1
|
Rehfeld JF. Cholecystokinin - portrayal of an unfolding peptide messenger system. Peptides 2025; 186:171369. [PMID: 39983917 DOI: 10.1016/j.peptides.2025.171369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
This review describes how the classic gut hormone, cholecystokinin (CCK), should be comprehended in 2025. In the early physiological tradition of studying gastrointestinal hormones, the hormones were named after the function that lead to their discovery. Hence, in 1928, the hormonal factor in the upper gut that regulated gallbladder contraction was called cholecystokinin. In 1968, Viktor Mutt and Erik Jorpes identified the porcine structure of this factor as an O-sulfated and carboxyamidated peptide of 33 amino acid residues (CCK-33). Its C-terminal bioactive heptapeptide amide turned out to be homologous to that of the antral hormone, gastrin. The structure allowed in vitro synthesis of peptide fragments for physiological studies and for production of CCK-antibodies for immunoassays and immunohistochemistry. Today, these tools have revealed CCK to be highly complex: CCK is a heterogenous, multifunctional peptide messenger system, widely expressed both in and outside the gut. Thus, the CCK gene encodes six different bioactive peptides (CCK-83, -58, -33, -22, -8, and -5) that are expressed in a cell-specific manner in O-sulfated and non-sulfated forms. Moreover, CCK peptides are not only hormones. They are also potent neurotransmitters, paracrine growth and satiety factors, anti-inflammatory cytokines, incretins, potential fertility factors and useful tumor-markers. Moreover, CCK has a phylogenetic history of nearly 600 million years. Particular interest has been given to the neuroscience of CCK, because CCK is the predominant peptide transmitter in the brain, expressed in amounts that surpass any other neuropeptide. Vice versa, the brain is the main production site of CCK in mammals.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Rehfeld JF. The cckOMA syndrome and its relation to the Zollinger-Ellison syndrome: a diagnostic challenge. Scand J Gastroenterol 2024; 59:533-542. [PMID: 38299632 DOI: 10.1080/00365521.2024.2308532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 02/02/2024]
Abstract
OBJECTIVE Among patients with enteropancreatic neuroendocrine tumor syndromes only one case with a cholecystokinin (CCK) secreting tumor has been reported. She had significant hyperCCKemia leading to a specific syndrome of severe diarrheas, weight loss, repeated duodenal ulcers and a permanently contracted gallbladder with gallstones. There are, however, reasons to believe that further CCKomas exist, for instance among Zollinger-Ellison patients with normal plasma gastrin concentrations. The present review is a call to gastroenterologists for awareness of such CCKoma patients. METHOD After a short case report, the normal endocrine and oncological biology of CCK is described. Subsequently, the CCKoma symptoms are discussed with particular reference to the partly overlapping symptoms of the Zollinger-Ellison syndrome. In this context, the diagnostic use of truly specific CCK and gastrin assays are emphasized. The discussion also entails the problem of access to accurate CCK measurements. CONCLUSION Obviously, the clinical awareness about the CCKoma syndrome is limited. Moreover, it is also likely that the knowledge about the necessary specificity demands of diagnostic gastrin and CCK assays have obscured proper diagnosis of the CCKoma syndromes in man.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
3
|
Rehfeld JF, Goetze JP. Gastrointestinal hormones: History, biology, and measurement. Adv Clin Chem 2024; 118:111-154. [PMID: 38280804 DOI: 10.1016/bs.acc.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
This chapter attempts to provide an all-round picture of a dynamic and major branch of modern endocrinology, i.e. the gastrointestinal endocrinology. The advances during the last half century in our understanding of the dimensions and diversity of gut hormone biology - inside as well as outside the digestive tract - are astounding. Among major milestones are the dual brain-gut relationship, i.e. the comprehensive expression of gastrointestinal hormones as potent transmitters in central and peripheral neurons; the hormonal signaling from the enteroendocrine cells to the brain and other extraintestinal targets; the role of gut hormones as growth and fertility factors; and the new era of gut hormone-derived drugs. Accordingly, gastrointestinal hormones have pathogenetic roles in major metabolic disorders (diabetes mellitus and