1
|
Ahsan R, Paul S, Alam MS, Rahman AFMM. Synthesis, Biological Properties, In Silico ADME, Molecular Docking Studies, and FMO Analysis of Chalcone Derivatives as Promising Antioxidant and Antimicrobial Agents. ACS OMEGA 2025; 10:4367-4387. [PMID: 39959036 PMCID: PMC11822702 DOI: 10.1021/acsomega.4c06897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/31/2024] [Accepted: 01/13/2025] [Indexed: 02/18/2025]
Abstract
A series of chalcone derivatives were synthesized and characterized using UV-vis, FT-IR, 1H NMR, and mass spectrometry, followed by the evaluation of their antimicrobial and antioxidant properties. In vitro screening against six bacterial strains (Staphylococcus aureus, Bacillus subtilis, Salmonella typhimurium, Escherichia coli, Pseudomonas aeruginosa, and Citrobacter freundii) and two fungal strains (Aspergillus niger and Trichoderma harzianum) revealed outstanding antibacterial activities, particularly with compound 5b, 5d, and 5e against S. aureus, and compounds 5c and 5h against B. subtilis. Notably, compounds 5f and 5g exhibited significant effects against P. aeruginosa, while compound 5b showed the highest antifungal activity against T. harzianum. All compounds demonstrated remarkable antioxidant activities, with 5h (IC50 values of 0.005 μM) and 5c (IC50 values of 0.006 μM) being the most potent, comparable to ascorbic acid (IC50 values of 0.007 μM). In silico evaluations confirmed favorable drug-likeness and pharmacokinetic properties for all analogues, adhering to both Lipinski's rule of Five and Veber's rule. Molecular docking studies of potent antibacterial compounds (5e and 5h) indicated strong binding affinities to the PBP-1b receptor in S. aureus, while DFT calculations provided valuable insights into their molecular reactivity and biological properties. Ligand-based enzymatic target predictions indicate that chalcone analogues (5a-m) show potential as inhibitors of oxidoreductases, kinases, enzymes, proteases, or ligands for family A GPCR. These findings position chalcone derivatives as promising candidates for therapeutic applications in combating bacterial infections and oxidative stress.
Collapse
Affiliation(s)
- Rashedul Ahsan
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | - Sumi Paul
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | | | - A. F. M. Motiur Rahman
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Manaithiya A, Bhowmik R, Acharjee S, Sharma S, Kumar S, Imran M, Mathew B, Parkkila S, Aspatwar A. Elucidating molecular mechanism and chemical space of chalcones through biological networks and machine learning approaches. Comput Struct Biotechnol J 2024; 23:2811-2836. [PMID: 39045026 PMCID: PMC11263914 DOI: 10.1016/j.csbj.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/25/2024] Open
Abstract
We developed a bio-cheminformatics method, exploring disease inhibition mechanisms using machine learning-enhanced quantitative structure-activity relationship (ML-QSAR) models and knowledge-driven neural networks. ML-QSAR models were developed using molecular fingerprint descriptors and the Random Forest algorithm to explore the chemical spaces of Chalcones inhibitors against diverse disease properties, including antifungal, anti-inflammatory, anticancer, antimicrobial, and antiviral effects. We generated and validated robust machine learning-based bioactivity prediction models (https://github.com/RatulChemoinformatics/QSAR) for the top genes. These models underwent ROC and applicability domain analysis, followed by molecular docking studies to elucidate the molecular mechanisms of the molecules. Through comprehensive neural network analysis, crucial genes such as AKT1, HSP90AA1, SRC, and STAT3 were identified. The PubChem fingerprint-based model revealed key descriptors: PubchemFP521 for AKT1, PubchemFP180 for SRC, PubchemFP633 for HSP90AA1, and PubchemFP145 and PubchemFP338 for STAT3, consistently contributing to bioactivity across targets. Notably, chalcone derivatives demonstrated significant bioactivity against target genes, with compound RA1 displaying a predictive pIC50 value of 5.76 against HSP90AA1 and strong binding affinities across other targets. Compounds RA5 to RA7 also exhibited high binding affinity scores comparable to or exceeding existing drugs. These findings emphasize the importance of knowledge-based neural network-based research for developing effective drugs against diverse disease properties. These interactions warrant further in vitro and in vivo investigations to elucidate their potential in rational drug design. The presented models provide valuable insights for inhibitor design and hold promise for drug development. Future research will prioritize investigating these molecules for mycobacterium tuberculosis, enhancing the comprehension of effectiveness in addressing infectious diseases.
