1
|
Makineli S, Vriens MR, Witkamp AJ, van Diest PJ, Moelans CB. The Diagnostic Value of microRNA Expression Analysis in Detecting Intraductal Papillomas in Patients with Pathological Nipple Discharge. Int J Mol Sci 2024; 25:1812. [PMID: 38339089 PMCID: PMC10855314 DOI: 10.3390/ijms25031812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Patients with pathological nipple discharge (PND) often undergo local surgical procedures because standard radiologic imaging fails to identify the underlying cause. MicroRNA (MiRNA) expression analysis of nipple fluid holds potential for distinguishing between breast diseases. This study aimed to compare miRNA expression levels between nipple fluids from patients with PND to identify possible relevant miRNAs that could differentiate between intraductal papillomas and no abnormalities in the breast tissue. Nipple fluid samples from patients with PND without radiological and pathological suspicion for malignancy who underwent a ductoscopy procedure were analyzed. We used univariate and multivariate regression analyses to identify nipple fluid miRNAs differing between pathologically confirmed papillomas and breast tissue without abnormalities. A total of 27 nipple fluid samples from patients with PND were included for miRNA expression analysis. Out of the 22 miRNAs examined, only miR-145-5p was significantly differentially expressed (upregulated) in nipple fluid from patients with an intraductal papilloma compared to patients showing no breast abnormalities (OR 4.76, p = 0.046), with a diagnostic accuracy of 92%. miR-145-5p expression in nipple fluid differs for intraductal papillomas and breast tissue without abnormalities and, therefore, has potential as a diagnostic marker to signal presence of papillomas in PND patients. However, further refinement and validation in clinical trials are necessary to establish its clinical applicability.
Collapse
Affiliation(s)
- Seher Makineli
- Department of Surgical Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.R.V.); (A.J.W.)
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Menno R. Vriens
- Department of Surgical Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.R.V.); (A.J.W.)
| | - Arjen J. Witkamp
- Department of Surgical Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.R.V.); (A.J.W.)
| | - Paul J. van Diest
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Cathy B. Moelans
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| |
Collapse
|
2
|
Roshani M, Molavizadeh D, Sadeghi S, Jafari A, Dashti F, Mirazimi SMA, Ahmadi Asouri S, Rajabi A, Hamblin MR, Anoushirvani AA, Mirzaei H. Emerging roles of miR-145 in gastrointestinal cancers: A new paradigm. Biomed Pharmacother 2023; 166:115264. [PMID: 37619484 DOI: 10.1016/j.biopha.2023.115264] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Gastrointestinal (GI) carcinomas are a group of cancers affecting the GI tract and digestive organs, such as the gastric, liver, bile ducts, pancreas, small intestine, esophagus, colon, and rectum. MicroRNAs (miRNAs) are small functional non-coding RNAs (ncRNAs) which are involved in regulating the expression of multiple target genes; mainly at the post-transcriptional level, via complementary binding to their 3'-untranslated region (3'-UTR). Increasing evidence has shown that miRNAs have critical roles in modulating of various physiological and pathological cellular processes and regulating the occurrence and development of human malignancies. Among them, miR-145 is recognized for its anti-oncogenic properties in various cancers, including GI cancers. MiR-145 has been implicated in diverse biological processes of cancers through the regulation of target genes or signaling, including, proliferation, differentiation, tumorigenesis, angiogenesis, apoptosis, metastasis, and therapy resistance. In this review, we have summarized the role of miR-145 in selected GI cancers and also its downstream molecules and cellular processes targets, which could lead to a better understanding of the miR-145 in these cancers. In conclusion, we reveal the potential diagnostic, prognostic, and therapeutic value of miR-145 in GI cancer, and hope to provide new ideas for its application as a biomarker as well as a therapeutic target for the treatment of these cancer.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Danial Molavizadeh
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Sadeghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for BasicSciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Ali Arash Anoushirvani
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Doghish AS, El-Husseiny AA, Abdelmaksoud NM, El-Mahdy HA, Elsakka EGE, Abdel Mageed SS, Mahmoud AMA, Raouf AA, Elballal MS, El-Dakroury WA, AbdelRazek MMM, Noshy M, El-Husseiny HM, Abulsoud AI. The interplay of signaling pathways and miRNAs in the pathogenesis and targeted therapy of esophageal cancer. Pathol Res Pract 2023; 246:154529. [PMID: 37196470 DOI: 10.1016/j.prp.2023.154529] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Globally, esophageal cancer (EC) is the 6th leading cause of cancer-related deaths and the second deadliest gastrointestinal cancer. Multiple genetic and epigenetic factors, such as microRNAs (miRNAs), influence its onset and progression. miRNAs are short nucleic acid molecules that can regulate multiple cellular processes by regulating gene expression. Therefore, EC initiation, progression, apoptosis evasions, invasion capacity, promotion, angiogenesis, and epithelial-mesenchymal transition (EMT) enhancement are associated with miRNA expression dysregulation. Wnt/-catenin signaling, Mammalian target of rapamycin (mTOR)/P-gp, phosphoinositide-3-kinase (PI3K)/AKT/c-Myc, epidermal growth factor receptor (EGFR), and transforming growth factor (TGF)-β signaling are crucial pathways in EC that are controlled by miRNAs. This review was conducted to provide an up-to-date assessment of the role of microRNAs in EC pathogenesis and their modulatory effects on responses to various EC treatment modalities.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed M M AbdelRazek
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
4
|
Non-Coding RNAs in Hepatocellular Carcinoma. LIVERS 2022. [DOI: 10.3390/livers2030017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Liver cancer ranks as the fourth leading cause of cancer-related deaths. Despite extensive research efforts aiming to evaluate the biological mechanisms underlying hepatocellular carcinoma (HCC) development, little has been translated towards new diagnostic and treatment options for HCC patients. Historically, the focus has been centered on coding RNAs and their respective proteins. However, significant advances in sequencing and RNA detection technologies have shifted the research focus towards non-coding RNAs (ncRNA), as well as their impact on HCC development and progression. A number of studies reported complex post-transcriptional interactions between various ncRNA and coding RNA molecules. These interactions offer insights into the role of ncRNAs in both the known pathways leading to oncogenesis, such as dysregulation of p53, and lesser-known mechanisms, such as small nucleolar RNA methylation. Studies investigating these mechanisms have identified prevalent ncRNA changes in microRNAs, snoRNAs, and long non-coding RNAs that can both pre- and post-translationally regulate key factors in HCC progression. In this review, we present relevant publications describing ncRNAs to summarize the impact of different ncRNA species on liver cancer development and progression and to evaluate recent attempts at clinical translation.