obesity); in tumor development (common cancers, sarcomas, and neuroendocrine tumors); and in cerebral diseases (anxiety, panic attacks, and probably eating disorders). Such clinical aspects require accurate pathogenetic and diagnostic measurements of gastrointestinal hormones - an obvious responsibility for clinical chemistry/biochemistry. In order to obtain a necessary insight into today's gastrointestinal endocrinology, the chapter will first describe the advances in gastrointestinal endocrinology in a historical context. The history provides a background for the subsequent description of the present biology of gastrointestinal hormones, and its biomedical consequences - not least for clinical chemistry/biochemistry with its specific responsibility for selection of appropriate assays and reliable measurements.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Chen D, Rehfeld JF, Watts AG, Rorsman P, Gundlach AL. History of key regulatory peptide systems and perspectives for future research. J Neuroendocrinol 2023; 35:e13251. [PMID: 37053148 DOI: 10.1111/jne.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Throughout the 20th Century, regulatory peptide discovery advanced from the identification of gut hormones to the extraction and characterization of hypothalamic hypophysiotropic factors, and to the isolation and cloning of multiple brain neuropeptides. These discoveries were followed by the discovery of G-protein-coupled and other membrane receptors for these peptides. Subsequently, the systems physiology associated with some of these multiple regulatory peptides and receptors has been comprehensively elucidated and has led to improved therapeutics and diagnostics and their approval by the US Food and Drug Administration. In light of this wealth of information and further potential, it is truly a time of renaissance for regulatory peptides. In this perspective, we review what we have learned from the pioneers in exemplified fields of gut peptides, such as cholecystokinin, enterochromaffin-like-cell peptides, and glucagon, from the trailblazing studies on the key stress hormone, corticotropin-releasing factor, as well as from more recently characterized relaxin-family peptides and receptors. The historical viewpoints are based on our understanding of these topics in light of the earliest phases of research and on subsequent studies and the evolution of knowledge, aiming to sharpen our vision of the current state-of-the-art and those studies that should be prioritized in the future.
Collapse
Affiliation(s)
- Duan Chen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Alan G Watts
- Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health and Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Helderman NC, Suerink M, Kilinç G, van den Berg JG, Nielsen M, Tesselaar ME. Relation between WHO Classification and Location- and Functionality-Based Classifications of Neuroendocrine Neoplasms of the Digestive Tract. Neuroendocrinology 2023; 114:120-133. [PMID: 37690447 PMCID: PMC10836754 DOI: 10.1159/000534035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Practice of neuroendocrine neoplasms (NENs) of the digestive tract, which comprise of a highly diverse group of tumors with a rising incidence, faces multiple biological, diagnostic, and therapeutic issues. Part of these issues is due to misuse and misinterpretation of the classification and terminology of NENs of the digestive tract, which make it increasingly challenging to evaluate and compare the literature. For instance, grade 3 neuroendocrine tumors (NETs) are frequently referred to as neuroendocrine carcinomas (NECs) and vice versa, while NECs are, by definition, high grade and therefore constitute a separate entity from NETs. Moreover, the term NET is regularly misused to describe NENs in general, and NETs are frequently referred to as benign, while they should always be considered malignancies as they do have metastatic potential. To prevent misconceptions in future NEN-related research, we reviewed the most recent terminology used to classify NENs of the digestive tract and created an overview that combines the classification of these NENs according to the World Health Organization (WHO) with location- and functionality-based classifications. This overview may help clinicians and researchers in understanding the current literature and could serve as a guide in the clinic as well as for writing future studies on NENs of the digestive tract. In this way, we aim for the universal use of terminology, thereby providing an efficient foundation for future NEN-related research.
