1
|
Vilar LC, Rego ACS, Miguel MAL, Paranhos RPDR, Laport MS, Rossi CC, Giambiagi-deMarval M. Staphylococcus spp. and methicillin-resistance gene mecA dispersion in seawater: A case study of Guanabara Bay's recreational and touristic waters. Comp Immunol Microbiol Infect Dis 2025; 118:102326. [PMID: 39954386 DOI: 10.1016/j.cimid.2025.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Environmental Staphylococci, particularly coagulase-negative Staphylococci (CoNS), are known reservoirs of antimicrobial resistance genes and human-animal opportunistic pathogens, yet their role within the One Health framework remains underexplored. In this study, we isolated 12 species of CoNS from two sites 10 km apart in Guanabara Bay, Rio de Janeiro, with the most frequent species being the opportunistic Staphylococcus saprophyticus (30.3 %), Staphylococcus warneri (25.7 %), and Staphylococcus epidermidis (16.7 %). GTG5-PCR fingerprinting revealed significant genetic diversity, yet identical profiles persisted across both sites throughout the year, indicating strain dispersion and persistence. Among the 66 strains analyzed, 42 exhibited resistance to clinically significant antimicrobials, including methicillin-resistant strains harboring the mecA gene. Remarkably, 22.7 % of the strains carried CRISPR-Cas systems, a frequency unusually high for Staphylococcus spp., suggesting that bacteriophage pressure in the seawater environment may drive this increase. The presence of antimicrobial-resistant CoNS in Guanabara Bay, a popular recreational area, represents a potential public health risk.
Collapse
Affiliation(s)
- Lucas Cecílio Vilar
- Microbiology Institute Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Marinella Silva Laport
- Microbiology Institute Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ciro César Rossi
- Biochemistry and Molecular Biology Department, Federal University of Viçosa, Minas Gerais, Brazil
| | | |
Collapse
|
2
|
Kellgren T, Dwibedi C, Widerström M, Sundell D, Öhrman C, Sjödin A, Monsen T, Rydén P, Johansson A. Completed genome and emergence scenario of the multidrug-resistant nosocomial pathogen Staphylococcus epidermidis ST215. BMC Microbiol 2024; 24:215. [PMID: 38890594 PMCID: PMC11186124 DOI: 10.1186/s12866-024-03367-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND A multidrug-resistant lineage of Staphylococcus epidermidis named ST215 is a common cause of prosthetic joint infections and other deep surgical site infections in Northern Europe, but is not present elsewhere. The increasing resistance among S. epidermidis strains is a global concern. We used whole-genome sequencing to characterize ST215 from healthcare settings. RESULTS We completed the genome of a ST215 isolate from a Swedish hospital using short and long reads, resulting in a circular 2,676,787 bp chromosome and a 2,326 bp plasmid. The new ST215 genome was placed in phylogenetic context using 1,361 finished public S. epidermidis reference genomes. We generated 10 additional short-read ST215 genomes and 11 short-read genomes of ST2, which is another common multidrug-resistant lineage at the same hospital. We studied recombination's role in the evolution of ST2 and ST215, and found multiple recombination events averaging 30-50 kb. By comparing the results of antimicrobial susceptibility testing for 31 antimicrobial drugs with the genome content encoding antimicrobial resistance in the ST215 and ST2 isolates, we found highly similar resistance traits between the isolates, with 22 resistance genes being shared between all the ST215 and ST2 genomes. The ST215 genome contained 29 genes that were historically identified as virulence genes of S. epidermidis ST2. We established that in the nucleotide sequence stretches identified as recombination events, virulence genes were overrepresented in ST215, while antibiotic resistance genes were overrepresented in ST2. CONCLUSIONS This study features the extensive antibiotic resistance and virulence gene content in ST215 genomes. ST215 and ST2 lineages have similarly evolved, acquiring resistance and virulence through genomic recombination. The results highlight the threat of new multidrug-resistant S. epidermidis lineages emerging in healthcare settings.
Collapse
Affiliation(s)
- Therese Kellgren
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, SE, 90187, Sweden
| | - Chinmay Dwibedi
- Department of Clinical Microbiology and Molecular Infection Medicine Sweden (MIMS), Umeå University, 90185, Umeå, Sweden
| | - Micael Widerström
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden.
| | - David Sundell
- Division of CBRN Defence and Security, Swedish Defense Research Agency, 90182, Umeå, SE, Sweden
| | - Caroline Öhrman
- Division of CBRN Defence and Security, Swedish Defense Research Agency, 90182, Umeå, SE, Sweden
| | - Andreas Sjödin
- Division of CBRN Defence and Security, Swedish Defense Research Agency, 90182, Umeå, SE, Sweden
| | - Tor Monsen
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden
| | - Patrik Rydén
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, SE, 90187, Sweden
| | - Anders Johansson
- Department of Clinical Microbiology and Molecular Infection Medicine Sweden (MIMS), Umeå University, 90185, Umeå, Sweden
| |
Collapse
|
3
|
Coustillères F, Renault V, Corvec S, Dupieux C, Simões PM, Lartigue MF, Plouzeau-Jayle C, Tande D, Lamoureux C, Lemarié C, Chenouard R, Laurent F, Lemaignen A, Bémer P, the CRIOGO (Centre de Référence des Infections Ostéo-articulaires du Grand Ouest) Study Team. Clinical, Bacteriological, and Genetic Characterization of Bone and Joint Infections Involving Linezolid-Resistant Staphylococcus epidermidis: a Retrospective Multicenter Study in French Reference Centers. Microbiol Spectr 2023; 11:e0419022. [PMID: 37133395 PMCID: PMC10269892 DOI: 10.1128/spectrum.04190-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/09/2023] [Indexed: 05/04/2023] Open
Abstract
The choice of the best probabilistic postoperative antibiotics in bone and joint infections (BJIs) is still challenging. Since the implementation of protocolized postoperative linezolid in six French referral centers, linezolid-resistant multidrug-resistant Staphylococcus epidermidis (LR-MDRSE) strains were isolated in patients with BJI. We aimed here to describe clinical, microbiological, and molecular patterns associated with these strains. All patients with at least one intraoperative specimen positive for LR-MDRSE between 2015 and 2020 were included in this retrospective multicenter study. Clinical presentation, management, and outcome were described. LR-MDRSE strains were investigated by MIC determination for linezolid and other anti-MRSA antibiotics, characterization of genetic determinants of resistance, and phylogenetic analysis. Forty-six patients (colonization n = 10, infection n = 36) were included in five centers, 45 had prior exposure to linezolid, 33 had foreign devices. Clinical success was achieved for 26/36 patients. Incidence of LR-MDRSE increased over the study period. One hundred percent of the strains were resistant to oxazolidinones, gentamicin, clindamycin, ofloxacin, rifampicin, ceftaroline, and ceftobiprole, and susceptible to cyclins, daptomycin, and dalbavancin. Susceptibility to delafloxacin was bimodal. Molecular analysis was performed for 44 strains, and the main mutation conferring linezolid resistance was the 23S rRNA G2576T mutation. All strains belonged to the sequence type ST2 or its clonal complex, and phylogenetic analysis showed emergence of five populations corresponding geographically to the centers. We showed the emergence of new clonal populations of highly linezolid-resistant S. epidermidis in BJIs. Identifying patients at risk for LR-MDRSE acquisition and proposing alternatives to systematic postoperative linezolid use are essential. IMPORTANCE The manuscript describes the emergence of clonal linezolid-resistant strains of Staphylococcus epidermidis (LR-MDRSE) isolated from patients presenting with bone and joint infections. Incidence of LR-MDRSE increased over the study period. All strains were highly resistant to oxazolidinones, gentamicin, clindamycin, ofloxacin, rifampicin, ceftaroline, and ceftobiprole, but were susceptible to cyclins, daptomycin, and dalbavancin. Susceptibility to delafloxacin was bimodal. The main mutation conferring linezolid resistance was the 23S rRNA G2576T mutation. All strains belonged to the sequence type ST2 or its clonal complex, and phylogenetic analysis showed emergence of five populations corresponding geographically to the centers. LR-MDRSE bone and joint infections seem to be accompanied by an overall poor prognosis related to comorbidities and therapeutic issues. Identifying patients at risk for LR-MDRSE acquisition and proposing alternatives to systematic postoperative linezolid use become essential, with a preference for parenteral drugs such as lipopeptids or lipoglycopeptids.