Collapse
|
5
|
Zhang Z, Li J, Yan B, Tu H, Huang C, Costa M. Loss of MEG3 and upregulation of miR-145 play an important role in the invasion and migration of Cr(VI)-transformed cells. Heliyon 2022; 8:e10086. [PMID: 36046536 PMCID: PMC9421329 DOI: 10.1016/j.heliyon.2022.e10086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022] Open
Abstract
Chronic exposure of human bronchial epithelial BEAS-2B cells to hexavalent chromium (Cr(VI)) causes malignant cell transformation. These transformed cells exhibit increases in migration and invasion. Neuronal precursor of developmentally downregulated protein 9 (NEDD9) is upregulated in Cr(VI)-transformed cells compared to that of passage-matched normal BEAS-2B cells. Knockdown of NEDD9 by its shRNA reduced invasion and migration of Cr(VI)-transformed cells. Maternally expressed gene 3 (MEG3), a long noncoding RNA, was lost and microRNA 145 (miR-145) was upregulated in Cr(VI)-transformed cells. MEG3 was bound to miR-145 and this binding reduced its activity. Overexpression of MEG3 or inhibition of miR-145 decreased invasion and migration of Cr(VI)-transformed cells. Overexpression of MEG3 was able to decrease miR-145 level and NEDD9 protein level in Cr(VI)-transformed cells. Ectopic expression of MEG3 was also shown to reduce β-catenin activation. Inhibition of miR-145 in Cr(VI)-transformed cells decreased Slug, an important transcription factor that regulates epithelial-to-mesenchymal transition (EMT). Inhibition of miR-145 was found to increase MEG3 in Cr(VI)-transformed cells. Further studies showed that mutation of MEG3 at the binding site for miR-145 did not change NEDD9 and failed to decrease invasion and migration. The present study demonstrated that loss of MEG3 and upregulation of miR-145 elevated NEDD9, resulting in activation of β-catenin and further upregulation of EMT, leading to increased invasion and migration of Cr(VI)-transformed cells.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25 Street, New York, New York, 10010, USA
| | - Jingxia Li
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25 Street, New York, New York, 10010, USA
| | - Bo Yan
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25 Street, New York, New York, 10010, USA
| | - Huailu Tu
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25 Street, New York, New York, 10010, USA
| | - Chao Huang
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25 Street, New York, New York, 10010, USA
| | - Max Costa
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25 Street, New York, New York, 10010, USA
| |
Collapse
|
6
|
Jiang Q, Wang H, Yuan D, Qian X, Ma X, Yan M, Xing W. Circular_0086414 induces SPARC like 1 ( SPARCL1) production to inhibit esophageal cancer cell proliferation, invasion and glycolysis and induce cell apoptosis by sponging miR-1290. Bioengineered 2022; 13:12099-12114. [PMID: 35549806 PMCID: PMC9275914 DOI: 10.1080/21655979.2022.2073114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Circular RNA (circRNA) plays an important role in cancer progression. Here, we investigated the function of circ_0086414 in the malignant progression of esophageal cancer (EC). RNA expression of circ_0086414, microRNA-1290 (miR-1290), and SPARC like 1 (SPARCL1) was detected by quantitative real-time polymerase chain reaction. The protein levels of N-cadherin, E-cadherin, and SPARCL1 were checked by Western blotting analysis. Cell proliferation was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 5-Ethynyl-29-deoxyuridine (EdU), and cell colony formation assays. Cell invasion and apoptosis were analyzed by transwell invasion assay and flow cytometry analysis, respectively. Glycolysis was evaluated by analyzing glucose consumption and lactate production. In an xenograft mouse model, the effect of circ_0086414 on tumor tumorigenesis was investigated. The interactions among circ_0086414, miR-1290, and SPARCL1 were identified by dual-luciferase reporter and RNA pull-down assays. Results showed that circ_0086414 and SPARCL1 expression were significantly downregulated, while miR-1290 was upregulated in EC tissues and cells. EC patients with low circ_0086414 expression had a poor prognosis. Increasing circ_0086414 expression led to decreased EC cell proliferation, invasion and glycolysis and increased cell apoptosis, accompanied by a decrease of N-cadherin expression and an increase of E-cadherin expression. Also, the enforced expression of circ_0086414 delayed tumor tumorigenesis. Besides, circ_0086414 acted as a miR-1290 sponge and regulated EC cell processes by binding to the miRNA. MiR-1290 also participated in EC malignant progression through SPARCL1. Further, circ_0086414 stimulated SPARCL1 production by negatively regulating miR-1290. Thus, circ_0086414 inhibited EC cell malignancy through the miR-1290/SPARCL1 pathway, providing a reliable target for the therapy of EC.
