
| | - Ž. Jurjević
- EMSL Analytical, Cinnaminson, New Jersey, USA
| | - V. Hubka
- Charles University, Faculty of Science, Department of Botany, Prague, Czech Republic
- The Czech Academy of Sciences, Institute of Microbiology, Laboratory of Fungal Genetics and Metabolism, Prague, Czech Republic
| | - J. Gené
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut and IU-RESCAT, Unitat de Micologia i Microbiologia Ambiental, Reus, Catalonia, Spain
| |
Collapse
|
4
|
The origin of human pathogenicity and biological interactions in Chaetothyriales. FUNGAL DIVERS 2023. [DOI: 10.1007/s13225-023-00518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
AbstractFungi in the order Chaetothyriales are renowned for their ability to cause human infections. Nevertheless, they are not regarded as primary pathogens, but rather as opportunists with a natural habitat in the environment. Extremotolerance is a major trend in the order, but quite different from black yeasts in Capnodiales which focus on endurance, an important additional parameter is advancing toxin management. In the ancestral ecology of rock colonization, the association with metabolite-producing lichens is significant. Ant-association, dealing with pheromones and repellents, is another mainstay in the order. The phylogenetically derived family, Herpotrichiellaceae, shows dual ecology in monoaromatic hydrocarbon assimilation and the ability to cause disease in humans and cold-blooded vertebrates. In this study, data on ecology, phylogeny, and genomics were collected and analyzed in order to support this hypothesis on the evolutionary route of the species of Chaetothyriales. Comparing the ribosomal tree with that of enzymes involved in toluene degradation, a significant expansion of cytochromes is observed and the toluene catabolism is found to be complete in some of the Herpotrichiellaceae. This might enhance human systemic infection. However, since most species have to be traumatically inoculated in order to cause disease, their invasive potential is categorized as opportunism. Only in chromoblastomycosis, true pathogenicity might be surmised. The criterion would be the possible escape of agents of vertebrate disease from the host, enabling dispersal of adapted genotypes to subsequent generations.
Collapse
|
5
|
Fungi associated with woody tissues of Acer pseudoplatanus in forest stands with different health status concerning sooty bark disease (Cryptostroma corticale). Mycol Prog 2023. [DOI: 10.1007/s11557-022-01861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AbstractFrom 2018 to 2020, Germany experienced periods of exceptional weather conditions. Extremely high summer temperatures and precipitation deficits induced stress and mortality in forest trees. Acer pseudoplatanus (sycamore) was one of the affected tree species. Symptoms of sooty bark disease (SBD) and severe damage of entire stands, both caused by the fungal species Cryptostroma corticale, were reported more frequently. To explore the non-symptomatic distribution of C. corticale, wood cores from visibly healthy sycamore stems were sampled and all outgrowing fungi were identified and recorded. In total, 50 trees, aged 30–65 years, were sampled at five different forest stands, from which 91 endophytic filamentous morphotypes could be isolated. The fungal endophytic community in the woody tissue of the sycamore trees varied greatly at the different sites and between the trees. The number of isolated morphotypes at the different sites ranged from 13 to 44 and no morphotype was found at all sites. At 1.20-m stem height, 3.3 fungi could be isolated from woody tissue per tree on average. The most abundant species isolated from visibly healthy sycamore in regard to both occurrence at the studied sites and continuity was C. corticale. It was recorded at four of the studied forest stands, from 26% of all studied sycamore trees, and had a frequency of 7.85% relative to the 293 isolated filamentous strains that were isolated. The second most abundant species was Xylaria longipes followed by Lopadostoma turgidum. In this study clear evidence for the endophytic lifestyle of C. corticale is presented which thus appears to be spread further than expected based on visible SBD symptoms.