Collapse
Affiliation(s)
- François Coustillères
- Service des Maladies Infectieuses, Centre Hospitalier Régional Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Tours, France
| | - Victor Renault
- Service de Bactériologie et des Contrôles microbiologiques, Hôtel-Dieu, Centre Hospitalier Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Nantes, France
| | - Stéphane Corvec
- Service de Bactériologie et des Contrôles microbiologiques, Hôtel-Dieu, Centre Hospitalier Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Nantes, France
| | - Céline Dupieux
- Hospices Civils de Lyon, Institut des Agents Infectieux, Service de Bactériologie, Centre National de Référence des Staphylocoques, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOAC Lyon), France
| | - Patricia Martins Simões
- Hospices Civils de Lyon, Institut des Agents Infectieux, Service de Bactériologie, Centre National de Référence des Staphylocoques, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOAC Lyon), France
| | - Marie Frédérique Lartigue
- Service de Bactériologie et d’Hygiène, Centre Hospitalier Régional Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Tours, France
| | - Chloé Plouzeau-Jayle
- Service de Bactériologie et d’Hygiène, Centre Hospitalier Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Poitiers, France
| | - Didier Tande
- Service de Bactériologie et d’Hygiène, Centre Hospitalier Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Brest, France
| | - Claudie Lamoureux
- Service de Bactériologie et d’Hygiène, Centre Hospitalier Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Brest, France
| | - Carole Lemarié
- Service de Bactériologie et d’Hygiène, Centre Hospitalier Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Angers, France
| | - Rachel Chenouard
- Service de Bactériologie et d’Hygiène, Centre Hospitalier Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Angers, France
| | - Frédéric Laurent
- Hospices Civils de Lyon, Institut des Agents Infectieux, Service de Bactériologie, Centre National de Référence des Staphylocoques, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOAC Lyon), France
| | - Adrien Lemaignen
- Service des Maladies Infectieuses, Centre Hospitalier Régional Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Tours, France
| | - Pascale Bémer
- Service de Bactériologie et des Contrôles microbiologiques, Hôtel-Dieu, Centre Hospitalier Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Nantes, France
| | - the CRIOGO (Centre de Référence des Infections Ostéo-articulaires du Grand Ouest) Study Team
- Service des Maladies Infectieuses, Centre Hospitalier Régional Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Tours, France
- Service de Bactériologie et des Contrôles microbiologiques, Hôtel-Dieu, Centre Hospitalier Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Nantes, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Service de Bactériologie, Centre National de Référence des Staphylocoques, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOAC Lyon), France
- Service de Bactériologie et d’Hygiène, Centre Hospitalier Régional Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Tours, France
- Service de Bactériologie et d’Hygiène, Centre Hospitalier Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Poitiers, France
- Service de Bactériologie et d’Hygiène, Centre Hospitalier Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Brest, France
- Service de Bactériologie et d’Hygiène, Centre Hospitalier Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Angers, France
| |
Collapse
|
4
|
Martínez-Santos VI, Torres-Añorve DA, Echániz-Aviles G, Parra-Rojas I, Ramírez-Peralta A, Castro-Alarcón N. Characterization of Staphylococcus epidermidis clinical isolates from hospitalized patients with bloodstream infection obtained in two time periods. PeerJ 2022; 10:e14030. [PMID: 36213498 PMCID: PMC9541613 DOI: 10.7717/peerj.14030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/16/2022] [Indexed: 01/19/2023] Open
Abstract
Background In recent years Staphylococcus epidermidis has been considered an important and frequent causative agent of health care-associated infections (HAIs), increasing the costs of hospitalization, morbidity, and mortality. Antibiotic resistance and biofilm formation are the most important obstacles in the treatment of infections caused by this microorganism. The aim of this work was to determine the most prevalent STs, as well as the antibiotic resistance profile and biofilm formation of S. epidermidis clinical isolates obtained from hospitalized patients in two hospitals in Acapulco, Guerrero in two time periods. Methods Twenty methicillin-resistant S. epidermidis strains isolated from patients with bacteremia in two hospitals in two time periods were analyzed. Identification and antibiotic susceptibility were performed using the Vitek automated system. Molecular confirmation of the identification and methicillin resistance was performed by duplex PCR of the mecA and nuc genes. Biofilm production was analyzed, and the clonal origin was determined by multilocus sequence typing (MLST). Results We identified 14 antibiotic resistance profiles as well as 13 sequence types (ST), including the new ST761. We also found that ST2 and ST23 were the most prevalent and, together with ST59, were found in both time periods. Seventeen of our clinical isolates were multidrug-resistant, but all of them were sensitive to linezolid and vancomycin, and this was not related to biofilm production. Additionally, we standardized a duplex PCR to identify methicillin-resistant S. epidermidis strains. In conclusion, S. epidermidis STs 2, 23, and 59 were found in both time periods. This study is the first report of S. epidermidis ST761. The clinical isolates obtained in this work showed a high multidrug resistance that is apparently not related to biofilm production.
Collapse
Affiliation(s)
| | - David A. Torres-Añorve
- Laboratorio de Investigación en Microbiología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Gabriela Echániz-Aviles
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Isela Parra-Rojas
- Labotatorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Arturo Ramírez-Peralta
- Laboratorio de Investigación en Patometabolismo Microbiano, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Natividad Castro-Alarcón
- Laboratorio de Investigación en Microbiología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| |
Collapse
|
5
|
Genomics of Staphylococcus aureus and Staphylococcus epidermidis from Periprosthetic Joint Infections and Correlation to Clinical Outcome. Microbiol Spectr 2022; 10:e0218121. [PMID: 35762769 PMCID: PMC9430453 DOI: 10.1128/spectrum.02181-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The approach of sequencing or genotyping to characterize the pathogenic potential of staphylococci from orthopedic device-related infection (ODRI) has been applied in recent studies. These studies described the genomic carriage of virulence in clinical strains and compared it with those in commensal strains. Only a few studies have directly correlated genomic profiles to patient outcome and phenotypic virulence properties in periprosthetic joint infections (PJIs). We investigated the association between genomic variations and virulence-associated phenotypes (biofilm-forming ability and antimicrobial resistance) in 111 staphylococcal strains isolated from patients with PJI and the infection outcome (resolved/unresolved). The presence of a strong biofilm phenotype in Staphylococcus aureus and an antibiotic-resistant phenotype in Staphylococcus epidermidis were both associated with treatment failure of PJI. In S. epidermidis, multidrug resistance (MDR) and resistance to rifampicin were associated with unresolved infection. Sequence type 45 (ST45) and ST2 were particularly enriched in S. aureus and S. epidermidis, respectively. S. epidermidis ST2 caused the majority of relapses and was associated with MDR and strong biofilm production, whereas ST215 correlated with MDR and non/weak biofilm production. S. aureusagr II correlated with resolved infection, while S. epidermidisagr I was associated with strong biofilm production and agr III with non/weak production. Collectively, our results highlight the importance of careful genomic and phenotypic characterization to anticipate the probability of the strain causing treatment failure in PJI. Due to the high rate of resistant S. epidermidis strains identified, this study provides evidence that the current recommended treatment of rifampicin and a fluoroquinolone should not be administered without knowledge of the resistance pattern. IMPORTANCE This study addresses the presence and frequency of particular genetic variants and virulence factors found in staphylococcal bacteria causing periprosthetic joint infection (PJI) of the hip and knee to ascertain their clinical relevance as predictors of treatment failure. We characterized the genetic virulence traits of a large collection of clinical staphylococci isolated from patients with PJI and evaluated their association with the patient’s infection outcome. The results showed that S. aureus strains that produced strong biofilms and S. epidermidis strains with resistance to several antibiotics associated significantly with unresolved infection. Some particular genetic variants associated with biofilm formation and multidrug resistance. These traits should be considered important risk factors for the diagnosis and treatment guidance in PJI.
Collapse
|
6
|
Look Who's Talking: Host and Pathogen Drivers of Staphylococcus epidermidis Virulence in Neonatal Sepsis. Int J Mol Sci 2022; 23:ijms23020860. [PMID: 35055041 PMCID: PMC8775791 DOI: 10.3390/ijms23020860] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Preterm infants are at increased risk for invasive neonatal bacterial infections. S. epidermidis, a ubiquitous skin commensal, is a major cause of late-onset neonatal sepsis, particularly in high-resource settings. The vulnerability of preterm infants to serious bacterial infections is commonly attributed to their distinct and developing immune system. While developmentally immature immune defences play a large role in facilitating bacterial invasion, this fails to explain why only a subset of infants develop infections with low-virulence organisms when exposed to similar risk factors in the neonatal ICU. Experimental research has explored potential virulence mechanisms contributing to the pathogenic shift of commensal S. epidermidis strains. Furthermore, comparative genomics studies have yielded insights into the emergence and spread of nosocomial S. epidermidis strains, and their genetic and functional characteristics implicated in invasive disease in neonates. These studies have highlighted the multifactorial nature of S. epidermidis traits relating to pathogenicity and commensalism. In this review, we discuss the known host and pathogen drivers of S. epidermidis virulence in neonatal sepsis and provide future perspectives to close the gap in our understanding of S. epidermidis as a cause of neonatal morbidity and mortality.