Collapse
Affiliation(s)
- Noah C. Helderman
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Gül Kilinç
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - José G. van den Berg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Margot E.T. Tesselaar
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Abstract
The birth certificate for endocrinology was Bayliss' and Starling's demonstration in 1902 that regulation of bodily functions is not only neuronal but also due to blood-borne messengers. Starling named these messengers hormones. Since then transport via blood has defined hormones. This definition, however, may be too narrow. Thus, today we know that several peptide hormones are not only produced and released to blood from endocrine cells but also released from neurons, myocytes, immune cells, endothelial cells, spermatogenic cells, fat cells, etc. And they are often secreted in cell-specific molecular forms with more or less different spectra of activity. The present review depicts this development with the story about cholecystokinin which was discovered in 1928 as a hormone and still in 1976 was conceived as a single blood-borne peptide. Today's multifaceted picture of cholecystokinin suggests that time may be ripe for expansion of the hormone concept to all messenger molecules, which activate their target cells - irrespective of their road to the target (endocrine, neurocrine, neuronal, paracrine, autocrine, etc.) and irrespective of their kind of activity as classical hormone, growth factor, neurotransmitter, adipokine, cytokine, myokine, or fertility factor.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Correspondence should be addressed to J F Rehfeld:
| |
Collapse
|
7
|
Rehfeld JF, Goetze JP. Processing-independent analysis (PIA): a method for quantitation of the total peptide-gene expression. Peptides 2021; 135:170427. [PMID: 33069691 DOI: 10.1016/j.peptides.2020.170427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/26/2022]
Abstract
The translational product of protein-coding genes undergoes extensive posttranslational modifications. The modifications ensure an increased molecular and functional diversity at protein- and peptide-level. Prohormones are small pro-proteins that are expressed in many cell types, for instance endocrine cells, immune cells, myocytes and neurons. Here they mature to bioactive peptides (cytokines, hormones, growth factors, and neurotransmitters) that are released from the cells in an often regulated manner. The posttranslational processing of prohormones is cell-specific, however, and may vary during evolution and disease. Therefore, it is often inadequate to measure just a single peptide fragment as marker of endocrine, immune, and neuronal functions. In order to meet this challenge, we developed years back a simple "processing-independent analysis" (PIA) for accurate quantification of the total pro-protein product - irrespective of the degree and nature of the posttranslational processing. This review provides an overview of the PIA principle and describes examples of PIA results in different peptide systems.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark.
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
8
|
Rehfeld JF, Sennels HP, Jørgensen HL, Fahrenkrug J. Circadian variations in plasma concentrations of cholecystokinin and gastrin in man. Scand J Clin Lab Invest 2020; 80:546-551. [PMID: 32820681 DOI: 10.1080/00365513.2020.1804072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cholecystokinin (CCK) is a gut hormone which regulates gallbladder contraction and pancreatic enzyme secretion. In addition, CCK is also a major intestinal satiety signal. The knowledge about CCK in circulation, however, has been limited by difficulties in accurate measurement of the concentrations in plasma. Thus, CCK circulates in low concentrations and furthermore, it is structurally homologous to the antral hormone, gastrin, which circulates in higher concentrations. Therefore, most antibodies raised against CCK cross-react in immunoassays with gastrin. However, using highly sensitive and entirely specific in-house radioimmunoassays, which meet these challenges, we have now measured the daily concentration-variations of CCK and gastrin in plasma from young healthy men (n = 24). Plasma was sampled every third hour from each person during 24 h. The results show that the gastrointestinal secretion of both CCK and gastrin in man display significant circadian variations.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Henriette P Sennels
- Department of Clinical Biochemistry, Bispebjerg Hospital, Copenhagen, Denmark
| | - Henrik L Jørgensen
- Department of Clinical Biochemistry, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg Hospital, Copenhagen, Denmark
| |
Collapse
|
9
|