Collapse
|
6
|
Lv R, Yang X, Qiao M, Fang L, Li J, Yu Z. Exophialayunnanensis and Exophialayuxiensis (Chaetothyriales, Herpotrichiellaceae), two new species of soil-inhabiting Exophiala from Yunnan Province, China. MycoKeys 2022; 94:109-124. [PMID: 36760541 PMCID: PMC9836470 DOI: 10.3897/mycokeys.94.96782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
During a survey of soil fungi collected from Yunnan Province, China, two new species of Exophiala, E.yunnanensis and E.yuxiensis, were isolated from the soil of karst rocky desertification (KRD). The DNA sequences of these respective strains, including internal transcribed spacers (ITS), large subunit nuclear ribosomal RNA (LSU rRNA), partial small subunit (SSU) and β-tubulin (tub2) were sequenced and compared with those from species closely-related to Exophiala. Exophialayunnanensis differs from the phylogenetically closely related E.nagquensis and E.brunnea by its smaller aseptate conidia. Exophialayuxiensis is phylogenetically related to E.lecanii-corni, E.lavatrina and E.mali, but can be distinguished from them by its larger conidia. Full descriptions, illustrations and phylogenetic positions of E.yunnanensis and E.yuxiensis were provided.
Collapse
Affiliation(s)
- Ruili Lv
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| | - Xiaoqian Yang
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| | - Min Qiao
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| | - Linlin Fang
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| | - Jianying Li
- Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming 650221, ChinaKunming Edible Fungi Institute of All China Federation of Supply and Marketing CooperativesKunmingChina
| | - Zefen Yu
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| |
Collapse
|
7
|
Thitla T, Kumla J, Khuna S, Lumyong S, Suwannarach N. Species Diversity, Distribution, and Phylogeny of Exophiala with the Addition of Four New Species from Thailand. J Fungi (Basel) 2022; 8:766. [PMID: 35893134 PMCID: PMC9331753 DOI: 10.3390/jof8080766] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
The genus Exophiala is an anamorphic ascomycete fungus in the family Herpotrichiellaceae of the order Chaetothyriales. Exophiala species have been classified as polymorphic black yeast-like fungi. Prior to this study, 63 species had been validated, published, and accepted into this genus. Exophiala species are known to be distributed worldwide and have been isolated in various habitats around the world. Several Exophiala species have been identified as potential agents of human and animal mycoses. However, in some studies, Exophiala species have been used in agriculture and biotechnological applications. Here, we provide a brief review of the diversity, distribution, and taxonomy of Exophiala through an overview of the recently published literature. Moreover, four new Exophiala species were isolated from rocks that were collected from natural forests located in northern Thailand. Herein, we introduce these species as E. lamphunensis, E. lapidea, E. saxicola, and E. siamensis. The identification of these species was based on a combination of morphological characteristics and molecular analyses. Multi-gene phylogenetic analyses of a combination of the internal transcribed spacer (ITS) and small subunit (nrSSU) of ribosomal DNA, along with the translation elongation factor (tef), partial β-tubulin (tub), and actin (act) genes support that these four new species are distinct from previously known species of Exophiala. A full description, illustrations, and a phylogenetic tree showing the position of four new species are provided.
Collapse
Affiliation(s)
- Tanapol Thitla
- Master of Science Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Surapong Khuna
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
8
|
Phukhamsakda C, Nilsson RH, Bhunjun CS, de Farias ARG, Sun YR, Wijesinghe SN, Raza M, Bao DF, Lu L, Tibpromma S, Dong W, Tennakoon DS, Tian XG, Xiong YR, Karunarathna SC, Cai L, Luo ZL, Wang Y, Manawasinghe IS, Camporesi E, Kirk PM, Promputtha I, Kuo CH, Su HY, Doilom M, Li Y, Fu YP, Hyde KD. The numbers of fungi: contributions from traditional taxonomic studies and challenges of metabarcoding. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00502-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractThe global diversity of fungi has been estimated using several different approaches. There is somewhere between 2–11 million estimated species, but the number of formally described taxa is around 150,000, a tiny fraction of the total. In this paper, we examine 12 ascomycete genera as case studies to establish trends in fungal species descriptions, and introduce new species in each genus. To highlight the importance of traditional morpho-molecular methods in publishing new species, we introduce novel taxa in 12 genera that are considered to have low species discovery. We discuss whether the species are likely to be rare or due to a lack of extensive sampling and classification. The genera are Apiospora, Bambusicola, Beltrania, Capronia, Distoseptispora, Endocalyx, Neocatenulostroma, Neodeightonia, Paraconiothyrium, Peroneutypa, Phaeoacremonium and Vanakripa. We discuss host-specificity in selected genera and compare the number of species epithets in each genus with the number of ITS (barcode) sequences deposited in GenBank and UNITE. We furthermore discuss the relationship between the divergence times of these genera with those of their hosts. We hypothesize whether there might be more species in these genera and discuss hosts and habitats that should be investigated for novel species discovery.