Collapse
|
7
|
Widerström M, Stegger M, Johansson A, Gurram BK, Larsen AR, Wallinder L, Edebro H, Monsen T. Heterogeneity of Staphylococcus epidermidis in prosthetic joint infections: time to reevaluate microbiological criteria? Eur J Clin Microbiol Infect Dis 2021; 41:87-97. [PMID: 34599708 PMCID: PMC8732909 DOI: 10.1007/s10096-021-04352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/17/2021] [Indexed: 11/24/2022]
Abstract
Prosthetic joint infection (PJI) is a feared and challenging to diagnose complication after arthroplasty, with Staphylococcus epidermidis as the major pathogen. One important criteria to define PJI is the detection of phenotypically indistinguishable microorganisms with identical antibiotic susceptibility pattern in at least two different samples. However, owing to phenotypical variation within genetic clones and clonal variation within a phenotype, the criteria may be ambiguous. We investigated the extent of diversity among coagulase-negative staphylococci (CoNS) in PJI and characterised S. epidermidis isolates from PJI samples, specifically multiple S. epidermidis isolates identified in individual PJI patients. We performed a retrospective cohort study on 62 consecutive patients with PJI caused by CoNS from two hospitals in Northern Sweden. In 16/62 (26%) PJIs, multiple S. epidermidis isolates were available for whole-genome analyses. Hospital-adapted multidrug-resistant genetic clones of S. epidermidis were identified in samples from 40/62 (65%) of the patients using a combination of pulsed-field gel electrophoresis and multilocus sequence typing. Whole-genome sequencing showed the presence of multiple sequence types (STs) in 7/16 (44%) PJIs where multiple S. epidermidis isolates were available. Within-patient phenotypical variation in the antibiotic susceptibility and/or whole-genome antibiotic resistance gene content was frequent (11/16, 69%) among isolates with the same ST. The results highlight the ambiguity of S. epidermidis phenotypic characterisation as a diagnostic method in PJI and call for larger systematic studies for determining the frequency of CoNS diversity in PJIs, the implications of such diversity for microbiological diagnostics, and the therapeutic outcomes in patients.
Collapse
Affiliation(s)
- Micael Widerström
- Department of Clinical Microbiology, Umeå University, SE-901 85, Umeå, Sweden.
| | - Marc Stegger
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Johansson
- Department of Clinical Microbiology, Umeå University, SE-901 85, Umeå, Sweden
| | - Bharat Kumar Gurram
- Department of Clinical Microbiology, Umeå University, SE-901 85, Umeå, Sweden
| | - Anders Rhod Larsen
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Lars Wallinder
- Department of Orthopaedics, University Hospital of Umeå, Umeå, Sweden
| | - Helen Edebro
- Department of Clinical Microbiology, Umeå University, SE-901 85, Umeå, Sweden
| | - Tor Monsen
- Department of Clinical Microbiology, Umeå University, SE-901 85, Umeå, Sweden
| |
Collapse
|
8
|
Comparative characterisation of human and ovine non- aureus staphylococci isolated in Sardinia (Italy) for antimicrobial susceptibility profiles and resistance genes. Epidemiol Infect 2021; 149:e45. [PMID: 33509310 PMCID: PMC8060810 DOI: 10.1017/s0950268821000212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We present the comparative characterisation of 195 non-aureus staphylococci (NAS) isolates obtained from sheep (n = 125) and humans (n = 70) in Sardinia, Italy, identified at the species level by gap gene polymerase chain reaction (PCR) followed by restriction fragment length polymorphism analysis with AluI. Isolates were tested phenotypically with a disc diffusion method and genotypically by PCR, for resistance to 11 antimicrobial agents including cationic antiseptic agents. Among the ovine isolates, Staphylococcus epidermidis (n = 57), S. chromogenes (n = 29), S. haemolyticus (n = 17), S. simulans (n = 8) and S. caprae (n = 6) were the most prevalent species, while among human isolates, S. haemolyticus (n = 28) and S. epidermidis (n = 26) were predominant, followed by S. lugdunensis and S. hominis (n = 4). Of the 125 ovine isolates, 79 (63.2%) did not carry any of the resistance genes tested, while the remainder carried resistance genes for at least one antibiotic. The highest resistance rates among ovine isolates were recorded against tetracycline (20.8%), and penicillin (15.2%); none was resistant to methicillin and two exhibited multidrug resistance (MDR); one of which was positive for the antiseptic resistance smr gene. By contrast, most human isolates (59/70, 84.3%) were resistant to ⩾1 antimicrobials, and 41 (58.6%) were MDR. All 52 (74.3%) penicillin-resistant isolates possessed the blaZ gene, and 33 of 70 (47.1%) harboured the mec gene; of these, seven were characterised by the Staphylococcal Chromosomal Cassette (SCCmec) type IV, 6 the type V, 5 of type III and one representative each of type I and type II. The majority (57.1%) was erythromycin-resistant and 17 isolates carried only the efflux msrA gene, 11 the methylase ermC gene and an equal number harboured both of the latter genes. Moreover, 23 (32.8%) were tetracycline-resistant and all but one possessed only the efflux tetK gene. qacA/B and smr genes were detected in 27 (38.6%) and 18 (25.7%) human NAS, respectively. These results underline a marked difference in species distribution and antimicrobial resistance between ovine and human-derived NAS.
Collapse
|
9
|
Tekeli A, Öcal DN, Dolapçı İ. Detection of sasX Gene and Distribution of SCC mec Types in Invasive and Non-invasive Coagulase-negative Staphylococci. Balkan Med J 2020; 37:215-221. [PMID: 32270947 PMCID: PMC7285666 DOI: 10.4274/balkanmedj.galenos.2020.2019.8.21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background Coagulase-negative staphylococci, which belong to the normal microbiota of the skin and mucous membranes, are opportunistic pathogens. sasX, a newly described protein, is thought to play an important role in nasal colonization and methicillin-resistant Staphylococcus aureus virulence, and it may be acquired from coagulase-negative staphylococci by horizontal gene transfer. It has been considered that understanding the function of sasX gene may help clarify the relevance of the different adhesion mechanisms in the pathogenesis of infections associated with biofilm. Aims To investigate the sasX gene presence, staphylococcal cassette chromosome mec types, and antimicrobial resistance patterns of invasive and noninvasive coagulase-negative staphylococci isolates. Study Design Cross-sectional study. Methods The study included a total of 180 coagulase-negative staphylococci strains. Non-invasive isolates (n=91) were obtained from the hands of healthy volunteers who do not work at the hospital (n=30), the nasal vestibule of healthy volunteer hospital workers (n=26), and central venous catheter (n=35). Invasive isolates (n=89) were isolated from peripheral blood cultures of inpatients who do not have catheters. All isolates were identified by conventional microbiological methods, automated systems, and, if needed, with matrix-assisted laser desorption/ionization-time of flight. Staphylococcal cassette chromosome mec typing, sasX and mec gene detection, antibiotic susceptibility, and sasX gene sequence analysis were performed. Results Peripheral blood, central venous catheter colonization, and nasal vestibule isolates were positive for the sasX gene, whereas hand isolates were negative. sasX gene was present in 17 isolates, and no statistical significance was found between invasive and noninvasive isolates (p=0.173). Sequence analysis of the sasX genes showed high homology to related proteins of Staphylococcus phage SPbeta-like and Staphylococcus epidermidis RP62A. staphylococcal cassette chromosome mec type V was the most prevalent regardless of species. staphylococcal cassette chromosome mec type II was more frequent in invasive isolates and found to be statistically important for invasive and noninvasive S. epidermidis isolates (p=0.029). Staphylococcus haemolyticus isolates had the overall highest resistance rates. Resistance to ciprofloxacin, trimethoprim-sulfamethoxazole, and erythromycin was found to be higher in isolates from catheter and blood culture. Staphylococcus hominis isolates had the highest rate for inducible clindamycin resistance. None of the isolates were resistant to vancomycin, teicoplanin, and linezolid. Conclusion The sasX gene is detected in 9.44% of the isolates. There is no statistical difference between the sasX-positive and -negative isolates in terms of antibacterial resistance and the presence of sasX and SCCmec types. Further studies about the role of sasX at virulence in coagulase-negative staphylococci, especially from clinical samples such as tracheal aspirate and abscess isolates, and distribution of staphylococcal cassette chromosome mec types are needed.