Collapse
Affiliation(s)
- Qingfeng Jiang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haoran Wang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongfeng Yuan
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Qian
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaochao Ma
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ming Yan
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenqun Xing
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Liu Y, Liu J, Cui J, Zhong R, Sun G. Role of lncRNA LINC01194 in hepatocellular carcinoma via the miR-655-3p/SMAD family member 5 axis. Bioengineered 2022; 13:1115-1125. [PMID: 34978464 PMCID: PMC8805840 DOI: 10.1080/21655979.2021.2017678] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in developing hepatocellular carcinoma (HCC). The present study explored the role of lncRNA LINC01194, which is upregulated in HCC tissues and might be a vital regulator in HCC progression. Levels of LINC01194, microRNA (miR)-655-3p, and SMAD family member 5 (SMAD5) were assessed using reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). The bioactivity of Huh-7 cells was assessed using cell counting kit-8 and transwell assays and flow cytometry. Western blotting was conducted to measure the expression of invasion- and apoptosis-related proteins. The relationships between lncRNA LINC01194 and miR-655-3p, and miR-655-3p and SMAD5 were predicted using StarBase and TargetScan, and further verified using a dual-luciferase reporter assay. LINC01194 was overexpressed in HCC cells and in clinical samples. ILINC01194 silencing suppressed proliferation and migration; however, it promoted apoptosis in HCC cell lines. We also confirmed that miR-655-3p could bind to LINC01194, and miR-655-3p was downregulated in HCC. The upregulation of miR-655-3p suppressed HCC cell invasion and migration, and enhanced the number of apoptotic cells. SMAD5, which was overexpressed in HCC cell lines, was directly targeted by miR-655-3p. Therefore, LINC01194 promoted HCC development by decreasing miR-655-3p expression and may serve as a promising therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Yang Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jie Liu
- Department of Geriatrics, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Junkai Cui
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Ruolei Zhong
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Guoyang Sun
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
8
|
Xu J, Pan HW, Wang XQ, Chen KP. Status of diagnosis and treatment of esophageal cancer and non-coding RNA correlation research: a narrative review. Transl Cancer Res 2021; 10:4532-4552. [PMID: 35116309 PMCID: PMC8798506 DOI: 10.21037/tcr-21-687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To describe and discuss the progression of the non-coding RNA as biomarkers in early esophageal cancer. BACKGROUND Esophageal cancer without obvious symptoms during early stages is one of the most common cancers, the current clinical treatments offer possibilities of a cure, but the survival rates and the prognoses remain poor, it is a serious threat to human life and health. Most patients are usually diagnosed during terminal stages due to low sensitivity of esophageal cancer's early detection techniques. With the development of molecular biology, an increasing number of non-coding RNAs are found to be associated with the occurrence, development, and prognosis of esophageal cancer. Some of these have begun to be used in clinics and laboratories for diagnosis, treatment, and prognosis, with the goal of reducing mortality. METHODS The information for this paper was collected from a variety of sources, including a search of the keynote's references, a search for texts in college libraries, and discussions with experts in the field of esophageal cancer clinical treatment. CONCLUSIONS Non-coding RNA does play a regulatory role in the development of esophageal cancer, which can predict the occurrence or prognosis of tumors, and become a new class of tumor markers and therapeutic targets in clinical applications. In this review, we survey the recent developments in the incidence, diagnosis, and treatment of esophageal cancer, especially with new research progresses on non-coding RNA biomarkers in detail, and discuss its potential clinical applications.
Collapse
Affiliation(s)
- Jia Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Hui-Wen Pan
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Xue-Qi Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ke-Ping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Ma X, Xiang F, Pei Z, Miao J, Wu P, Song X, Li Y, Zhang Y. Circ-Smad5 retards the G1/S transition of cell cycle via inhibiting the activity of wnt/lef/cyclind1 signaling in JB6 cells. Genes Dis 2021; 8:364-372. [PMID: 33997183 PMCID: PMC8093577 DOI: 10.1016/j.gendis.2020.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 11/29/2022] Open
Abstract
Circular RNAs are a large class of noncoding RNAs. Smad5 functions in cell differentiation, cell proliferation and metastasis. It has been reported that lnc-Smad5 can inhibit the proliferation of diffuse large B cell lymphoma. However, the function of circ-Smad5 has not yet been reported. Lentivirus vectors were constructed to establish circ-Smad5 upregulated and circ-Smad5 downregulated cell models. A CCK-8 assay was used to detect the proliferation of JB6 cells. FACS was used to analyze the cell cycle in the cell models. Western blot, immunofluorescence staining and TOP/FOP flash dual luciferase activity assays were used to determine the activity of the Wnt signaling pathway. The results revealed that the expression level of circ-Smad5 in JB6 cells was significantly lower than the expression level of linearized-Smad5. Compared with the control group, the percentage of S phase cells and the expression level of cyclin D1 protein were significantly higher in the sh-circ-Smad5 group. In the sh-circ-Smad5 group, β-catenin and LEF-1 were significantly increased, p-β-catenin was significantly decreased, and the relative activity of the TOP/FOP reporter gene was higher compared to the control group levels. These phenomena could be reversed by treating with Wnt signaling inhibitor PNU-74654. We conclude that the circ-Smad5 retards the proliferation and the cell cycle progression of JB6 cells. Thus, circ-Smad5 may function by inhibiting the activation of Wnt/β-catenin/Lef 1 signaling, which inhibits the expression of cyclin D1. To the best of our knowledge, we are the first to report the function of circ-Smad5.