Collapse
|
9
|
Qiu L, Liu JW, Zhang K, Castañeda-Ruíz RF, Xu ZH, Ma J. Neoveronaea sinensis gen. & sp. nov. from Jiangxi, China. MYCOTAXON 2022. [DOI: 10.5248/137.485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
A new hyphomycete genus and species, Neoveronaea sinensis, is described from Jiangxi Province, southern China. Neoveronaea is characterized by its macronematous conidiophores, and euseptate, obovoid to ellipsoidal, pale brown, smooth conidia. Phylogenetic analyses of partial
DNA sequences of internal transcribed spacer (ITS) and nuclear ribosomal large subunit (LSU), using Maximum-Likelihood and Bayesian Inference, reveal the taxonomic placement of Neoveronaea within the Herpotrichiellaceae, in which it forms a lineage distinct from other genera.
Collapse
|
10
|
A new lineage of mazaediate fungi in the Eurotiomycetes: Cryptocaliciomycetidae subclass. nov., based on the new species Cryptocalicium blascoi and the revision of the ascoma evolution. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01710-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe class Eurotiomycetes (Ascomycota, Pezizomycotina) comprises important fungi used for medical, agricultural, industrial and scientific purposes. Eurotiomycetes is a morphologically and ecologically diverse monophyletic group. Within the Eurotiomycetes, different ascoma morphologies are found including cleistothecia and perithecia but also apothecia or stromatic forms. Mazaediate representatives (with a distinct structure in which loose masses of ascospores accumulate to be passively disseminated) have evolved independently several times. Here we describe a new mazaediate species belonging to the Eurotiomycetes. The multigene phylogeny produced (7 gene regions: nuLSU, nuSSU, 5.8S nuITS, mtSSU, RPB1, RPB2 and MCM7) placed the new species in a lineage sister to Eurotiomycetidae. Based on the evolutionary relationships and morphology, a new subclass, a new order, family and genus are described to place the new species: Cryptocalicium blascoi. This calicioid species occurs on the inner side of loose bark strips of Cupressaceae (Cupressus, Juniperus). Morphologically, C. blascoi is characterized by having minute apothecioid stalked ascomata producing mazaedia, clavate bitunicate asci with hemiamyloid reaction, presence of hamathecium and an apothecial external surface with dark violet granules that becomes turquoise green in KOH. The ancestral state reconstruction analyses support a common ancestor with open ascomata for all deep nodes in Eurotiomycetes and the evolution of closed ascomata (cleistothecioid in Eurotiomycetidae and perithecioid in Chaetothyriomycetidae) from apothecioid ancestors. The appropriateness of the description of a new subclass for this fungus is also discussed.
Collapse
|
11
|
Abstract
AbstractChaetothyriales is an ascomycetous order within Eurotiomycetes. The order is particularly known through the black yeasts and filamentous relatives that cause opportunistic infections in humans. All species in the order are consistently melanized. Ecology and habitats of species are highly diverse, and often rather extreme in terms of exposition and toxicity. Families are defined on the basis of evolutionary history, which is reconstructed by time of divergence and concepts of comparative biology using stochastical character mapping and a multi-rate Brownian motion model to reconstruct ecological ancestral character states. Ancestry is hypothesized to be with a rock-inhabiting life style. Ecological disparity increased significantly in late Jurassic, probably due to expansion of cytochromes followed by colonization of vacant ecospaces. Dramatic diversification took place subsequently, but at a low level of innovation resulting in strong niche conservatism for extant taxa. Families are ecologically different in degrees of specialization. One of the clades has adapted ant domatia, which are rich in hydrocarbons. In derived families, similar processes have enabled survival in domesticated environments rich in creosote and toxic hydrocarbons, and this ability might also explain the pronounced infectious ability of vertebrate hosts observed in these families. Conventional systems of morphological classification poorly correspond with recent phylogenetic data. Species are hypothesized to have low competitive ability against neighboring microbes, which interferes with their laboratory isolation on routine media. The dataset is unbalanced in that a large part of the extant biodiversity has not been analyzed by molecular methods, novel taxonomic entities being introduced at a regular pace. Our study comprises all available species sequenced to date for LSU and ITS, and a nomenclatural overview is provided. A limited number of species could not be assigned to any extant family.