Collapse
Affiliation(s)
- Alper Tekeli
- Department of Medical Microbiology, Ankara University School of Medicine, Ankara, Turkey
| | - Duygu Nilüfer Öcal
- Department of Medical Microbiology, Ankara University School of Medicine, Ankara, Turkey
| | - İştar Dolapçı
- Department of Medical Microbiology, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
10
|
Rodríguez-Lucas C, Rodicio MR, Càmara J, Domínguez MÁ, Alaguero M, Fernández J. Long-term endemic situation caused by a linezolid- and meticillin-resistant clone of Staphylococcus epidermidis in a tertiary hospital. J Hosp Infect 2019; 105:64-69. [PMID: 31634538 DOI: 10.1016/j.jhin.2019.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Linezolid (LZD)-resistant Staphylococcus epidermidis (LRSE) are increasing, and are mainly associated with outbreaks in hospital wards with high LZD consumption. AIM To investigate the frequency of LRSE in a tertiary hospital in the context of LZD use. METHODS The frequency of LRSE and the data on LZD usage [expressed as defined daily dose (DDD) per 100 patient-days], from 2011 to 2017, were analysed retrospectively. Selected LRSE were typed by pulsed-field gel electrophoresis (PFGE) and screened for transferable LZD resistance genes. Representative isolates were typed by multi-locus sequence typing, and ribosomal mechanisms of LZD resistance were investigated. FINDINGS In total, 435 LRSE were detected, with frequencies ranging from 13.56% to 32.93% in the intensive care unit (ICU) where LZD consumption was high (6.34-8.10 DDDs), and from 2.48 to 6.80% in the remaining wards where LZD use was considerably lower (0.63-2.49 DDDs). The first 44 LRSE isolates recovered (June 2013-June 2014) were closely related according to PFGE patterns, and all except one were resistant to meticillin due to mecA production. Selected isolates belonged to ST2, carried SCCmec III, and had the G2576T mutation in the V domain of each of the six copies of the 23S rRNA gene. Five of the 44 isolates (11.36%) were positive for the cfr gene. CONCLUSION An ST2 LZD- and meticillin-resistant clone was found in the ICU and also in wards with low consumption of LZD. This highlights the need to implement and maintain infection control measures as well as antimicrobial stewardship programmes in all hospital units in order to preserve the efficacy of LZD.
Collapse
Affiliation(s)
- C Rodríguez-Lucas
- Unidad de Microbiología, Hospital El Bierzo, Ponferrada, Spain; Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - M R Rodicio
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - J Càmara
- Servicio de Microbiología, Hospital Universitari de Bellvitge-Universitat de Barcelona-IDIBELL, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Spain
| | - M Á Domínguez
- Servicio de Microbiología, Hospital Universitari de Bellvitge-Universitat de Barcelona-IDIBELL, Barcelona, Spain; Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - M Alaguero
- Servicio de Farmacia Hospitalaria, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - J Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Servicio de Microbiología, Hospital Universitario Central de Asturias, Oviedo, Spain.
| |
Collapse
|
11
|
Espadinha D, Sobral RG, Mendes CI, Méric G, Sheppard SK, Carriço JA, de Lencastre H, Miragaia M. Distinct Phenotypic and Genomic Signatures Underlie Contrasting Pathogenic Potential of Staphylococcus epidermidis Clonal Lineages. Front Microbiol 2019; 10:1971. [PMID: 31507574 PMCID: PMC6719527 DOI: 10.3389/fmicb.2019.01971] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Staphylococcus epidermidis is a common skin commensal that has emerged as a pathogen in hospitals, mainly related to medical devices-associated infections. Noteworthy, infection rates by S. epidermidis have the tendency to rise steeply in next decades together with medical devices use and immunocompromized population growth. Staphylococcus epidermidis population structure includes two major clonal lineages (A/C and B) that present contrasting pathogenic potentials. To address this distinction and explore the basis of increased pathogenicity of A/C lineage, we performed a detailed comparative analysis using phylogenetic and integrated pangenome-wide-association study (panGWAS) approaches and compared the lineages's phenotypes in in vitro conditions mimicking carriage and infection. Results: Each S. epidermidis lineage had distinct phenotypic signatures in skin and infection conditions and differed in genomic content. Combination of phenotypic and genotypic data revealed that both lineages were well adapted to skin environmental cues. However, they appear to occupy different skin niches, perform distinct biological functions in the skin and use different mechanisms to complete the same function: lineage B strains showed evidence of specialization to survival in microaerobic and lipid rich environment, characteristic of hair follicle and sebaceous glands; lineage A/C strains showed evidence for adaption to diverse osmotic and pH conditions, potentially allowing them to occupy a broader and more superficial skin niche. In infection conditions, A/C strains had an advantage, having the potential to bind blood-associated host matrix proteins, form biofilms at blood pH, resist antibiotics and macrophage acidity and to produce proteases. These features were observed to be rare in the lineage B strains. PanGWAS analysis produced a catalog of putative S. epidermidis virulence factors and identified an epidemiological molecular marker for the more pathogenic lineage. Conclusion: The prevalence of A/C lineage in infection is probably related to a higher metabolic and genomic versatility that allows rapid adaptation during transition from a commensal to a pathogenic lifestyle. The putative virulence and phenotypic factors associated to A/C lineage constitute a reliable framework for future studies on S. epidermidis pathogenesis and the finding of an epidemiological marker for the more pathogenic lineage is an asset for the management of S. epidermidis infections.
Collapse
Affiliation(s)
- Diana Espadinha
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Rita G. Sobral
- Laboratory of Molecular Microbiology of Bacterial Pathogens, UCIBIO/REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Costa de Caparica, Portugal
| | - Catarina Inês Mendes
- Molecular Microbiology and Infection Unit, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
| | - Guillaume Méric
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Samuel K. Sheppard
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- MRC CLIMB Consortium, Bath, United Kingdom
| | - João A. Carriço
- Molecular Microbiology and Infection Unit, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
| | - Hermínia de Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, NY, United States
| | - Maria Miragaia
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
12
|
Guo Y, Ding Y, Liu L, Shen X, Hao Z, Duan J, Jin Y, Chen Z, Yu F. Antimicrobial susceptibility, virulence determinants profiles and molecular characteristics of Staphylococcus epidermidis isolates in Wenzhou, eastern China. BMC Microbiol 2019; 19:157. [PMID: 31288755 PMCID: PMC6617921 DOI: 10.1186/s12866-019-1523-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 06/20/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Staphylococcus epidermidis has emerged as an often encountered pathogen responsible for hospital-acquired infections. The aim of present study is to investigate the microbiological characteristic of S. epidermidis isolates isolated from sterile specimens and skin in a Chinese tertiary hospital. METHODS A total of 223 non-duplicate S. epidermidis were collected from various sterile specimens of inpatients among 10 years in Wenzhou, China. 106 S. epidermidis obtained from the skin (urethral orifices) of healthy volunteers. All isolates were tested for antimicrobial susceptibility. PCR was used to detect the virulence- and resistance-associated genes and 7 housekeeping genes to determine the sequence types (STs) of selected isolates. RESULTS The resistance rates to antimicrobials tested except linezolid and vancomycin and the prevalence of methicillin-resistant S. epidermidis (MRSE) of S. epidermidis clinical isolates were significantly higher than those among colonized isolates (P < 0.05). The positive rates of virulence-associated genes including aap, sesI, ACME-arcA, IS256, bhp, altE, aae and gehD for S. epidermidis clinical isolates were significantly higher than those for colonized isolate (P < 0.05). A total of 60 STs including 28 from clinical isolates and 32 from colonized isolates were identified by MLST. A novel, rarely encountered clone, ST466, was found to be the second prevalent clone among clinical isolates. The great majority of the S. epidermidis isolates tested (73.86%) belonged to clone complex 2 (CC2). Compared with ST2, ST130, ST20 and ST59 clones, ST466 clone had the highest resistance rate to tetracycline (50.00%), the second highest prevalence of ACME-arcA (65.00%), bhp (30.00%) and qacA/B (65.00%), very low prevalence of carriage of icaA (0.00%) and biofilm formation (0.00%), the lack of sesI and high prevalence of aap, altE and aae (> 90%), which was similar to the characteristics of ST59 clone with one locus difference from ST466. ST466 clone competence with Staphylococcus aureus was relatively stronger, relative to ST2, ST20, ST130 and ST59 clones. CONCLUSION Taken together, a high-level of genetic diversity was found between clinical and colonized S. epidermidis isolates. A novel ST466 clone with distinct and similar characteristics relative to other prevalent clones, emerging as a prevalent clone in China, should be of major concern.