Rehfeld JF, Broedbaek K, Goetze JP, Knigge U, Hilsted LM. True Chromogranin A concentrations in plasma from patients with small intestinal neuroendocrine tumours. Scand J Gastroenterol 2020; 55:565-573. [PMID: 32352887 DOI: 10.1080/00365521.2020.1759141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Objective: The incidence of enteropancreatic neuroendocrine tumours (NET) is increasing. Chromogranin A (CgA) in plasma is a marker in patients suspected of NET tumours. CgA, however, is a precursor protein subjected to cellular processing that challenges quantitation and hence the use of CgA in diagnostics.Materials and methods: CgA concentrations in plasma sampled from 130 well-characterized patients with small intestinal NETs and from 30 healthy subjects were measured with eight commercial CgA kits, an in-house radioimmunoassay (RIA) and a processing-independent assay (PIA). For the evaluation of diagnostic accuracy, we performed regression analyses and plotted receiver-operating characteristic curves (ROC). The specificity was further assessed by size chromatography.Results: Five commercial assays (Thermo-Fisher, DRG Diagnostics, Eurodiagnostica (RIA and ELISA), and Phoenix), displayed a diagnostic accuracy with area under the curve (AUC) values >0.90, whereas three immunoassays (Yanaihara, CisBio RIA, and CisBio ELISA) discriminated poorly between disease stages (AUC: 0.60-0.78). Compared with the in-house assays, however, even the most accurate commercial immunoassay still missed patients with metastatic disease. Chromatography showed non-uniform patterns of large and small CgA fragments in plasma.Conclusion: Available commercial immunoassays measure CgA in plasma with gross variability. Three commercial CgA immunoassays discriminate so poorly between health and disease that they should not be used. The highest diagnostic accuracy was obtained with processing-independent measurement of total CgA concentrations in plasma.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Broedbaek
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ulrich Knigge
- Departments of Surgical Gastroenterology and Clinical Endocrinology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Linda M Hilsted
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Rehfeld JF. Measurement of cholecystokinin in plasma with reference to nutrition related obesity studies. Nutr Res 2020; 76:1-8. [DOI: 10.1016/j.nutres.2020.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/20/2019] [Accepted: 01/10/2020] [Indexed: 12/22/2022]
|
11
|
Rehfeld JF. Premises for Cholecystokinin and Gastrin Peptides in Diabetes Therapy. Clin Med Insights Endocrinol Diabetes 2019; 12:1179551419883608. [PMID: 31853211 PMCID: PMC6909273 DOI: 10.1177/1179551419883608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022] Open
Abstract
Gastrin and cholecystokinin (CCK) are classical gastrointestinal peptide hormones. Their biogenesis, structures, and intestinal secretory patterns are well-known with the striking feature that their receptor-bound 'active sites' are highly homologous and that this structure is conserved for more than 500 million years during evolution. Consequently, gastrin and CCK are agonists for the same receptor (the CCK2 receptor). But in addition, tyrosyl O-sulphated CCK are also bound to the specific CCK1 receptor. The receptors are widely expressed in the body, including pancreatic islet-cell membranes. Moreover, CCK and gastrin peptides are at various developmental stages and diseases expressed in pancreatic islets; also in human islets. Accordingly, bioactive gastrin and CCK peptides stimulate islet-cell growth as well as insulin and glucagon secretion. In view of their insulinotropic effects, gastrin and CCK peptides have come into focus as drug targets, either alone or in combination with other insulinotropic gut hormones or growth factors. So far, modified CCK and gastrin peptides are being examined as potential drugs for therapy of type 1 as well as type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Rehfeld JF, Knop FK, Asmar A, Madsbad S, Holst JJ, Asmar M. Cholecystokinin secretion is suppressed by glucagon-like peptide-1: clue to the mechanism of the adverse gallbladder events of GLP-1-derived drugs. Scand J Gastroenterol 2018; 53:1429-1432. [PMID: 30449207 DOI: 10.1080/00365521.2018.1530297] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Recent randomized and controlled trials of drugs derived from the gut hormone glucagon-like peptide-1 (GLP-1) show that the most frequent adverse symptoms are gastrointestinal, including gallbladder-related side effects such as cholithiasis and cholecystitis. Since the gut hormone cholecystokinin (CCK) stimulates bile secretion and regulates gallbladder motility and emptying, we examined the effect of GLP-1 on the secretion of CCK in normal subjects and patients with type 1 diabetes mellitus. MATERIALS AND METHODS Plasma was sampled from 10 healthy subjects and 10 patients with diabetes. With plasma glucose concentrations clamped between 6 and 9 nmol/l, GLP-1 or saline was infused for 240 min during and after a meal. The plasma concentrations of CCK were measured with a highly specific radioimmunoassay. RESULTS Basal plasma concentrations of CCK were similar in the normal subjects and in the diabetes patients. During the meal, the CCK concentrations rose significantly during saline infusion, whereas the GLP-1 infusion suppressed the secretion of CCK significantly in both normal subjects and in the diabetes patients. CONCLUSIONS The results show that GLP-1 suppresses the secretion of CCK after a meal in normal and diabetic subjects. The suppression attenuates the gallbladder contractility. Our data, therefore, offer an explanation for the increased risk of adverse gallbladder events during treatment with GLP-1-derived drugs.