Collapse
Affiliation(s)
- Xiaogen Ma
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, PR China
- Department of Cell Biology, Army Medical University, Chongqing, 400038, PR China
| | - Fei Xiang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University, Chongqing, 400038, PR China
| | - Zhuo Pei
- Department of Cell Biology, Army Medical University, Chongqing, 400038, PR China
| | - Jiafeng Miao
- Department of Cell Biology, Army Medical University, Chongqing, 400038, PR China
| | - Pan Wu
- Department of Cell Biology, Army Medical University, Chongqing, 400038, PR China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, PR China
| | - Yuhong Li
- Department of Cell Biology, Army Medical University, Chongqing, 400038, PR China
| | - Yiming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, PR China
| |
Collapse
|
10
|
Ogoyama M, Ohkuchi A, Takahashi H, Zhao D, Matsubara S, Takizawa T. LncRNA H19-Derived miR-675-5p Accelerates the Invasion of Extravillous Trophoblast Cells by Inhibiting GATA2 and Subsequently Activating Matrix Metalloproteinases. Int J Mol Sci 2021; 22:ijms22031237. [PMID: 33513878 PMCID: PMC7866107 DOI: 10.3390/ijms22031237] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
The invasion of extravillous trophoblast (EVT) cells into the maternal decidua, which plays a crucial role in the establishment of a successful pregnancy, is highly orchestrated by a complex array of regulatory mechanisms. Non-coding RNAs (ncRNAs) that fine-tune gene expression at epigenetic, transcriptional, and post-transcriptional levels are involved in the regulatory mechanisms of EVT cell invasion. However, little is known about the characteristic features of EVT-associated ncRNAs. To elucidate the gene expression profiles of both coding and non-coding transcripts (i.e., mRNAs, long non-coding RNAs (lncRNAs), and microRNAs (miRNAs)) expressed in EVT cells, we performed RNA sequencing analysis of EVT cells isolated from first-trimester placentae. RNA sequencing analysis demonstrated that the lncRNA H19 and its derived miRNA miR-675-5p were enriched in EVT cells. Although miR-675-5p acts as a placental/trophoblast growth suppressor, there is little information on the involvement of miR-675-5p in trophoblast cell invasion. Next, we evaluated a possible role of miR-675-5p in EVT cell invasion using the EVT cell lines HTR-8/SVneo and HChEpC1b; overexpression of miR-675-5p significantly promoted the invasion of both EVT cell lines. The transcription factor gene GATA2 was shown to be a target of miR-675-5p; moreover, small interfering RNA-mediated GATA2 knockdown significantly promoted cell invasion. Furthermore, we identified MMP13 and MMP14 as downstream effectors of miR-675-5p/GATA2-dependent EVT cell invasion. These findings suggest that miR-675-5p-mediated GATA2 inhibition accelerates EVT cell invasion by upregulating matrix metalloproteinases.
Collapse
Affiliation(s)
- Manabu Ogoyama
- Department of Obstetrics and Gynecology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan; (M.O.); (A.O.); (H.T.); (S.M.)
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan;
| | - Akihide Ohkuchi
- Department of Obstetrics and Gynecology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan; (M.O.); (A.O.); (H.T.); (S.M.)
| | - Hironori Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan; (M.O.); (A.O.); (H.T.); (S.M.)
| | - Dongwei Zhao
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan;
| | - Shigeki Matsubara
- Department of Obstetrics and Gynecology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan; (M.O.); (A.O.); (H.T.); (S.M.)
| | - Toshihiro Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan;
- Correspondence: ; Tel.: +81-3-3822-2131
| |
Collapse
|
11
|
Dai ZT, Wang J, Zhao K, Xiang Y, Li JP, Zhang HM, Peng ZT, Liao XH. Integrated TCGA and GEO analysis showed that SMAD7 is an independent prognostic factor for lung adenocarcinoma. Medicine (Baltimore) 2020; 99:e22861. [PMID: 33126329 PMCID: PMC7598801 DOI: 10.1097/md.0000000000022861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The lack of effective markers leads to missed optimal treatment times, resulting in poorer prognosis in most cancers. Drosophila mothers against decapentaplegic protein (SMAD) family members are important cytokines in the transforming growth factor-beta family. They jointly regulate the processes of cell growth, differentiation, and apoptosis. However, the expression of SMAD family genes in pan-cancers and their impact on prognosis have not been elucidated. Perl software and R software were used to perform expression analysis and survival curve analysis on the data collected by TCGA, GTEx, and GEO, and the potential regulatory pathways were determined through gene ontology enrichment and kyoto encyclopedia of genes and genomes enrichment analysis. It was found that SMAD7 and SMAD9 expression decreased in lung adenocarcinoma (LUAD), and their expression was positively correlated with survival time. Additionally, SMAD7 could be used as an independent prognostic factor for LUAD. In general, SMAD7 and SMAD9 can be used as prognostic markers of LUAD. Further, SMAD7 is expected to become a therapeutic target for LUAD.