Collapse
Affiliation(s)
- Yinjuan Guo
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, China
| | - Yu Ding
- Department of Laboratory Medicine, Hunan Provincial People's Hospital, Changsha, 410000, China
| | - Li Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaofei Shen
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhihao Hao
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jingjing Duan
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ye Jin
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zengqiang Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Fangyou Yu
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
13
|
Nosocomial ventriculitis caused by a meticillin- and linezolid-resistant clone of Staphylococcus epidermidis in neurosurgical patients. J Hosp Infect 2018; 100:406-410. [PMID: 29458065 DOI: 10.1016/j.jhin.2018.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/12/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Postneurosurgical ventriculitis is mainly caused by coagulase-negative staphylococci. The rate of linezolid-resistant Staphylococcus epidermidis (LRSE) is increasing worldwide. AIMS To report clinical, epidemiological and microbiological data from a series of ventriculitis cases caused by LRSE in a Spanish hospital between 2013 and 2016. METHODS Cases of LRSE ventriculitis were reviewed retrospectively in a Spanish hospital over a four-year period. Clinical/epidemiological data of the infected patients were reviewed, the isolates involved were typed by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing, and the molecular bases of linezolid resistance were determined. FINDINGS Five cases of LRSE ventriculitis were detected. The patients suffered from cerebral haemorrhage or head trauma that required the placement of an external ventricular drain; spent a relatively long time in the intensive care unit (ICU) (10-26 days); and three out of the five patients had previously been treated with linezolid. All LRSE had the same PFGE pattern, belonged to ST2, and shared an identical mechanism of linezolid resistance. Specifically, all had the G2576T mutation in the V domain of each of the six copies of the 23S rRNA gene, together with the Q136L and M156T mutations and the 71GGR72 insertion in the L3 and L4 ribosomal proteins, respectively. CONCLUSION The high ratio of linezolid consumption in the ICU (7.72-8.10 defined daily dose/100 patient-days) could have selected this resistant clone, which has probably become endemic in the ICU where it could have colonized admitted patients. Infection control and antimicrobial stewardship interventions are essential to prevent the dissemination of this difficult-to-treat pathogen, and to preserve the therapeutic efficacy of linezolid.
Collapse
|
14
|
Larssen KW, Nor A, Bergh K. Rapid discrimination of Staphylococcus epidermidis genotypes in a routine clinical microbiological laboratory using single nucleotide polymorphisms in housekeeping genes. J Med Microbiol 2018; 67:169-182. [PMID: 29293080 DOI: 10.1099/jmm.0.000663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Staphylococcus epidermidis colonies often display several morphologies and antimicrobial susceptibility patterns when cultured from device-related infections, and may represent one or multiple genotypes. Genotyping may be helpful in the clinical interpretation, but is time consuming and expensive. We wanted to establish a method for rapid discrimination of S. epidermidis genotypes for use in a routine microbiology laboratory. METHODOLOGY A real-time PCR targeting eight discriminatory class I or II single-nucleotide polymorphisms (SNPs) in six of the seven housekeeping genes was constructed. Post PCR, high-resolution melt (HRM) analysis using EvaGreen as fluorophore discriminated amplicons based on their percentage GC content. RESULTS In silico, 42 representative sequence types (STs), including all major MLST group and subgroup founders, were separated into 23 different cluster profiles with a Simpson's index of diversity of 0.97. By HRM-PCR, 11 commonly encountered hospital and outbreak STs were separated into eight HRM patterns. CONCLUSION This method can rapidly establish whether S. epidermidis strains belong to different genotypes. It can be used in patients with S. epidermidis infections, as an aid in outbreak investigations and to select strains for investigation with more discriminatory methods, saving workload and costs. Results may be obtained the same day as culture results. Its strength lies mainly in indicating differences, as some STs may have the same melt profile. Changes in S. epidermidis epidemiology may warrant alterations in the inclusion of SNPs. We believe this method can reduce the threshold for performing genotyping analysis on an increasingly important nosocomial pathogen.
Collapse
Affiliation(s)
- Kjersti Wik Larssen
- Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anne Nor
- Department of Laboratory medicine, Children's and Women's health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kåre Bergh
- Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Laboratory medicine, Children's and Women's health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
15
|
Colonization of patients, healthcare workers, and the environment with healthcare-associated Staphylococcus epidermidis genotypes in an intensive care unit: a prospective observational cohort study. BMC Infect Dis 2016; 16:743. [PMID: 27938344 PMCID: PMC5148920 DOI: 10.1186/s12879-016-2094-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 12/06/2016] [Indexed: 01/22/2023] Open
Abstract
Background During the last decades, healthcare-associated genotypes of methicillin-resistant Staphylococcus epidermidis (HA-MRSE) have been established as important opportunistic pathogens. However, data on potential reservoirs on HA-MRSE is limited. The aim of the present study was to investigate the dynamics and to which extent HA-MRSE genotypes colonize patients, healthcare workers (HCWs) and the environment in an intensive care unit (ICU). Methods Over 12 months in 2006–2007, swab samples were obtained from patients admitted directly from the community to the ICU and patients transferred from a referral hospital, as well as from HCWs, and the ICU environment. Patients were sampled every third day during hospitalization. Antibiotic susceptibility testing was performed according to EUCAST guidelines. Pulsed-field gel electrophoresis and multilocus sequence typing were used to determine the genetic relatedness of a subset of MRSE isolates. Results We identified 620 MRSE isolates from 570 cultures obtained from 37 HCWs, 14 patients, and 14 environmental surfaces in the ICU. HA-MRSE genotypes were identified at admission in only one of the nine patients admitted directly from the community, of which the majority subsequently were colonized by HA-MRSE genotypes within 3 days during hospitalization. Almost all (89%) of HCWs were nasal carriers of HA-MRSE genotypes. Similarly, a significant proportion of patients transferred from the referral hospital and fomites in the ICU were widely colonized with HA-MRSE genotypes. Conclusions Patients transferred from a referral hospital, HCWs, and the hospital environment serve as important reservoirs for HA-MRSE. These observations highlight the need for implementation of effective infection prevention and control measures aiming at reducing HA-MRSE transmission in the healthcare setting. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-2094-x) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Soeorg H, Huik K, Parm Ü, Ilmoja ML, Metsvaht T, Lutsar I. Molecular epidemiology ofStaphylococcus epidermidisin neonatal intensive care units. APMIS 2016; 125:63-73. [DOI: 10.1111/apm.12637] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/26/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Hiie Soeorg
- Department of Microbiology; University of Tartu; Tartu Estonia
| | - Kristi Huik
- Department of Microbiology; University of Tartu; Tartu Estonia
| | - Ülle Parm
- Department of Microbiology; University of Tartu; Tartu Estonia
| | - Mari-Liis Ilmoja
- Department of Microbiology; University of Tartu; Tartu Estonia
- Pediatric Intensive Care Unit; Tallinn Children's Hospital; Tallinn Estonia
| | - Tuuli Metsvaht
- Department of Microbiology; University of Tartu; Tartu Estonia
- Pediatric Intensive Care Unit; Tartu University Hospital; Tartu Estonia
| | - Irja Lutsar
- Department of Microbiology; University of Tartu; Tartu Estonia
| |
Collapse
|
17
|
Saffari F, Widerström M, Gurram BK, Edebro H, Hojabri Z, Monsen T. Molecular and Phenotypic Characterization of Multidrug-Resistant Clones ofStaphylococcus epidermidisin Iranian Hospitals: Clonal Relatedness to Healthcare-Associated Methicillin-Resistant Isolates in Northern Europe. Microb Drug Resist 2016; 22:570-577. [DOI: 10.1089/mdr.2015.0283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fereshteh Saffari
- Department of Microbiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Micael Widerström
- Department of Clinical Microbiology, Unit of Research, Education and Development-Östersund, Umeå University, Umeå, Sweden
| | | | - Helen Edebro
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Zoya Hojabri
- Department of Microbiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Tor Monsen
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| |
Collapse
|
18
|
Antibacterial and Antibiofilm Effect of Low Viscosity Chitosan against Staphylococcus epidermidis. Int J Microbiol 2016; 2016:9159761. [PMID: 27635144 PMCID: PMC5007360 DOI: 10.1155/2016/9159761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/20/2016] [Indexed: 11/23/2022] Open
Abstract
Aim. The aim of this study was to investigate the antibacterial and antibiofilm properties of low viscosity chitosan on S. epidermidis growth and biofilm formation. Methods and Results. The antibacterial and antibiofilm properties were investigated, during both planktonic growth and biofilm formation. This was performed using different concentrations in media and by coating on polystyrene surfaces. In addition, the bactericidal effect was investigated using a modified direct contact test. The results showed that low viscosity chitosan in media had both a bacteriostatic and bactericidal effect on planktonic growth and biofilm formation of S. epidermidis in a concentration dependent manner. Polystyrene discs coated with chitosan reduced both early biofilm formation (6 h) and late biofilm formation (18 h), as confirmed by scanning electron microscopy. The modified direct contact test showed a bactericidal effect. Conclusion. This study demonstrated that low viscosity chitosan has a bacteriostatic and bactericidal activity against S. epidermidis and that the activity is dependent on the amount of chitosan added. In addition, low viscosity chitosan reduced biofilm formation both when added to media and when coated on polystyrene surfaces. Significance and Impact of Study. Low viscosity chitosan could be a contribution to new treatment approaches of biofilm-related infections of S. epidermidis.