Collapse
|
12
|
Rustler S, Stolz A. Isolation and characterization of a nitrile hydrolysing acidotolerant black yeast-Exophiala oligosperma R1. Appl Microbiol Biotechnol 2007; 75:899-908. [PMID: 17361431 DOI: 10.1007/s00253-007-0890-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 02/13/2007] [Accepted: 02/13/2007] [Indexed: 11/30/2022]
Abstract
Different nitriles were used as sole sources of nitrogen in a series of enrichments under acidic conditions to isolate acidotolerant nitriles hydrolysing microorganisms. From an enrichment in Na-citrate-phosphate buffer at pH 4 with glucose as carbon source and phenylacetonitrile as sole source of nitrogen, a black yeast (strain R1) was obtained which was identified by subsequent 18S rRNA gene sequencing as Exophiala oligosperma. The growth conditions of the organism were optimized for the production of cell material and the induction of the nitrile converting activity. Resting cell experiments demonstrated that phenylacetonitrile was converted via phenylacetic acid and 2-hydroxyphenylacetic acid. The organism could grow at pH 4 with phenylacetonitrile as sole source of carbon, nitrogen, and energy. The nitriles hydrolysing activity was also detected in cell-free extracts and indications for a nitrilase activity were found. The cell-free extracts converted, in addition to phenylacetonitrile, also different substituted phenylacetonitriles. Whole cells of E. oligosperma R1 converted phenylacetonitrile with almost the same reaction rates in the pH range from pH 1.5-pH 9.
Collapse
Affiliation(s)
- Sven Rustler
- Institut für Mikrobiologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | |
Collapse
|
13
|
Bates ST, Reddy GSN, Garcia-Pichel F. Exophiala crusticola anam. nov. (affinity Herpotrichiellaceae), a novel black yeast from biological soil crusts in the Western United States. Int J Syst Evol Microbiol 2006; 56:2697-2702. [PMID: 17082414 DOI: 10.1099/ijs.0.64332-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel black yeast-like fungus,Exophiala crusticola, is described based on two closely related isolates from biological soil crust (BSC) samples collected on the Colorado Plateau (Utah) and in the Great Basin desert (Oregon), USA. Their morphology places them in the anamorphic genusExophiala, having affinities to the familyHerpotrichiellaceae(Ascomycota). Phylogenetic analysis of their D1/D2 large subunit nuclear ribosomal RNA (LSU nrRNA) gene sequences suggests that they represent a distinct species. The closest known putative relative toExophiala crusticolaisCapronia coronataSamuels, isolated from decorticated wood in Westland County, New Zealand. The holotype forExophiala crusticolaanam. nov. is UAMH 10686 and the type strain is CP141bT(=ATCC MYA-3639T=CBS 119970T=DSM 16793T). Dark-pigmented fungi appear to constitute an important heterotrophic component of soil crusts andExophiala crusticolarepresents the first description of a dematiaceous fungus isolated from BSCs.