Collapse
Affiliation(s)
- Zhou-Tong Dai
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan
| | - Jun Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan
| | - Kai Zhao
- Huangshi Central Hospital, Huangshi
| | | | - Jia Peng Li
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan
| | - Hui-Min Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan
| | - Zi-Tan Peng
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan
- Hebei Kingsci Pharmaceutical Technology Co., Ltd, Shijiazhuang, Hebei, P.R. China
| | - Xing Hua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan
| |
Collapse
|
12
|
Pan S, Zhou G, Hu W, Pei H. SMAD-6, -7 and -9 are potential molecular biomarkers for the prognosis in human lung cancer. Oncol Lett 2020; 20:2633-2644. [PMID: 32782581 PMCID: PMC7401007 DOI: 10.3892/ol.2020.11851] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/13/2020] [Indexed: 12/24/2022] Open
Abstract
SMADs, a family of proteins that function as signal transducers and transcriptional regulators to regulate various signaling pathways, including the transforming growth factor-β signaling pathway, are similar to the mothers against decapentaplegic family of genes and the sma gene family in Caenorhabditis elegans. SMADs generate context-dependent modulation by interacting with various sequence-specific transcription factors, such as E2F4/5, c-Fos, GATA3, YY1 and SRF, which have been found to serve a key role in lung carcinoma oncogenesis and progression. However, the prognostic values of the eight SMADs in lung cancer have not been fully understood. In the present study, the expression levels and survival data of SMADs in patients with lung carcinoma from the Oncomine, Gene Expression Profiling Interactive Analysis, Kaplan-Meier plotter and cBioPortal databases were downloaded and analyzed. It was found that the mRNA expression levels of SMAD-6, -7 and -9 were decreased in lung adenocarcinoma and squamous cell carcinoma compared with that in adjacent normal tissues, while there was no significant difference in SMADs 1-5. Survival analysis revealed that not only were low transcriptional levels of SMAD-6, -7 and -9 associated with low overall survival but they also had prognostic role for progression-free survival and post-progression survival (P<0.05) in patients with lung carcinoma. In conclusion, the present study demonstrated that SMAD-6, -7 and -9 are potential biomarkers for the prognosis of patients with lung carcinoma.
Collapse
Affiliation(s)
- Shuxian Pan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, P.R. China
- Department of Radiation Oncology, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, P.R. China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
13
|
Shen W, Yu L, Cong A, Yang S, Wang P, Han G, Gu B, Zhang W. Silencing lncRNA AFAP1-AS1 Inhibits the Progression of Esophageal Squamous Cell Carcinoma Cells via Regulating the miR-498/VEGFA Axis. Cancer Manag Res 2020; 12:6397-6409. [PMID: 32801880 PMCID: PMC7402668 DOI: 10.2147/cmar.s254302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/11/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose In view of the continuous increase of the mortality rate, esophageal squamous cell carcinoma (ESCC) develops into a major health concern. In this study, we aimed to investigate the underlying mechanism of long noncoding RNA (lncRNA) actin filament-associated protein 1 antisense RNA (AFAP1-AS1)/microRNA-498 (miR-498)/vascular endothelial growth factor A (VEGFA) in ESCC cells. Methods The expression levels of AFAP1-AS1, miR-498 and VEGFA in ESCC tissues and cells were detected using quantitative real-time polymerase chain reaction (qRT-PCR). The effects of AFAP1-AS1 on ESCC cells proliferation and apoptosis were measured by methyl thiazolyl tetrazolium (MTT) and flow cytometry, respectively. Transwell assay was carried out to determine cell migration. In addition, VEGFA and cell behaviors-related proteins were determined by Western blot analysis. The targeted relationships of AFAP1-AS1 were verified by dual-luciferase reporter and RNA pull-down assays. Results The expression levels of lncRNA AFAP1-AS1 and VEGFA mRNA were upregulated, but miR-498 was downregulated in ESCC tissues and cells. Moreover, miR-498 was directly targeted by AFAP1-AS1 and there was a negative correlation between miR-498 and AFAP1-AS1. Functionally, AFAP1-AS1 silencing inhibited the proliferation and migration and induced apoptosis of ESCC cells. Interestingly, miR-498 inhibition rescued the effects of AFAP1-AS1 knockdown on cell proliferation, apoptosis and migration and restored the expression levels of tumor-developing marker proteins of AFAP1-AS1 silencing in Eca109 and KYSE-30 cells. Furthermore, VEGFA was verified as a direct target of miR-498 and reversed the effects of miR-498 overexpression on cell behaviors of ESCC in vitro. Conclusion Downregulation of AFAP1-AS1 impeded the proliferation and migration and induced apoptosis of ESCC cells by regulating miR-498/VEGFA axis, which might serve as a novel biomarker for the diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Wenhao Shen
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Lei Yu
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Aihua Cong
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Song Yang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Peng Wang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Gaohua Han
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Bin Gu
- Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China.,Department of Emergency, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Wei Zhang
- Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China.,Department of Infectious Disease, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| |
Collapse
|
14
|
Guan H, Liu J, Lv P, Zhou L, Zhang J, Cao W. MicroRNA‑590 inhibits migration, invasion and epithelial‑to‑mesenchymal transition of esophageal squamous cell carcinoma by targeting low‑density lipoprotein receptor‑related protein 6. Oncol Rep 2020; 44:1385-1392. [PMID: 32945478 PMCID: PMC7448422 DOI: 10.3892/or.2020.7692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
MicroRNA-590 (miR-590) has been revealed as a tumor suppressor, while low-density lipoprotein receptor-related protein 6 (LRP6) is considered to act as a tumor promoter. However, their roles and underlying molecular regulatory mechanisms in esophageal squamous cell carcinoma (ESCC) have yet to be fully elucidated. Therefore, the present study aimed to investigate these mechanisms. The expression levels of miR-590 and LRP6 in human ESCC samples and cell lines were determined using reverse transcription-quantitative PCR. Bioinformatics analysis was used to predict the relationship between miR-590 and LRP6, and luciferase assay was performed to validate the relationship between these factors. Transwell assays were used to determine cell migration and invasion, while western blotting assays were used to detect the protein expression levels of LRP6, E-cadherin, N-cadherin and Vimentin. The present study demonstrated that miR-590 was downregulated and LRP6 was upregulated in ESCC tissues and cell lines. Furthermore, it was found that miR-590 overexpression and LRP6 knockdown inhibited cell migration, invasion and epithelial-to-mesenchymal transition (EMT) in ESCC cell lines. Additional mechanistic studies identified that LRP6 was a target of, and was inhibited by, miR-590. Collectively, the present findings suggested that miR-590 inhibited the invasion, migration and EMT of ESCC cells by mediating LRP6.