Collapse
|
19
|
Pinheiro L, Brito CI, Pereira VC, Oliveira A, Bartolomeu AR, Camargo CH, Cunha MLRS. Susceptibility Profile of Staphylococcus epidermidis and Staphylococcus haemolyticus Isolated from Blood Cultures to Vancomycin and Novel Antimicrobial Drugs over a Period of 12 Years. Microb Drug Resist 2015; 22:283-93. [PMID: 26623676 DOI: 10.1089/mdr.2015.0064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to evaluate the antimicrobial susceptibility profile of 85 Staphylococcus epidermidis and 84 Staphylococcus haemolyticus strains isolated from blood cultures to oxacillin, vancomycin, tigecycline, linezolid, daptomycin, and quinupristin/dalfopristin over a period of 12 years. S. epidermidis and S. haemolyticus isolated from blood cultures of inpatients, attended at a teaching hospital, were analyzed for the presence of the mecA gene and by SCCmec typing. The minimum inhibitory concentration (MIC) values of tigecycline, linezolid, daptomycin, quinupristin/dalfopristin, and vancomycin were determined. Isolates exhibiting vancomycin MICs of ≥2 μg/ml were typed by pulsed-field gel electrophoresis (PFGE). The rate of mecA positivity was 92.9% and 100% in S. epidermidis and S. haemolyticus, respectively. The most frequent SCCmec types were type III (53.2%) in S. epidermidis and type I (32.1%) in S. haemolyticus. All isolates were susceptible to linezolid and daptomycin, but 7.1% of S. haemolyticus and 2.3% of S. epidermidis isolates were resistant to tigecycline, and 1.2% each of S. haemolyticus and S. epidermidis were resistant and intermediately resistant to quinupristin/dalfopristin, respectively. S. epidermidis exhibited higher vancomycin MICs (40% with MIC of ≥2 μg/ml). Clonal typing of strains with vancomycin MIC of ≥2 μg/ml revealed the presence of different PFGE types of S. epidermidis and S. haemolyticus over a period of up to 4 years (2002-2004, 2005-2008, 2006-2009, 2010-2011). Despite the observation of a high prevalence of mecA, the clinical strains were fully susceptible to vancomycin and to the new drugs linezolid, daptomycin, tigecycline, and quinupristin/dalfopristin. The PFGE types with vancomycin MIC of ≥2 μg/ml exhibited a great diversity of SCCmec cassettes, demonstrating that S. epidermidis and S. haemolyticus may easily acquire these resistance-conferring genetic elements.
Collapse
Affiliation(s)
- Luiza Pinheiro
- 1 Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP) , Botucatu, São Paulo, Brazil
| | - Carla Ivo Brito
- 1 Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP) , Botucatu, São Paulo, Brazil
| | - Valéria Cataneli Pereira
- 1 Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP) , Botucatu, São Paulo, Brazil
| | - Adilson Oliveira
- 1 Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP) , Botucatu, São Paulo, Brazil
| | - Ariane Rocha Bartolomeu
- 1 Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP) , Botucatu, São Paulo, Brazil
| | - Carlos Henrique Camargo
- 1 Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP) , Botucatu, São Paulo, Brazil .,2 Núcleo de Doenças Entéricas e Infecções por Patógenos Especiais, Centro de Bacteriologia, Instituto Adolfo Lutz , São Paulo, São Paulo, Brazil
| | - Maria Lourdes Ribeiro Souza Cunha
- 1 Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP) , Botucatu, São Paulo, Brazil
| |
Collapse
|
20
|
Flores-Páez LA, Zenteno JC, Alcántar-Curiel MD, Vargas-Mendoza CF, Rodríguez-Martínez S, Cancino-Diaz ME, Jan-Roblero J, Cancino-Diaz JC. Molecular and Phenotypic Characterization of Staphylococcus epidermidis Isolates from Healthy Conjunctiva and a Comparative Analysis with Isolates from Ocular Infection. PLoS One 2015; 10:e0135964. [PMID: 26275056 PMCID: PMC4537226 DOI: 10.1371/journal.pone.0135964] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/29/2015] [Indexed: 11/26/2022] Open
Abstract
Staphylococcus epidermidis is a common commensal of healthy conjunctiva and it can cause endophthalmitis, however its presence in conjunctivitis, keratitis and blepharitis is unknown. Molecular genotyping of S. epidermidis from healthy conjunctiva could provide information about the origin of the strains that infect the eye. In this paper two collections of S. epidermidis were used: one from ocular infection (n = 62), and another from healthy conjunctiva (n = 45). All isolates were genotyped by pulsed field gel electrophoresis (PFGE), multilocus sequence typing (MLST), staphylococcal cassette chromosome mec (SCCmec), detection of the genes icaA, icaD, IS256 and polymorphism type of agr locus. The phenotypic data included biofilm production and antibiotic resistance. The results displayed 61 PFGE types from 107 isolates and they were highly discriminatory. MLST analysis generated a total of 25 STs, of which 11 STs were distributed among the ocular infection isolates and lineage ST2 was the most frequent (48.4%), while 14 STs were present in the healthy conjunctiva isolates and lineage ST5 was the most abundant (24.4%). By means of a principal coordinates analysis (PCoA) and a discriminant analysis (DA) it was found that ocular infection isolates had as discriminant markers agr III or agr II, SCCmec V or SCCmec I, mecA gene, resistance to tobramycin, positive biofilm, and IS256+. In contrast to the healthy conjunctiva isolates, the discriminating markers were agr I, and resistance to chloramphenicol, ciprofloxacin, gatifloxacin and oxacillin. The discriminant biomarkers of ocular infection were examined in healthy conjunctiva isolates, and it was found that 3 healthy conjunctiva isolates [two with ST2 and another with ST9] (3/45, 6.66%) had similar genotypic and phenotypic characteristics to ocular infection isolates, therefore a small population from healthy conjunctiva could cause an ocular infection. These data suggest that the healthy conjunctiva isolates do not, in almost all cases, infect the eye due to their large genotypic and phenotypic difference with the ocular infection isolates.
Collapse
Affiliation(s)
- Luis A. Flores-Páez
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Juan C. Zenteno
- Instituto de Oftalmología Fundación Conde de Valenciana, Mexico City, Mexico
| | | | - Carlos F. Vargas-Mendoza
- Department of Zoology, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sandra Rodríguez-Martínez
- Department of Immunology, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mario E. Cancino-Diaz
- Department of Immunology, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Janet Jan-Roblero
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Juan C. Cancino-Diaz
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Mexico City, Mexico
- * E-mail:
| |
Collapse
|
21
|
Long-term molecular epidemiology of Staphylococcus epidermidis blood culture isolates from patients with hematological malignancies. PLoS One 2014; 9:e99045. [PMID: 24896826 PMCID: PMC4045895 DOI: 10.1371/journal.pone.0099045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 05/10/2014] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus epidermidis is an important cause of bloodstream infections in patients with hematological malignancies. Knowledge of the long-term epidemiology of these infections is limited. We surveyed all S. epidermidis blood culture isolates from patients treated for hematological malignancies at the University Hospital of Örebro, Sweden from 1980 to 2009. A total of 373 S. epidermidis isolates were identified and multilocus sequence typing, staphylococcal chromosome cassette mec (SCCmec) typing and standard antibiotic susceptibility testing were employed to characterize these isolates. The majority of the isolates 361/373 (97%) belonged to clonal complex 2, and the 373 isolates were divided into 45 sequence types (STs); Simpson's Diversity Index was 0.56. The most prevalent STs were ST2 (243/373, 65%) and ST215 (28/373, 8%). Ninety three percent (226/243) of the ST2 isolates displayed either SCCmec type III or IV. ST2 and 215 were isolated during the entire study period, and together these STs caused temporal peaks in the number of positive blood cultures of S. epidermidis. Methicillin resistance was detected in 213/273 (78%) of all isolates. In the two predominating STs, ST2 and ST215, methicillin resistance was detected in 256/271 isolates (95%), compared with 34/100 (34%) in other STs (p<0.001). In conclusion, in this long-term study of patients with hematological malignancies, we demonstrate a predominance of methicillin-resistant ST2 among S. epidermidis blood culture isolates.