Collapse
Affiliation(s)
- Scott T Bates
- School of Life Sciences, Arizona State University, Main Campus, Tempe, AZ-85287-4501, USA
| | - Gundlapally S N Reddy
- School of Life Sciences, Arizona State University, Main Campus, Tempe, AZ-85287-4501, USA
| | - Ferran Garcia-Pichel
- School of Life Sciences, Arizona State University, Main Campus, Tempe, AZ-85287-4501, USA
| |
Collapse
|
14
|
Untereiner WA, Naveau FA, Bachewich J, Angus A. Evolutionary relationships ofHyphodiscus hymeniophilus(anamorphCatenulifera rhodogena) inferred from β-tubulin and nuclear ribosomal DNA sequences. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b05-165] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During an investigation of lignicolous ascomycetes from Luxembourg, we isolated a Phialophora -like species that produced striking red colonies. To confirm the identity of this fungus as Catenulifera rhodogena , we compared it with isolates of Catenulifera rhodogena and Hyphodiscus hymeniophilus on a variety of media. Portions of the β-tubulin gene and the nuclear ribosomal DNA cistron (internal transcribed spacers (ITS) and large subunit (LSU)) were sequenced to examine the relationship of isolates of Catenulifera rhodogena and Hyphodiscus hymeniophilus from different substrates and to test the hypothesis that Cadophora and Catenulifera are congeneric. The phylogenetic position of Catenulifera within the Ascomycota was investigated based on the analysis of the small-subunit (SSU) rDNA sequences. The isolates examined were indistinguishable micromorphologically and closely related phylogenetically. Three strains of Catenulifera rhodogena from bark or wood and one strain from Piptoporus betulinus formed a strongly supported clade in analyses of β-tubulin and ITS sequences. This clade did not encompass the ex-type isolates of Cistella rubescens and Scopulariopsis rhodogena or a second isolate of Catenulifera rhodogena from Piptoporus betulinus. Analysis of partial LSU sequences confirmed the close phylogenetic relationship of Catenulifera rhodogena and Hyphodiscus hymeniophilus but provided no evidence that the isolates could be grouped by substrate or that Catenulifera is synonymous with Cadophora. The position of Catenulifera within the Helotiales was not resolved based on the comparison of LSU and SSU sequences, but the isolate for which we obtained complete SSU sequence grouped with the root endophyte Phialocephala fortinii. Comparison of ITS sequences confirmed the close phylogenetic relationship of Hyphodiscus to members of the Dermateaceae and Hyaloscyphaceae.
Collapse
Affiliation(s)
- Wendy A. Untereiner
- Department of Botany, Brandon University, Brandon, MB R7A 6A9, Canada
- Euroscreen, Route de Lennik 808, Bâtiment C, Brussels, B-1070 Belgium
| | - Françoise A. Naveau
- Department of Botany, Brandon University, Brandon, MB R7A 6A9, Canada
- Euroscreen, Route de Lennik 808, Bâtiment C, Brussels, B-1070 Belgium
| | - Jason Bachewich
- Department of Botany, Brandon University, Brandon, MB R7A 6A9, Canada
- Euroscreen, Route de Lennik 808, Bâtiment C, Brussels, B-1070 Belgium
| | - Andrea Angus
- Department of Botany, Brandon University, Brandon, MB R7A 6A9, Canada
- Euroscreen, Route de Lennik 808, Bâtiment C, Brussels, B-1070 Belgium
| |
Collapse
|
15
|
Abstract
A wide range of ascomycetous microfungi inhabits roots without forming the anatomical features typical of mycorrhizas or causing overt signs of pathogenesis. The most-studied taxa have darkly pigmented hyphal walls and are referred to as "dark septate endophytes" (DSE). We provide a dichotomous key and annotated descriptions for a cross-section of the most common dark septate endophytes. The term DSE is sometimes used to imply taxonomic and physiological similarity even though a diverse range of root endophytic taxa form pigmented hyphae. Among these, Phialocephala fortinii Wang & Wilcox is a well-known representative; it is widespread, easily observed in roots, and readily grown in culture and with plants. Nevertheless, the basis of its symbiotic relationship with plants remains ambiguous. It may be a weak pathogen, a saprotroph on senescent root tissues, or a mutualist. More detailed studies of interactions between identified taxa of microfungal endophytes and host plants are necessary to elucidate the functional basis of these symbioses; it may be necessary to look beyond the paradigms of traditional mycorrhizal and pathogenic associations to understand the ecological roles of these fungi. Reports of cryptic speciation in Phialocephala fortinii emphasize the need for accurate identification of isolates of microfungal endophytes used in experiments.Key words: dark septate endophytes (DSE), Phialocephala fortinii, mycorrhiza, fungushost interactions, fungi.