Collapse
Affiliation(s)
- Hongya Guan
- Department of Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Jia Liu
- Department of Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Pengju Lv
- Department of Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Lijuan Zhou
- Department of Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Jianying Zhang
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Wei Cao
- Department of Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| |
Collapse
|
15
|
Ghafouri‐Fard S, Shoorei H, Dashti S, Branicki W, Taheri M. Expression profile of lncRNAs and miRNAs in esophageal cancer: Implications in diagnosis, prognosis, and therapeutic response. J Cell Physiol 2020; 235:9269-9290. [DOI: 10.1002/jcp.29825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Soudeh Ghafouri‐Fard
- Department of Medical Genetics Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences Birjand University of Medical Sciences Birjand Iran
| | - Sepideh Dashti
- Department of Medical Genetics Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University Kraków Poland
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
16
|
Gao P, Wang D, Liu M, Chen S, Yang Z, Zhang J, Wang H, Niu Y, Wang W, Yang J, Sun G. DNA methylation-mediated repression of exosomal miR-652-5p expression promotes oesophageal squamous cell carcinoma aggressiveness by targeting PARG and VEGF pathways. PLoS Genet 2020; 16:e1008592. [PMID: 32343702 PMCID: PMC7188198 DOI: 10.1371/journal.pgen.1008592] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomal microRNAs (miRNAs) have been recently shown to play vital regulatory and communication roles in cancers. In this study, we showed that the expression levels of miR-652-5p in tumour tissues and serum samples of oesophageal squamous cell carcinoma (OSCC) patients were lower compared to non-tumorous tissues and serum samples from healthy subjects, respectively. Decreased expression of miR-652-5p was correlated with TNM stages, lymph node metastasis, and short overall survival (OS). More frequent CpG sites hypermethylation in the upstream of miR-652-5p was found in OSCC tissues compared to adjacent normal tissues. Subsequently, miR-652-5p downregulation promoted the proliferation and metastasis of OSCC, and regulated cell cycle both in cells and in vivo. The dual-luciferase reporter assay confirmed that poly (ADP-ribose) glycohydrolase (PARG) and vascular endothelial growth factor A (VEGFA) were the direct targets of miR-652-5p. Moreover, the delivery of miR-652-5p agomir suppressed tumour growth and metastasis, and inhibited the protein expressions of PARG and VEGFA in nude mice. Taken together, our findings provide novel insight into the molecular mechanism underlying OSCC pathogenesis.
Collapse
Affiliation(s)
- Peng Gao
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Dan Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Meiyue Liu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Siyuan Chen
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Zhao Yang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Jie Zhang
- Department of Pathology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Huan Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Yi Niu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Wei Wang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jilong Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Guogui Sun
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| |
Collapse
|
17
|
Zeng Z, Yang Y, Qing C, Hu Z, Huang Y, Zhou C, Li D, Jiang Y. Distinct expression and prognostic value of members of SMAD family in non-small cell lung cancer. Medicine (Baltimore) 2020; 99:e19451. [PMID: 32150102 PMCID: PMC7220383 DOI: 10.1097/md.0000000000019451] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the major cause of cancer mortality worldwide. Though multidisciplinary therapies have been widely used for NSCLC, its overall prognosis remains very poor, presumably owing to lack of effective prognostic biomarkers. SMAD, a well-known transcription factor, plays an essential role in carcinogenesis. Aberrant expression of SMAD have been found in various cancers, and may be regarded as prognostic indicator for some malignancies. However, the expression and prognostic role of SMAD family member, especially at the mRNA level, remain elusive in NSCLC. In the present study, we report the distinct expression and prognostic value of individual SMAD in patients with NSCLC by analyzing several online databases including ONCOMINE, Gene Expression Profiling Interactive Analysis, Human Protein Atlas database, Kaplan-Meier plotter, cBioPortal, and Database for Annotation, Visualization and Integrated Discovery. The mRNA levels of SMAD6/7/9 in NSCLC were significantly down-regulated in NSCLC, and aberrant SMAD2/3/4/5/6/7/9 mRNA levels were all correlated with the prognosis of NSCLC. Collectively, SMAD2/3/4/5/6/7/9 may server as prognostic biomarkers and potential targets for NSCLC, and thus facilitate the customized treatment strategies for NSCLC patients.