Collapse
|
22
|
Prag G, Falk-Brynhildsen K, Jacobsson S, Hellmark B, Unemo M, Söderquist B. Decreased susceptibility to chlorhexidine and prevalence of disinfectant resistance genes among clinical isolates ofStaphylococcus epidermidis. APMIS 2014; 122:961-7. [DOI: 10.1111/apm.12239] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 11/26/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Gustaf Prag
- Department of Laboratory Medicine, Clinical Microbiology; Örebro University Hospital; Örebro Sweden
| | - Karin Falk-Brynhildsen
- Department of Cardiothoracic and Vascular Surgery; Örebro University Hospital; Örebro Sweden
| | - Susanne Jacobsson
- Department of Laboratory Medicine, Clinical Microbiology; Örebro University Hospital; Örebro Sweden
| | - Bengt Hellmark
- Department of Laboratory Medicine, Clinical Microbiology; Örebro University Hospital; Örebro Sweden
| | - Magnus Unemo
- Department of Laboratory Medicine, Clinical Microbiology; Örebro University Hospital; Örebro Sweden
| | - Bo Söderquist
- Department of Laboratory Medicine, Clinical Microbiology; Örebro University Hospital; Örebro Sweden
- Department of Infectious Diseases; Örebro University Hospital; Örebro Sweden
- Faculty of Medicine and Health; Örebro University; Örebro Sweden
| |
Collapse
|
23
|
Abstract
Staphylococcus epidermidis is the most common cause of primary bacteremia and infections of indwelling medical devices. The ability to cause disease is linked to its natural niche on human skin and ability to attach and form biofilm on foreign bodies. This review focuses on the S. epidermidis clinical syndromes most commonly encountered by clinicians and future potential treatment modalities.
Collapse
Affiliation(s)
- Mark E Rupp
- Division of Infectious Disease, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
24
|
Campanile F, Mongelli G, Bongiorno D, Adembri C, Ballardini M, Falcone M, Menichetti F, Repetto A, Sabia C, Sartor A, Scarparo C, Tascini C, Venditti M, Zoppi F, Stefani S. Worrisome trend of new multiple mechanisms of linezolid resistance in staphylococcal clones diffused in Italy. J Clin Microbiol 2013; 51:1256-9. [PMID: 23345292 PMCID: PMC3666802 DOI: 10.1128/jcm.00098-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 01/14/2013] [Indexed: 01/03/2023] Open
Abstract
In order to assess the frequency of clinically relevant linezolid-resistant staphylococcal isolates, and the role of linezolid in maintaining and coselecting multiple resistance mechanisms (cfr, 23S rRNA, L3/L4 mutations), a prospective Italian study was performed from 2010 to 2011 to confirm the diffusion of three major multidrug-resistant clones (ST2, ST5, ST23).
Collapse
Affiliation(s)
| | | | | | - Chiara Adembri
- Azienda Ospedaliera Universitaria Careggi, Firenze, Italy
| | | | | | | | | | - Carla Sabia
- University of Modena and Reggio, Modena, Italy
| | - Assunta Sartor
- Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Claudio Scarparo
- Santa Maria della Misericordia University Hospital, Udine, Italy
| | | | | | - Federica Zoppi
- Azienda Ospedaliera Universitaria Careggi, Firenze, Italy
| | | |
Collapse
|
25
|
Comparative epidemiology of Staphylococcus epidermidis isolates from patients with catheter-related bacteremia and from healthy volunteers. J Clin Microbiol 2013; 51:1541-7. [PMID: 23486718 DOI: 10.1128/jcm.03378-12] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus epidermidis is a major cause of catheter-related bloodstream infections (CRBSIs). Recent studies suggested the existence of well-adapted, highly resistant, hospital-associated S. epidermidis clones. The molecular epidemiology of S. epidermidis in Belgian hospitals and the Belgian community has not been explored yet. We compared a set of 33 S. epidermidis isolates causing CRBSI in hospitalized patients with a set of 33 commensal S. epidermidis isolates. The factors analyzed included resistance to antibiotics and genetic diversity as determined by pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and SCCmec typing. Additionally, the presence of virulence-associated mobile genetic elements, the ica operon and the arginine catabolic mobile element (ACME), was assessed and compared against clinical data. CRBSI S. epidermidis isolates were significantly resistant to more antibiotics than commensal S. epidermidis isolates. The two populations studied were very diverse and genetically distinct as only 23% of the 37 PFGE types observed were harbored by both CRBSI and commensal isolates. ACME was found in 76% of S. epidermidis strains, regardless of their origin, while the ica operon was significantly more prevalent in CRBSI isolates than in commensal isolates (P < 0.05). Nine patients presented a clinically severe CRBSI, eight cases of which were due to an ica-positive multiresistant isolate belonging to sequence type 2 (ST2) or ST54. S. epidermidis isolates causing CRBSI were more resistant and more often ica positive than commensal S. epidermidis isolates, which were genetically heterogeneous and susceptible to the majority of antibiotics tested. Clinically severe CRBSIs were due to isolates belonging to two closely related MLST types, ST2 and ST54.
Collapse
|
26
|
Caracterización de cepas de Staphylococcus epidermidis y S. haemolyticus resistentes a meticilina y linezolid en un hospital español. Enferm Infecc Microbiol Clin 2013; 31:136-41. [DOI: 10.1016/j.eimc.2012.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/02/2012] [Accepted: 08/27/2012] [Indexed: 11/30/2022]
|
27
|
Genetic analysis of glycopeptide-resistant Staphylococcus epidermidis strains from bone and joint infections. J Clin Microbiol 2012; 51:1014-9. [PMID: 23269734 DOI: 10.1128/jcm.02608-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycopeptide-resistant Staphylococcus epidermidis (GRSE) strains are of increasing concern in bone and joint infections (BJIs). Using multilocus sequence typing and multilocus variable-number tandem repeat analysis, we show that BJI-associated GRSE strains are genetically diverse but arise from related, multiresistant hospital sequence types (STs), mostly ST2, ST5, and ST23.
Collapse
|
28
|
Hellmark B, Söderquist B, Unemo M, Nilsdotter-Augustinsson Å. Comparison of Staphylococcus epidermidis isolated from prosthetic joint infections and commensal isolates in regard to antibiotic susceptibility, agr type, biofilm production, and epidemiology. Int J Med Microbiol 2012; 303:32-9. [PMID: 23245829 DOI: 10.1016/j.ijmm.2012.11.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 11/02/2012] [Accepted: 11/04/2012] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus epidermidis is the predominant bacterial species in the normal flora of the human skin and superficial mucosal membranes. However, it has also emerged as the most important pathogen in infections related to foreign-body materials, such as prosthetic joints and heart valves. The aims of this study were to characterise S. epidermidis isolated from prosthetic joint infections (PJI; n=61) and commensal isolates from healthy individuals (n=24) in regard to antimicrobial sensitivity, agr type, hld gene presence, biofilm production including presence of ica and aap genes involved in the biofilm formation process and epidemiology using both phenotypic (the PhenePlate-system) and genotypic [multilocus sequence typing (MLST)] methods. Among the PJI isolates, the majority (67%) were multidrug-resistant. Two major clusters of PJI isolates could be identified; 44% belonged to MLST sequence type (ST) 2, all but one were of agr type 1, and 31% were assigned ST215 and were of agr type 3. Of the commensal isolates, only one isolate was multidrug-resistant, and they were more molecular epidemiologically diverse with mainly MLST singletons and a maximum of 3 isolates assigned to the identical ST. Biofilm production was detected in 41% of the PJI isolates and 58% of the commensal isolates, with the aap gene (95%) more frequently detected than the ica genes (62%) in the biofilm-positive isolates. In conclusion, S. epidermidis isolated from PJIs and commensal isolates differed regarding antimicrobial sensitivity and molecular epidemiological typing using MLST, but not substantially in the distribution of agr types, biofilm production, or the presence of ica and aap genes.
Collapse
Affiliation(s)
- Bengt Hellmark
- Department of Laboratory Medicine, Clinical Microbiology, Örebro University Hospital, Örebro, Sweden.
| | | | | | | |
Collapse
|
29
|
Staphylococcus epidermidis pan-genome sequence analysis reveals diversity of skin commensal and hospital infection-associated isolates. Genome Biol 2012; 13:R64. [PMID: 22830599 PMCID: PMC4053731 DOI: 10.1186/gb-2012-13-7-r64] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/25/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND While Staphylococcus epidermidis is commonly isolated from healthy human skin, it is also the most frequent cause of nosocomial infections on indwelling medical devices. Despite its importance, few genome sequences existed and the most frequent hospital-associated lineage, ST2, had not been fully sequenced. RESULTS We cultivated 71 commensal S. epidermidis isolates from 15 skin sites and compared them with 28 nosocomial isolates from venous catheters and blood cultures. We produced 21 commensal and 9 nosocomial draft genomes, and annotated and compared their gene content, phylogenetic relatedness and biochemical functions. The commensal strains had an open pan-genome with 80% core genes and 20% variable genes. The variable genome was characterized by an overabundance of transposable elements, transcription factors and transporters. Biochemical diversity, as assayed by antibiotic resistance and in vitro biofilm formation, demonstrated the varied phenotypic consequences of this genomic diversity. The nosocomial isolates exhibited both large-scale rearrangements and single-nucleotide variation. We showed that S. epidermidis genomes separate into two phylogenetic groups, one consisting only of commensals. The formate dehydrogenase gene, present only in commensals, is a discriminatory marker between the two groups. CONCLUSIONS Commensal skin S. epidermidis have an open pan-genome and show considerable diversity between isolates, even when derived from a single individual or body site. For ST2, the most common nosocomial lineage, we detect variation between three independent isolates sequenced. Finally, phylogenetic analyses revealed a previously unrecognized group of S. epidermidis strains characterized by reduced virulence and formate dehydrogenase, which we propose as a clinical molecular marker.