Collapse
Affiliation(s)
- Ajay Manaithiya
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ratul Bhowmik
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Satarupa Acharjee
- Department of Pharmacy, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bangalore 560043, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Health Sciences Campus, Kochi, India
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Health Sciences Campus, Kochi, India
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
3
|
Benny AT, Thamim M, Easwaran N, Gothandam KM, Thirumoorthy K, Radhakrishnan EK. Attenuation of Quorum Sensing Mediated Virulence Factors and Biofilm Formation in Pseudomonas Aeruginosa PAO1 by Substituted Chalcones and Flavonols. Chem Biodivers 2024; 21:e202400393. [PMID: 38946224 DOI: 10.1002/cbdv.202400393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Flavonoids epitomize structural scaffolds in many biologically active synthetic and natural compounds. They showcase a diverse spectrum of biological activities including anticancer, antidiabetic, antituberculosis, antimalarial, and antibiofilm activities. The antibiofilm activity of a series of new chalcones and flavonols against clinically significant Pseudomonas aeruginosa PAO1 strain was studied. Antivirulence activities were screened by analysing the effect of compounds on the production of virulence factors like pyocyanin, LasA protease, cell surface hydrophobicity, and rhamnolipid. The best ligands towards the quorum sensing proteins LasR, RhlR, and PqsR were recognised using a molecular docking study. The gene expression in P. aeruginosa after treatment with test compounds was evaluated on quorum sensing genes including rhlA, lasB, and pqsE. The antibiofilm potential of chalcones and flavonols was confirmed by the efficient reduction in the production of virulence factors and downregulation of gene expression.
Collapse
Affiliation(s)
- Anjitha Theres Benny
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Masthan Thamim
- Department of Chemistry, School of Advanced Sciences and Languages, VIT Bhopal University, Bhopal, 466114
| | - Nalini Easwaran
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014
| | | | - Krishnan Thirumoorthy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | | |
Collapse
|
4
|
Rohman N, Ardiansah B, Wukirsari T, Judeh Z. Recent Trends in the Synthesis and Bioactivity of Coumarin, Coumarin-Chalcone, and Coumarin-Triazole Molecular Hybrids. Molecules 2024; 29:1026. [PMID: 38474540 DOI: 10.3390/molecules29051026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 03/14/2024] Open
Abstract
Molecular hybridization represents a new approach in drug discovery in which specific chromophores are strategically combined to create novel drugs with enhanced therapeutic effects. This innovative strategy leverages the strengths of individual chromophores to address complex biological challenges, synergize beneficial properties, optimize pharmacokinetics, and overcome limitations associated with single-agent therapies. Coumarins are documented to possess several bioactivities and have therefore been targeted for combination with other active moieties to create molecular hybrids. This review summarizes recent (2013-2023) trends in the synthesis of coumarins, as well as coumarin-chalcone and coumarin-triazole molecular hybrids. To cover the wide aspects of this area, we have included differently substituted coumarins, chalcones, 1,2,3- and 1,2,4-triazoles in this review and considered the point of fusion/attachment with coumarin to show the diversity of these hybrids. The reported syntheses mainly relied on well-established chemistry without the need for strict reaction conditions and usually produced high yields. Additionally, we discussed the bioactivities of the reported compounds, including antioxidative, antimicrobial, anticancer, antidiabetic, and anti-cholinesterase activities and commented on their IC50 where possible. Promising bioactivity results have been obtained so far. It is noted that mechanistic studies are infrequently found in the published work, which was also mentioned in this review to give the reader a better understanding. This review aims to provide valuable information to enable further developments in this field.