Collapse
Affiliation(s)
- Zhenguo Zeng
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University
| | - Yuting Yang
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University
| | - Cheng Qing
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University
| | - Zhiguo Hu
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University
- Department of Critical Care Medicine, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia
| | - Yiming Huang
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University
| | - Chaoqi Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University
| | - Dan Li
- Department of Respiratory and Critical Care Medicine
| | - Yanxia Jiang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
18
|
Li S, Zhao B, Zhao H, Shang C, Zhang M, Xiong X, Pu J, Kuang B, Deng G. Silencing of Long Non-coding RNA SMAD5-AS1 Reverses Epithelial Mesenchymal Transition in Nasopharyngeal Carcinoma via microRNA-195-Dependent Inhibition of SMAD5. Front Oncol 2019; 9:1246. [PMID: 31921616 PMCID: PMC6923203 DOI: 10.3389/fonc.2019.01246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/29/2019] [Indexed: 12/25/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have gained widespread attention in recent years as a key regulator of diverse biological processes, but the knowledge of the mechanisms by which they act is still very limited. Differentially expressed lncRNA SMAD5 antisense RNA 1 (SMAD5-AS1) in nasopharyngeal carcinoma (NPC) and normal samples shown by in silico analyses were selected as the main subject, and then microRNA-195 (miR-195) was suggested to bind to SMAD5-AS1 and SMAD5. Therefore, the purpose of the present study was to investigate the effects of SMAD5-AS1/miR-195/SMAD5 on epithelial-mesenchymal transition (EMT) in NPC cells. High expression of SMAD5-AS1 and SMAD5 but low miR-195 expression was determined in NPC tissues and NPC cell lines by RT-qPCR and western blot analysis. SMAD5-AS1 could upregulate SMAD5 expression by competitively binding to miR-195 in NPC cells. Loss- and gain-of-function investigations were subsequently conducted in NPC cells (CNE-2 and CNE-1) to explore the role of SMAD5-AS, miR-195 and SMAD5 in NPC progression by assessing cellular biological functions and tumorigenic ability in vivo as well as determining the expression of EMT markers. Downregulation of SMAD5-AS1 or SMAD5 or overexpression of miR-195 led to inhibited NPC cell proliferation, invasion and migration and reversed EMT, enhanced apoptosis in vitro as well as restrained tumor growth in vivo. In conclusion, our findings indicate that silencing of lncRNA SMAD5-AS1 induces the downregulation of SMAD5 by miR-195, eventually repressing EMT in NPC. Hence, SMAD5-AS1 may represent a potential therapeutic target for NPC intervention.
Collapse
Affiliation(s)
- Siwei Li
- Department of Oncology, Tongji Huangzhou Hospital, Huazhong University of Science and Technology, Huanggang, China.,Department of Radiation Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Bo Zhao
- Department of Radiation Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Haiying Zhao
- Graduate School, Guillin Medical University, Guilin, China
| | - Cui Shang
- Department of Oncology, Tongji Huangzhou Hospital, Huazhong University of Science and Technology, Huanggang, China
| | - Man Zhang
- Department of Oncology, Tongji Huangzhou Hospital, Huazhong University of Science and Technology, Huanggang, China
| | - Xiaoxia Xiong
- Department of Oncology, Tongji Huangzhou Hospital, Huazhong University of Science and Technology, Huanggang, China
| | - Jinjin Pu
- Graduate School, Guillin Medical University, Guilin, China
| | - Bohua Kuang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Oncology in South China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Guangrui Deng
- Department of Oncology, Tongji Huangzhou Hospital, Huazhong University of Science and Technology, Huanggang, China
| |
Collapse
|
19
|
A Novel Biomarker Based on miRNA to Predict the Prognosis of Muscle-Invasive Bladder Urothelial Carcinoma. JOURNAL OF ONCOLOGY 2019; 2019:2654296. [PMID: 31885571 PMCID: PMC6925814 DOI: 10.1155/2019/2654296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/29/2019] [Accepted: 11/20/2019] [Indexed: 01/04/2023]
Abstract
Muscle-invasive bladder urothelial carcinoma (MIBC) is characteristic of high mortality and high recurrence. Distinguishing the prognostic risk of MIBC at the molecular level of miRNA expression is rarely performed and thus of great significance for the management and treatment of MIBC in clinics. Adaptive lasso Cox's proportional hazards model was used to explore the relationship between differential expression miRNAs (DEmiRNAs) and MIBC survival. Furthermore, we evaluated the epithelial-mesenchymal transition (EMT) score and immune infiltration abundance by exploring EMT signature genes and TIMER database, respectively. A total of 8 DEmiRNAs were detected to be associated with the survival rate of MIBC by using the lasso Cox algorithm. Through the linear combination of these 8 DEmiRNAs, we constructed a calculated marker, which could be used to distinguish the prognosis risk in both TCGA dataset (HR = 2.03, 95% CI = (1.47, 2.83)) and independent validation dataset (HR = 7.74, 95% CI = (1.05, 56.93)). Meanwhile, the constructed marker had reasonably high predictive values of the AUC (area under the curve) in the TCGA dataset and validation dataset being 0.73 and 0.63, respectively. In addition, we observed that the expression values of let-7c, miR-100, and miR-145 were associated with EMT score and the abundance of macrophage in tumor tissue as well. This newly identified risk score signature based on the combination of 8 miRNAs could significantly predict the prognostic risk of MIBC and might provide insight into immunotherapy and targeted therapy of MIBC.
Collapse
|
20
|
Liu M, Yu J, Wang D, Niu Y, Chen S, Gao P, Yang Z, Wang H, Zhang J, Zhang C, Zhao Y, Hu W, Sun G. Epigenetically Upregulated MicroRNA-602 Is Involved in a Negative Feedback Loop with FOXK2 in Esophageal Squamous Cell Carcinoma. Mol Ther 2019; 27:1796-1809. [PMID: 31401147 DOI: 10.1016/j.ymthe.2019.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/23/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022] Open
Abstract
MicroRNA is an endogenous, small RNA controlling multiple target genes and playing roles in various tumorigenesis processes. In this study, our results revealed that miR-602 expression levels in tumor tissues and preoperative serum from esophageal squamous cell carcinoma (ESCC) patients were higher than those in non-tumorous tissues and healthy volunteers. miR-602 overexpression was closely related to lymph node metastasis and TNM stages and correlated short overall, and it acted as an independent prognostic marker of ESCC. The methylation status of the miR-602 gene indicated more frequent hypomethylation of the CpG sites located upstream of the miR-602 gene in the ESCC tissues than in the adjacent normal tissues, and the methylation status of miR-602 correlated inversely with its expression levels. Subsequently, miR-602 overexpression promoted ESCC proliferation and metastasis and regulated cell cycles in vitro and in vivo. Mechanistically, a dual-luciferase experiment validated that Fork head box (FOX)K2 (FOXK2) was a direct target of miR-602. More importantly, systemic delivery of formulated miR-602 antagomir could reduce tumor growth and increased FOXK2 protein expression in nude mice. This work provides novel insight into the molecular pathogenesis of ESCC.