Collapse
|
16
|
Abstract
Azure dye-impregnated sheep's wool keratin (keratin azure) was incorporated in a high pH medium and overlaid on a keratin-free basal medium. The release and diffusion of the azure dye into the lower layer indicated production of keratinase. Fifty-eight fungal taxa, including 49 members of the Arthrodermataceae, Gymnoascaceae and Onygenaceae (Order Onygenales), were assessed for keratin degradation using this method. The results were comparable to measures of keratin utilization reported in studies using tests based on the perforation or erosion of human hair in vitro.
Collapse
Affiliation(s)
- J A Scott
- Department of Public Health Sciences/Gage Occupational and Environmental Health Unit, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
17
|
Seifert KA, Nickerson NL, Corlett M, Jackson ED, Louis-Seize G, Davies RJ. Devriesia, a new hyphomycete genus to accommodate heat-resistant, cladosporium-like fungi. ACTA ACUST UNITED AC 2004. [DOI: 10.1139/b04-070] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three new species of heat-resistant fungi related to the hyphomycete Cladosporium staurophorum (Kendrick) M.B. Ellis were isolated from heat-treated soil from commercial lowbush blueberry fields and other sites in eastern Canada. Cladosporium staurophorum and the three new species produce characteristic dark, multicelled chlamy dospores. Phylogenetic analysis of nuclear ribosomal internal transcribed spacer DNA sequences suggest that these four species form a monophyletic group that is marginal in the Mycosphaerellaceae and phylogenetically distinct from Cladosporium sensu stricto. The new genus Devriesia is described for C. staurophorum, the three new species, and a fifth species originally described as Cladosporium chlamydosporis. A key to distinguish the five accepted species is provided. The species of the genus are dimorphic and share similar cladosporium-like conidial anamorphs consisting of pale brown, short, acropetally produced chains of cylindrical to fusiform, zero- or one-septate conidia and ramoconidia, diagnostic chlamydosporic synanamorphs, and a soil-borne, heat-resistant ecology. Devriesia acadiensis N.L. Nickerson & Seifert, with clover-shaped chlamydospores, Devriesia shelburniensis N.L. Nickerson & Seifert, with large, multi celled chlamydospores, and Devriesia thermodurans N.L. Nickerson & Seifert, with few-celled, clavate chlamy dospores, are described as new species. Chlamydospores from cultures of D. acadiensis, Devriesia staurophora, and D. thermodurans germinated after exposure to 75 °C for 30 min. Germination of these spores was activated by a heat shock. Chlamydospores from cultures of C. shelburniensis did not germinate after heat exposure.Key words: dematiaceous hyphomycetes, heat-resistant fungi, lowbush blueberries, Vaccinium angustifolium, ITS rDNA phylogeny.
Collapse
|
18
|
Untereiner WA, Débois V, Naveau FA. Molecular systematics of the ascomycete genus Farrowia (Chaetomiaceae). ACTA ACUST UNITED AC 2001. [DOI: 10.1139/b01-009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genus Farrowia D. Hawksworth was established for members of the Chaetomiaceae with Botryotrichum-like anamorphs and long-necked ascomata, but the separation of Farrowia from Chaetomium Kunze has been questioned by mycologists who did not consider these characters to be significant at the generic level. The recent description of a species of Chaetomium with an aleurioconidial anamorph and long-necked ascomata prompted us to explore this question employing molecular characters. We sequenced a portion of the nuclear large ribosomal subunit rRNA gene (28S) of members of the Sordariales including species of Chaetomium, Farrowia and Thielavia. Phylogenetic analyses confirmed the monophyly of the Sordariales and the close relationship of Aporothielavia leptoderma to the genus Chaetomium. A sequence-based phylogeny identified a well-supported clade that included Chaetomium floriforme, Chaetomium sphaerale, members of the genus Farrowia, and longicollous species of Chaetomium with aleurioconidial anamorphs. A clade containing Chaetomium brevipilium, Chaetomium cuyabenoensis, Chaetomium homopilatum and species of Farrowia was inferred from the analysis of morphological characters, but this data set was found to be incongruent with the 28S sequence data. While these results are in agreement with the hypothesis that species of Farrowia comprise a group of closely related taxa, they do not provide strong support for the recognition of the genus Farrowia.Key words: anamorph, aleurioconidia, Botryotrichum, Chaetomium, 28S ribosomal RNA gene sequences.
Collapse
|