1
|
Joharapurkar A, Pandya V, Patel H, Jain M, Desai R. Desidustat: a novel PHD inhibitor for the treatment of CKD-induced anemia. FRONTIERS IN NEPHROLOGY 2024; 4:1459425. [PMID: 39502472 PMCID: PMC11534831 DOI: 10.3389/fneph.2024.1459425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
Desidustat is a small molecule inhibitor of hypoxia-inducible factor-prolyl hydroxylase (HIF-PH) discovered and developed by Zydus Lifesciences for the treatment of anemia associated with chronic kidney disease (CKD). This review summarizes the preclinical and clinical profile of desidustat which led to its approval and clinical use in India.
Collapse
Affiliation(s)
- Amit Joharapurkar
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | | | | | | | | |
Collapse
|
2
|
Hu Y, Zhao Y, Li P, Lu H, Li H, Ge J. Hypoxia and panvascular diseases: exploring the role of hypoxia-inducible factors in vascular smooth muscle cells under panvascular pathologies. Sci Bull (Beijing) 2023; 68:1954-1974. [PMID: 37541793 DOI: 10.1016/j.scib.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
As an emerging discipline, panvascular diseases are a set of vascular diseases with atherosclerosis as the common pathogenic hallmark, which mostly affect vital organs like the heart, brain, kidney, and limbs. As the major responser to the most common stressor in the vasculature (hypoxia)-hypoxia-inducible factors (HIFs), and the primary regulator of pressure and oxygen delivery in the vasculature-vascular smooth muscle cells (VSMCs), their own multifaceted nature and their interactions with each other are fascinating. Abnormally active VSMCs (e.g., atherosclerosis, pulmonary hypertension) or abnormally dysfunctional VSMCs (e.g., aneurysms, vascular calcification) are associated with HIFs. These widespread systemic diseases also reflect the interdisciplinary nature of panvascular medicine. Moreover, given the comparable proliferative characteristics exhibited by VSMCs and cancer cells, and the delicate equilibrium between angiogenesis and cancer progression, there is a pressing need for more accurate modulation targets or combination approaches to bolster the effectiveness of HIF targeting therapies. Based on the aforementioned content, this review primarily focused on the significance of integrating the overall and local perspectives, as well as temporal and spatial balance, in the context of the HIF signaling pathway in VSMC-related panvascular diseases. Furthermore, the review discussed the implications of HIF-targeting drugs on panvascular disorders, while considering the trade-offs involved.
Collapse
Affiliation(s)
- Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Yongchao Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
3
|
Bhardwaj M, Gour A, Ahmed A, Dhiman S, Manhas D, Khajuria P, Wazir P, Mukherjee D, Nandi U. Impact of Disease States on the Oral Pharmacokinetics of EIDD-1931 (an Active Form of Molnupiravir) in Rats for Implication in the Dose Adjustment. Mol Pharm 2023; 20:4597-4610. [PMID: 37527414 DOI: 10.1021/acs.molpharmaceut.3c00314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The pharmacokinetic alteration of an antimicrobial medication leading to sub-therapeutic plasma level can aid in the emergence of resistance, a global threat nowadays. In this context, molnupiravir (prodrug of EIDD-1931) is the most efficacious orally against corona virus disease (COVID-19). In addition to drug-drug interaction, the pharmacokinetics of a drug can significantly vary during any disease state, leading to disease-drug interaction. However, no information is available for such a recently approved drug. Therefore, we aimed to explore the oral pharmacokinetics of EIDD-1931 in seven chemically induced disease states individually compared to the normal state using various rat models. Induction of any disease situation was confirmed by the disease specific study(s) prior to pharmacokinetic investigations. Compared to the normal state, substantially lowered plasma exposure (0.47- and 0.63-fold) with notably enhanced clearance (2.00- and 1.56-fold) of EIDD-1931 was observed in rats of ethanol-induced gastric injury and carbon tetrachloride-induced liver injury states. Conversely, paclitaxel-induced neuropathic pain and cisplatin-induced kidney injury states exhibited opposite outcomes on oral exposure (1.43- and 1.50-fold) and clearance (0.69- and 0.65-fold) of EIDD-1931. Although the highest plasma concentration (2.26-fold) markedly augmented in the doxorubicin-induced cardiac injury state, streptozocin-induced diabetes and lipopolysaccharide-induced lung injury state did not substantially influence the pharmacokinetics of EIDD-1931. Exploring the possible phenomenon behind the reduced or boosted plasma exposure of EIDD-1931, results suggest the need for dose adjustment in respective diseased conditions in order to achieve desired efficacy during oral therapy of EIDD-1931.