Collapse
Affiliation(s)
- Jens F Rehfeld
- a Department of Clinical Biochemistry , Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| | - Filip K Knop
- b Steno Diabetes Center, Gentofte Hospital , University of Copenhagen , Copenhagen , Denmark
| | - Ali Asmar
- c Department of Clinical Physiology, Bispebjerg Hospital , University of Copenhagen , Copenhagen , Denmark
| | - Sten Madsbad
- d Department of Endocrinology, Hvidovre Hospital , University of Copenhagen , Copenhagen , Denmark
| | - Jens J Holst
- e Department of Biomedical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Meena Asmar
- f Department of Endocrinology, Bispebjerg Hospital , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
13
|
Rehfeld JF, Federspiel B, Agersnap M, Knigge U, Bardram L. Cholecystokininoma syndrome, calcitonin and diarrhea. Scand J Gastroenterol 2017; 52:1304-1305. [PMID: 28738700 DOI: 10.1080/00365521.2017.1357752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jens F Rehfeld
- a Department of Clinical Biochemistry , Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| | - Birgitte Federspiel
- b Department of Pathology , Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| | - Mikkel Agersnap
- a Department of Clinical Biochemistry , Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| | - Ulrich Knigge
- c Department of Surgical Gastroenterology , Rigshospitalet, University of Copenhagen , Copenhagen , Denmark.,d Department of Medical Endocrinology , Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| | - Linda Bardram
- c Department of Surgical Gastroenterology , Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
14
|
|
15
|
Rehfeld JF. Cholecystokinin-From Local Gut Hormone to Ubiquitous Messenger. Front Endocrinol (Lausanne) 2017; 8:47. [PMID: 28450850 PMCID: PMC5389988 DOI: 10.3389/fendo.2017.00047] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/24/2017] [Indexed: 12/18/2022] Open
Abstract
Cholecystokinin (CCK) was discovered in 1928 in jejunal extracts as a gallbladder contraction factor. It was later shown to be member of a peptide family, which are all ligands for the CCK1 and CCK2 receptors. CCK peptides are known to be synthetized in small intestinal endocrine I-cells and cerebral neurons. But in addition, CCK is expressed in several endocrine glands (pituitary cells, thyroid C-cells, pancreatic islets, the adrenals, and the testes); in peripheral nerves; in cortical and medullary kidney cells; in cardial myocytes; and in cells of the immune system. CCK peptides stimulate pancreatic enzyme secretion and growth, gallbladder contraction, and gut motility, satiety and inhibit acid secretion from the stomach. Moreover, they are major neurotransmitters in the brain and the periphery. CCK peptides also stimulate calcitonin, insulin, and glucagon secretion, and they may act as natriuretic peptides in the kidneys. CCK peptides are derived from proCCK with a C-terminal bioactive YMGWMDFamide sequence, in which the Y-residue is partly O-sulfated. The plasma forms are CCK-58, -33, -22, and -8, whereas the small CCK-8 and -5 are potent neurotransmitters. Over the last decades, CCK expression has also been encountered in tumors (neuroendocrine tumors, cerebral astrocytomas, gliomas, acoustic neuromas, and specific pediatric tumors). Recently, a metastastic islet cell tumor was found to cause a specific CCKoma syndrome, suggesting that circulating CCK may be a useful tumor marker.
Collapse
Affiliation(s)
- Jens F. Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Jens F. Rehfeld,
| |
Collapse
|
16
|
Rehfeld JF. Cholecystokinin expression in tumors: biogenetic and diagnostic implications. Future Oncol 2016; 12:2135-47. [PMID: 27306028 DOI: 10.2217/fon-2015-0053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cholecystokinin (CCK) is a classic gut hormone. CCK is also a complex system of peptides expressed in several molecular forms in enteroendocrine I cells, in cerebral and peripheral neurons, in cardiac myocytes and spermatozoa. CCK gene expression has now been found at protein or peptide level in different neuroendocrine tumors; cerebral gliomas and astrocytomas and specific pediatric tumors. Tumor hypersecretion of CCK was recently reported in a patient with a metastatic islet cell tumor and hypercholecystokininemia resulting in a novel tumor syndrome, the cholecystokininoma syndrome. This review presents an overview of the cell-specific biogenesis of CCK peptides, and a description of the CCK expression in tumors and of the cholecystokininoma syndrome. Finally, assays for the diagnosis of CCK-producing tumors are reviewed.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|