Collapse
Affiliation(s)
- Meiyue Liu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Jiarui Yu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Dan Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Yi Niu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Siyuan Chen
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Peng Gao
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Zhao Yang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Huan Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Jie Zhang
- Department of Pathology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Chao Zhang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Yue Zhao
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou 310022, China.
| | - Wanning Hu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China.
| | - Guogui Sun
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China.
| |
Collapse
|
21
|
Li J, Li X, Wu L, Pei M, Li H, Jiang Y. miR‐145 inhibits glutamine metabolism through c‐myc/GLS1 pathways in ovarian cancer cells. Cell Biol Int 2019; 43:921-930. [PMID: 31115975 DOI: 10.1002/cbin.11182] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/08/2019] [Accepted: 05/19/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Jie Li
- Department of PathologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an 710061 Shaanxi China
| | - Xu Li
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an 710061 Shaanxi China
| | - Lei Wu
- Department of Gynecology and ObstetricsThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an 710061 Shaanxi China
| | - Meili Pei
- Department of Gynecology and ObstetricsThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an 710061 Shaanxi China
| | - Huijin Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational MedicineXi'an Medical UniversityXi'an 710061 Shaanxi China
| | - Yu Jiang
- Department of Gynecology and ObstetricsThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an 710061 Shaanxi China
| |
Collapse
|
22
|
Hsa_circ_0004370 promotes esophageal cancer progression through miR-1294/LASP1 pathway. Biosci Rep 2019; 39:BSR20182377. [PMID: 30988074 PMCID: PMC6522713 DOI: 10.1042/bsr20182377] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/24/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022] Open
Abstract
Circular RNAs (circRNAs) formed by back-splicing play multiple roles in the occurrence and development of cancer. Here, we found that hsa_circ_0004370 was up-regulated in both esophageal cancer (EC) tissues and cell lines. Loss function of hsa_circ_0004370 by si-RNA significantly suppressed proliferation and invasion and promoted apoptosis in both EC cell lines. The sponging of miR-1294 by hsa_circ_0004370 was bioinformatically predicted and subsequently verified by luciferase reporter assay and RNA immunoprecipitation assay. Further, hsa_circ_0004370 involved in the up-regulation of LASP1 by sponging miR-1294. Besides, the inhibition of the down-regulated hsa_circ_0004370 on cell malignant behaviors was rescued by miR-1294 inhibitor. Finally, this rescue effect was abrogated by suppressing the expression of LASP1. The results present here suggest that hsa_circ_0004370 functions as an oncogene on cell proliferation, apoptosis, and invasion via miR-1294/LASP1 axis.
Collapse
|
23
|
Chen W, Huang B, Wang E, Wang X. MiR-145 inhibits EGF-induced epithelial-to-mesenchymal transition via targeting Smad2 in human glioblastoma. Onco Targets Ther 2019; 12:3099-3107. [PMID: 31114250 PMCID: PMC6497881 DOI: 10.2147/ott.s202129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/07/2019] [Indexed: 11/23/2022] Open
Abstract
Background/Aims: MiR-145 and Smad2 have been widely reported in the development and progression of human malignancies. In the present study, we investigated the correlation between miR-145 and Smad2 in human glioblastoma multiforme (GBM). Methods: The epithelial–mesenchymal transition (EMT) biomarkers and Smad2 were assessed by Western blot. The silencing of Smad2 was conducted by transfection of Smad2 siRNAs. The cell migration and invasion were evaluated using Transwell assays, respectively. The dual luciferase reporter assay was performed to identify whether Smad2 is a direct target of miR-145. Results: The epidermal growth factor (EGF) activated the phosphorylation of Smad2 in U87 and U251 cells in a time- and dose-dependent manner. However, treatment with silencing of Smad2 or overexpression of miR-145 significantly inhibited the expressions of total Smad2, N-cadherin, Vimentin and matrix metallopeptidase 9, but induced the expression of E-cadherin. In addition, silencing of Smad2 or overexpression of miR-145 also inhibited the migration and invasion of U87 and U251 cells. Mechanistically, Smad2 was confirmed to be a target gene of miR-145 by bioinformatics analysis and luciferase reporter assay. Restored Smad2 expression also reversed miR-145-induced inhibition of EMT in U87 and U251 cells. Conclusion: MiR-145 inhibits EGF-induced EMT via targeting Smad2 in human GBM. Therefore, miR-145 may be a promising biomarker and therapeutic target for GBM patients.
Collapse
Affiliation(s)
- Weijie Chen
- Department of Neurosurgery, People's Hospital of Rizhao, Jining Medical University, Rizhao 276826, People's Republic of China
| | - Baochen Huang
- Department of Neurosurgery, People's Hospital of Rizhao, Jining Medical University, Rizhao 276826, People's Republic of China
| | - Enqin Wang
- Clinical Skill Training Center, People's Hospital of Rizhao, Jining Medical University, Rizhao 276826, People's Republic of China
| | - Xingqiang Wang
- Department of Neurosurgery, People's Hospital of Rizhao, Jining Medical University, Rizhao 276826, People's Republic of China
| |
Collapse
|