Collapse
Affiliation(s)
- Mahir Bhardwaj
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhishek Gour
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajaz Ahmed
- Natural Product and Medicinal Chemistry (NPMC) Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumit Dhiman
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Diksha Manhas
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parul Khajuria
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priya Wazir
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Debaraj Mukherjee
- Natural Product and Medicinal Chemistry (NPMC) Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Utpal Nandi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Patel H, Modi N, Chaudhari J, Patel P, Giri P, Patel H, Pandya V, Desai R, Jain M. Nonclinical Pharmacokinetic Evaluation of Desidustat: a Novel Prolyl Hydroxylase Inhibitor for the Treatment of Anemia. Eur J Drug Metab Pharmacokinet 2022; 47:725-740. [PMID: 35881329 DOI: 10.1007/s13318-022-00788-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Desidustat is a novel prolyl hydroxylase domain (PHD) inhibitor for the treatment of anemia. The objective of this study was to investigate the pharmacokinetics and drug-drug interaction properties of desidustat using in vitro and in vivo nonclinical models. METHODS In vitro, Caco2 cell permeability, plasma protein binding, metabolism, cytochrome P450 (CYP) inhibition, and CYP induction were examined. In vivo, pharmacokinetic studies of oral bioavailability in mice, rats, dogs and monkeys, dose linearity, tissue distribution, and excretion in rats were conducted. RESULTS In Caco-2 cells, the apparent permeability of desidustat was high at low pH and low at neutral pH. The oral bioavailability (%F) of desidustat was 43-100% with a median time to reach peak concentration (Tmax) of about 0.25-1.3 h across species. Desidustat displayed a low mean plasma clearance (CL) of 1.3-4.1 mL/min/kg (approximately 1.8-7.4% of hepatic blood flow), and the mean steady-state volume of distribution (Vss) was 0.2-0.4 L/kg (approximately 30-61% of the total body water). Desidustat showed a dose-dependent increase in exposures over the 15-100 mg/kg dose range. It was rapidly distributed in various tissues, with the highest tissue-to-blood ratio in the liver (1.8) and kidney (1.7). Desidustat showed high plasma protein binding and was metabolically stable in human liver microsomes, hepatocytes, and recombinant CYPs. It did not show significant inhibition of major drug-metabolizing CYP enzymes (IC50 > 300 µM) or the potential to induce CYP1A2 and CYP3A4/5 (up to 100 µM) in HepG2 cells. It may have minimal potential of clinical drug-drug interaction when used in combination with iron supplements or phosphate binders. Desidustat was primarily excreted unchanged in urine (25% of the oral dose) and bile (25% of the oral dose) in rats. The mean elimination half-life of desidustat ranged from 1.0 to 5.3 h and 1.3 to 5.7 h across species after intravenous and oral administration, respectively. CONCLUSION Taken together, desidustat is well absorbed orally. It showed a dose-dependent increase in exposure, did not accumulate in tissue, and was eliminated via dual routes. It is metabolically stable, has minimal potential to cause clinical drug-drug interactions (DDIs), and demonstrates discriminable pharmacokinetic properties for the treatment of anemia.
Collapse
Affiliation(s)
- Harilal Patel
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Zydus Lifesciences Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya. Tal: Sanand, Ahmedabad, Gujarat, 382213, India.