Collapse
Affiliation(s)
- Nur Rohman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Bayu Ardiansah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Tuti Wukirsari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Zaher Judeh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, N1.2-B1-14, Singapore 637459, Singapore
| |
Collapse
|
5
|
Kaur M, Kaushal R. Synthesis and in-silico molecular modelling, DFT studies, antiradical and antihyperglycemic activity of novel vanadyl complexes based on chalcone derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
6
|
Salehi B, Quispe C, Chamkhi I, El Omari N, Balahbib A, Sharifi-Rad J, Bouyahya A, Akram M, Iqbal M, Docea AO, Caruntu C, Leyva-Gómez G, Dey A, Martorell M, Calina D, López V, Les F. Pharmacological Properties of Chalcones: A Review of Preclinical Including Molecular Mechanisms and Clinical Evidence. Front Pharmacol 2021; 11:592654. [PMID: 33536909 PMCID: PMC7849684 DOI: 10.3389/fphar.2020.592654] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Chalcones are among the leading bioactive flavonoids with a therapeutic potential implicated to an array of bioactivities investigated by a series of preclinical and clinical studies. In this article, different scientific databases were searched to retrieve studies depicting the biological activities of chalcones and their derivatives. This review comprehensively describes preclinical studies on chalcones and their derivatives describing their immense significance as antidiabetic, anticancer, anti-inflammatory, antimicrobial, antioxidant, antiparasitic, psychoactive, and neuroprotective agents. Besides, clinical trials revealed their use in the treatment of chronic venous insufficiency, skin conditions, and cancer. Bioavailability studies on chalcones and derivatives indicate possible hindrance and improvement in relation to its nutraceutical and pharmaceutical applications. Multifaceted and complex underlying mechanisms of chalcone actions demonstrated their ability to modulate a number of cancer cell lines, to inhibit a number of pathological microorganisms and parasites, and to control a number of signaling molecules and cascades related to disease modification. Clinical studies on chalcones revealed general absence of adverse effects besides reducing the clinical signs and symptoms with decent bioavailability. Further studies are needed to elucidate their structure activity, toxicity concerns, cellular basis of mode of action, and interactions with other molecules.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Iquique, Chile
| | - Imane Chamkhi
- Faculty of Sciences, Mohammed V University of Rabat, Rabat, Morocco.,Laboratory of Plant-Microbe Interactions, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Abdelaali Balahbib
- Laboratory of Zoology and General Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University Rabat, Rabat, Morocco
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University, Faisalabad, Pakistan
| | - Mehwish Iqbal
- Institute of Health Management, Dow University of Health Sciences, Karachi, Pakistan
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Constantin Caruntu
- Department of Physiology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition, and Metabolic Diseases, Bucharest, Romania
| | - Gerardo Leyva-Gómez
- Departamento De Farmacia, Facultad De Química, Universidad Nacional Autónoma De México, Ciudad De México, Mexico
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile.,Unidad De Desarrollo Tecnológico, UDT, Universidad De Concepción, Concepción, Chile
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain.,Instituto Agroalimentario De Aragón-IA2 CITA-Universidad De Zaragoza, Zaragoza, Spain
| | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain.,Instituto Agroalimentario De Aragón-IA2 CITA-Universidad De Zaragoza, Zaragoza, Spain
| |
Collapse
|
7
|
Emam SH, Sonousi A, Osman EO, Hwang D, Kim GD, Hassan RA. Design and synthesis of methoxyphenyl- and coumarin-based chalcone derivatives as anti-inflammatory agents by inhibition of NO production and down-regulation of NF-κB in LPS-induced RAW264.7 macrophage cells. Bioorg Chem 2021; 107:104630. [PMID: 33476864 DOI: 10.1016/j.bioorg.2021.104630] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 12/20/2022]
Abstract
Exaggerated inflammatory responses may cause serious and debilitating diseases such as acute lung injury and rheumatoid arthritis. Two series of chalcone derivatives were prepared as anti-inflammatory agents. Methoxylated phenyl-based chalcones 2a-l and coumarin-based chalcones 3a-f were synthesized and compared for their inhibition of COX-2 enzyme and nitric oxide production suppression. Methoxylated phenyl-based chalcones showed better inhibition to COX-2 enzyme and nitric oxide suppression than the coumarin-based chalcones. Among the 18 synthesized chalcone derivatives, compound 2f exhibited the highest anti-inflammatory activity by inhibition of nitric oxide concentration in LPS-induced RAW264.7 macrophages (IC50 = 11.2 μM). The tested compound 2f showed suppression of iNOS and COX-2 enzymes. Moreover, compound 2f decreases in the expression of NF-κB and phosphorylated IκB in LPS-stimulated macrophages. Finally, docking studies suggested the inhibition of IKKβ as a mechanism of action and highlighted the importance of 2f hydrophobic interactions.
Collapse
Affiliation(s)
- Soha H Emam
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Amr Sonousi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt.
| | - Eman O Osman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Dukhyun Hwang
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|