Collapse
|
30
|
Molecular epidemiology of Staphylococcus epidermidis clinical isolates from U.S. hospitals. Antimicrob Agents Chemother 2012; 56:4656-61. [PMID: 22687512 DOI: 10.1128/aac.00279-12] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The epidemiology of Staphylococcus epidermidis in U.S. hospitals remains limited. This study aimed to address the genetic backgrounds of linezolid-susceptible and -resistant S. epidermidis strains (isolated in 2010), including cfr-carrying strains. In addition, the antimicrobial susceptibility profiles and linezolid resistance mechanisms among clonal lineages were assessed. A total of 71 S. epidermidis isolates were selected, and linezolid-resistant strains were screened for cfr and mutations in 23S rRNA, L3, and L4. All isolates were subjected to multilocus sequence typing (MLST), and the results were analyzed by eBURST. Overall, 27 sequence types (STs) were detected, and ST5 (21.1%) and ST2 (16.9%) predominated. The majority (62/71; 87.3%) of STs belonged to clonal complex 2 (CC2), which was mostly comprised of subclusters CC2-II (41/62; 66.1%) and CC2-I (21/62; 33.9%). Other STs were grouped within CC23 or CC32 or were singletons. CC2-I strains were more likely to display a methicillin (95.2% versus 33.3 to 70.7%), a linezolid (47.6% versus 0.0 to 7.3%), or a multidrug (81.0% versus 33.3 to 36.6%) resistance phenotype. Among linezolid-resistant isolates, cfr was noted only within CC2 strains, and it was detected equally in the CC2-I (3/10; 30.0%) and CC2-II (1/3; 33.3%) subclusters. 23S rRNA mutations (G2576 [seven strains] and C2534 [one strain]) were observed only among CC2-I (8/10; 80.0%) isolates. Strains showing a G2576 alteration also had M156 (7/7; 100.0%) and/or H146 (6/7; 85.7%) L3 modifications. This study provides an overview of the S. epidermidis clonal distribution and reports higher resistance rates among CC2-I strains. The results show that cfr may be acquired and expressed by both CC2 main subclusters, while 23S rRNA mutations appeared more often within CC2-I strains. Interestingly, these 23S rRNA mutants also had L3 alterations, which may act synergistically or in a compensatory manner to minimize the fitness cost while providing survival advantages under selective pressure.
Collapse
|
31
|
Widerström M, McCullough CA, Coombs GW, Monsen T, Christiansen KJ. A multidrug-resistant Staphylococcus epidermidis clone (ST2) is an ongoing cause of hospital-acquired infection in a Western Australian hospital. J Clin Microbiol 2012; 50:2147-51. [PMID: 22442320 PMCID: PMC3372155 DOI: 10.1128/jcm.06456-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 03/13/2012] [Indexed: 11/20/2022] Open
Abstract
We report the molecular epidemiology of 27 clinical multidrug-resistant Staphylococcus epidermidis (MDRSE) isolates collected between 2003 and 2007 in an Australian teaching hospital. The dominant genotype (sequence type 2 [ST2]) accounted for 85% of the isolates tested and was indistinguishable from an MDRSE genotype identified in European hospitals, which may indicate that highly adaptable health care-associated genotypes of S. epidermidis have emerged and disseminated worldwide in the health care setting.
Collapse
|
32
|
Rolo J, de Lencastre H, Miragaia M. Strategies of adaptation of Staphylococcus epidermidis to hospital and community: amplification and diversification of SCCmec. J Antimicrob Chemother 2012; 67:1333-41. [PMID: 22422509 DOI: 10.1093/jac/dks068] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Staphylococcus epidermidis is a harmless commensal, but it can become a human pathogen, mainly in the hospital environment. In order to clarify strategies used by these bacteria to adapt to the hospital environment, we compared the population structure and staphylococcal cassette chromosome mec (SCCmec) content of S. epidermidis from the community and hospital. METHODS S. epidermidis were collected from nasal swabs of both healthy military draftees (192 isolates) and patients (94 isolates) recovered in the same time period and geographical region. S. epidermidis were characterized by PFGE, multilocus sequence typing and SCCmec typing. RESULTS Clonal complex 5 was predominant in the hospital (100%) and the community (58%), but some clonal types were specific to each environment and others were found in both (C/H clones). The methicillin-resistant S. epidermidis (MRSE) colonization rate in the community was very low (7%) when compared with the hospital (30%; P < 0.05). Community-associated MRSE carried mostly SCCmec IV and V [Simpson's index of diversity (SID) = 57.52%; 95% CI 38.35-76.69], whereas hospital-associated MRSE carried 17 SCCmec structures (SID = 82.67%; 95% CI 77.38-87.96). Isolates of the same PFGE type had a much higher number of different SCCmec types when collected in the hospital than in the community. CONCLUSIONS Our data suggest that the S. epidermidis population is composed of hospital-associated clonal types, community-associated clonal types and types that are able to survive in both environments. Moreover, adaptation to the hospital environment in S. epidermidis appears to promote an increase in the frequency and diversification of SCCmec.
Collapse
Affiliation(s)
- Joana Rolo
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | |
Collapse
|
33
|
Characteristics related to antimicrobial resistance and biofilm formation of widespread methicillin-resistant Staphylococcus epidermidis ST2 and ST23 lineages in Rio de Janeiro hospitals, Brazil. Diagn Microbiol Infect Dis 2011; 72:32-40. [PMID: 22100013 DOI: 10.1016/j.diagmicrobio.2011.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 09/11/2011] [Accepted: 09/14/2011] [Indexed: 11/23/2022]
Abstract
Staphylococcus epidermidis is a leading cause of hospital-acquired infections, mostly associated with the use of medical devices in seriously ill or immunocompromised patients. Currently, the characteristics of methicillin-resistant S. epidermidis (MRSE) isolates from Rio de Janeiro hospitals are unknown. In this study, staphylococcal chromosomal cassette mec (SCCmec) types, antimicrobial susceptibility profiles, biofilm formation genes, and multilocus sequence types (MLST) were investigated in 35 MRSE clinical isolates. The collection of isolates was previously well characterized by pulsed-field gel electrophoresis (PFGE) into 2 main genotypes (A and B, 22 isolates) and 10 sporadic genotypes (13 isolates). MLST revealed a total of 8 different sequence types (STs), but ST2 and ST23, which were icaAB-positive, represented the majority (71.4%) of MRSE isolates tested. Almost all isolates (91.4%) belonged to clonal complex 2. SCCmec types III and IV were identified among 71.4% of the isolates, while the remaining was nontypeable. The predominant MRSE genotypes were defined as SCCmec type III/ST2 (PFGE type A) and SCCmec type IV/ST23 (PFGE type B) isolates, which were both associated with high antimicrobial resistance and presence of biofilm-related genes.
Collapse
|
34
|
WIDERSTRÖM MICAEL, WISTRÖM JOHAN, EK ELIN, EDEBRO HELÉ, MONSEN TOR. Near absence of methicillin-resistance and pronounced genetic diversity among Staphylococcus epidermidis isolated from healthy persons in northern Sweden. APMIS 2011; 119:505-12. [DOI: 10.1111/j.1600-0463.2011.02757.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Widerström M, Wiström J, Sjöstedt A, Monsen T. Coagulase-negative staphylococci: update on the molecular epidemiology and clinical presentation, with a focus on Staphylococcus epidermidis and Staphylococcus saprophyticus. Eur J Clin Microbiol Infect Dis 2011; 31:7-20. [DOI: 10.1007/s10096-011-1270-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
|
36
|
Schoenfelder SM, Lange C, Eckart M, Hennig S, Kozytska S, Ziebuhr W. Success through diversity – How Staphylococcus epidermidis establishes as a nosocomial pathogen. Int J Med Microbiol 2010; 300:380-6. [DOI: 10.1016/j.ijmm.2010.04.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|