| | - Nirav Modi
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Zydus Lifesciences Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya. Tal: Sanand, Ahmedabad, Gujarat, 382213, India
| | - Jaimin Chaudhari
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Zydus Lifesciences Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya. Tal: Sanand, Ahmedabad, Gujarat, 382213, India
| | - Prakash Patel
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Zydus Lifesciences Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya. Tal: Sanand, Ahmedabad, Gujarat, 382213, India
| | - Poonam Giri
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Zydus Lifesciences Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya. Tal: Sanand, Ahmedabad, Gujarat, 382213, India
| | - Hiren Patel
- Department of Molecular Pharmacology, Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, 382213, India
| | - Vrajesh Pandya
- Department of Medicinal Chemistry, Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, 382213, India
| | - Ranjit Desai
- Department of Medicinal Chemistry, Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, 382213, India
| | - Mukul Jain
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Zydus Lifesciences Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya. Tal: Sanand, Ahmedabad, Gujarat, 382213, India.,Department of Molecular Pharmacology, Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, 382213, India
| |
Collapse
|
5
|
Abstract
Desidustat (Oxemia™) is an orally bioavailable, small molecule, hypoxia-inducible factor-prolyl hydroxylase (HIF-PH) inhibitor developed by Zydus Cadila for the treatment of anaemia associated with chronic kidney disease (CKD), COVID-2019 infections and chemotherapy induced anaemia. Desidustat inhibits prolyl hydroxylase domain enzymes, resulting in the stabilisation of hypoxia-inducible factor which stimulates erythropoietin production and erythropoiesis. In March 2022, desidustat received its first approval in India for the treatment of anaemia in adults with CKD who are either on dialysis or not on dialysis. Desidustat is in clinical development in China for the treatment of anaemia in patients with CKD, in Mexico for the management of COVID-2019 infections and in the USA for the treatment of chemotherapy induced anaemia. This article summarizes the milestones in the development of desidustat leading to this first approval for anaemia associated with CKD.
Collapse
Affiliation(s)
- Sohita Dhillon
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754, New Zealand.
| |
Collapse
|
6
|
Joharapurkar AA, Patel VJ, Kshirsagar SG, Patel MS, Savsani HH, Jain MR. Prolyl hydroxylase inhibitor desidustat protects against acute and chronic kidney injury by reducing inflammatory cytokines and oxidative stress. Drug Dev Res 2021; 82:852-860. [PMID: 33480036 DOI: 10.1002/ddr.21792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 01/08/2021] [Indexed: 12/19/2022]
Abstract
Chronic kidney disease (CKD) is associated with activated inflammatory responses. Desidustat, a prolyl hydroxylase (PHD) inhibitor is useful for treatment of anemia associated with CKD, but its effect on the inflammatory and fibrotic changes in CKD is not evaluated. In this study, we investigated the effect of desidustat on the inflammatory and fibrotic changes in preclinical models of acute and chronic kidney injury. Acute kidney injury was induced in male Sprague Dawley rats by ischemia-reperfusion, in which effect of desidustat (15 mg/kg, PO) was estimated. In a separate experiment, male C57 mice were treated with adenine for 14 days to induce CKD. These mice were treated with desidustat (15 mg/kg, PO, alternate day) treatment for 14 days, with adenine continued. Desidustat prevented elevation of serum creatinine, urea, IL-1β, IL-6, and kidney injury molecule-1 (KIM-1), and elevated the erythropoietin levels in rats that were subjected to acute kidney injury. Mice treated with adenine developed CKD and anemia, and desidustat treatment caused improvement in serum creatinine, urea, and also improved hemoglobin and reduced hepatic and serum hepcidin. A significant reduction in IL-1β, IL-6, myeloperoxidase (MPO) and oxidative stress was observed by desidustat treatment. Desidustat treatment also reduced renal fibrosis as observed by histological analysis and hydroxyproline content. Desidustat treatment reduced the renal fibrosis and inflammation along with a reduction in anemia in preclinical models of kidney injury, which may translate to protective effects in CKD patients.
Collapse
Affiliation(s)
- Amit A Joharapurkar
- Department of Pharmacology and Toxicology, Zydus Research Centre, Cadila Healthcare Limited, Ahmedabad, India
| | - Vishal J Patel
- Department of Pharmacology and Toxicology, Zydus Research Centre, Cadila Healthcare Limited, Ahmedabad, India
| | - Samadhan G Kshirsagar
- Department of Pharmacology and Toxicology, Zydus Research Centre, Cadila Healthcare Limited, Ahmedabad, India
| | - Maulik S Patel
- Department of Pharmacology and Toxicology, Zydus Research Centre, Cadila Healthcare Limited, Ahmedabad, India
| | - Hardikkumar H Savsani
- Department of Pharmacology and Toxicology, Zydus Research Centre, Cadila Healthcare Limited, Ahmedabad, India
| | - Mukul R Jain
- Department of Pharmacology and Toxicology, Zydus Research Centre, Cadila Healthcare Limited, Ahmedabad, India
| |
Collapse
|
7
|
Kansagra KA, Parmar D, Jani RH, Srinivas NR, Lickliter J, Patel HV, Parikh DP, Heading H, Patel HB, Gupta RJ, Shah CY, Patel MR, Dholakia VN, Sukhadiya R, Jain MR, Parmar KV, Barot K. Phase I Clinical Study of ZYAN1, A Novel Prolyl-Hydroxylase (PHD) Inhibitor to Evaluate the Safety, Tolerability, and Pharmacokinetics Following Oral Administration in Healthy Volunteers. Clin Pharmacokinet 2019; 57:87-102. [PMID: 28508936 PMCID: PMC5766731 DOI: 10.1007/s40262-017-0551-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This phase I study of ZYAN1 was conducted to evaluate the safety, tolerability, and pharmacokinetics following oral administration in healthy volunteers. METHODS The study was a randomized, double-blind, placebo-controlled phase I study carried out in two parts in addition to a third part involving an open-label study to evaluate the food/sex effect. A total of 100 subjects were enrolled into the study as follows: part I-single-dose study with ZYAN1 10, 25, 50, 100, 150, 200, and 300 mg (n = 56); part II-multiple-dose study with every other day dosing of ZYAN1 100, 150, 200, and 300 mg (n = 32); and part III-sex and food effect study with ZYAN1 150 mg (n = 12; open-label). RESULTS ZYAN1 was well-tolerated after single and multiple oral ascending doses. No drug-related serious adverse events were reported. Following a single ascending dose of ZYAN1, the maximum concentration (C max) ranged from 566.47 ± 163.03 to 17,858.33 ± 2899.19 ng/mL and the median time to C max (t max) was approximately 2.5 h for the studied 30-fold oral doses of ZYAN1. Regardless of single or multiple doses, mean C max and area under the concentration-time curve from time zero to time t (AUC t ) values generally showed a dose-proportional increase. The mean elimination half-life (t ½) of ZYAN1 ranged from 6.9 to 13 h with negligible accumulation. Following a single dose of ZYAN1, the mean serum erythropoietin (EPO) C max values showed dose response (i.e., 6.6 and 79.9 mIU/L for 10 and 300 mg ZYAN1 doses, respectively), while the time to mean maximal serum EPO concentrations ranged from 10 to 72 h. CONCLUSION Oral single (10-300 mg) and multiple dosing (100-300 mg) of ZYAN1 in healthy subjects was found to be safe and well-tolerated. With increasing ZYAN1 dose, there was almost a proportional increase in mean C max and AUC t . The mean serum EPO concentrations showed a trend of dose response. Based on the t ½, pharmacodynamic activity, and lack of drug accumulation, a once every 2 days dosing regimen of ZYAN1 was appropriate for phase II study. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry trial ID ACTRN12614001240639.
Collapse
Affiliation(s)
- Kevinkumar A Kansagra
- Zydus Research Center, Survey No. 396/403, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, Gujarat, 382213, India
| | - Deven Parmar
- Zydus Research Center, Survey No. 396/403, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, Gujarat, 382213, India.
| | - Rajendra H Jani
- Zydus Research Center, Survey No. 396/403, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, Gujarat, 382213, India
| | - Nuggehally R Srinivas
- Zydus Research Center, Survey No. 396/403, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, Gujarat, 382213, India
| | - Jason Lickliter
- Division of Nucleus Network, Centre for Clinical Studies (CCS), Melbourne, Australia
| | - Harilal V Patel
- Zydus Research Center, Survey No. 396/403, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, Gujarat, 382213, India
| | - Devang P Parikh
- Zydus Research Center, Survey No. 396/403, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, Gujarat, 382213, India
| | | | - Hardik B Patel
- Zydus Research Center, Survey No. 396/403, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, Gujarat, 382213, India
| | - Rahul J Gupta
- Zydus Research Center, Survey No. 396/403, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, Gujarat, 382213, India
| | - Chintan Y Shah
- Zydus Research Center, Survey No. 396/403, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, Gujarat, 382213, India
| | - Maulik R Patel
- Zydus Research Center, Survey No. 396/403, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, Gujarat, 382213, India
| | | | | | - Mukul R Jain
- Zydus Research Center, Survey No. 396/403, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, Gujarat, 382213, India
| | - Krupi V Parmar
- Zydus Research Center, Survey No. 396/403, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, Gujarat, 382213, India
| | - Kinjal Barot
- Zydus Research Center, Survey No. 396/403, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, Gujarat, 382213, India
| |
Collapse
|
8
|
Joharapurkar AA, Pandya VB, Patel VJ, Desai RC, Jain MR. Prolyl Hydroxylase Inhibitors: A Breakthrough in the Therapy of Anemia Associated with Chronic Diseases. J Med Chem 2018; 61:6964-6982. [PMID: 29712435 DOI: 10.1021/acs.jmedchem.7b01686] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic kidney disease, cancer, chronic inflammatory disorders, nutritional, and genetic deficiency can cause anemia. Hypoxia causes induction of hypoxia-inducible factor (HIF), which stimulates erythropoietin (EPO) synthesis. Prolyl hydroxylase domain (PHD) enzyme inhibition can stabilize hypoxia-inducible factor (HIF). HIF stabilization also decreases hepcidin, a hormone of hepatic origin, which regulates iron homeostasis. PHD inhibitors represent a novel pharmacological treatment of anemia associated with chronic diseases. Many orally active PHD inhibitors like roxadustat, molidustat, vadadustat, and desidustat are in late phase clinical trials. This review discusses the role of PHD inhibitors in the treatment of anemia associated with chronic diseases.
Collapse
Affiliation(s)
- Amit A Joharapurkar
- Zydus Research Centre , Cadila Healthcare Limited , Sarkhej Bavla NH8A , Moraiya , Ahmedabad 382210 , India
| | - Vrajesh B Pandya
- Zydus Research Centre , Cadila Healthcare Limited , Sarkhej Bavla NH8A , Moraiya , Ahmedabad 382210 , India
| | - Vishal J Patel
- Zydus Research Centre , Cadila Healthcare Limited , Sarkhej Bavla NH8A , Moraiya , Ahmedabad 382210 , India
| | - Ranjit C Desai
- Zydus Research Centre , Cadila Healthcare Limited , Sarkhej Bavla NH8A , Moraiya , Ahmedabad 382210 , India
| | - Mukul R Jain
- Zydus Research Centre , Cadila Healthcare Limited , Sarkhej Bavla NH8A , Moraiya , Ahmedabad 382210 , India
| |
Collapse
|
9
|
Giri P, Delvadia P, Gupta L, Trivedi P, Patel N, Sharma M, Singh J, Chatterjee A, Kadam S, Srinivas NR. Impact of collagen-induced arthritis on the pharmacokinetic disposition of voriconazole, a widely used antifungal agent: in vitro and in vivo investigations in DBA/1J mice. Xenobiotica 2018; 49:698-707. [PMID: 29873579 DOI: 10.1080/00498254.2018.1485989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Pharmacokinetics of voriconazole, an anti-fungal agent, was determined in collagen-induced arthritic (CIA) and healthy DBA/1J mice. CIA was confirmed in DBA/1J mice by clinical scoring and histological analysis. In vivo oral pharmacokinetic study (3 mg/kg) and in vitro stability assessment in liver microsomes were performed in CIA vs. healthy DBA/1J mice. Additionally, hepatic portal vein cannulated (HPVC) CIA and healthy mice were used to clarify the role of gut first-pass effect. Voriconazole/N-oxide metabolite was measured in plasma and in vitro samples using liquid chromatography tandem-mass spectrometry method. Voriconazole exposure was reduced in CIA by 27% as compared to healthy mice. Formation of voriconazole N-oxide was higher in CIA mice as evidenced by higher molar Cmax ratio (i.e. metabolite/parent) of 2.08 vs. 1.66 in healthy mice. Because voriconazole was stable in microsomes, involvement of presystemic gut metabolism was suspected for decreased voriconazole exposure and formation of higher molar ratio of metabolite. HPVC work revealed higher formation of voriconazole N-oxide in CIA relative to healthy mice resulting in Cmax/AUC ratios of 0.41/0.54 and 0.08/0.17, respectively, confirming first-pass effect. The findings may have implications in the clinical therapy of arthritis patients who are concomitantly given voriconazole for the management of fungal infections.
Collapse
Affiliation(s)
- Poonam Giri
- a Department of Drug Metabolism and Pharmacokinetics , Zydus Research Centre, Cadila Healthcare Ltd. , Ahmedabad , India
| | - Prashant Delvadia
- a Department of Drug Metabolism and Pharmacokinetics , Zydus Research Centre, Cadila Healthcare Ltd. , Ahmedabad , India
| | - Lakshmikant Gupta
- a Department of Drug Metabolism and Pharmacokinetics , Zydus Research Centre, Cadila Healthcare Ltd. , Ahmedabad , India
| | - Priyal Trivedi
- a Department of Drug Metabolism and Pharmacokinetics , Zydus Research Centre, Cadila Healthcare Ltd. , Ahmedabad , India
| | - Nirmal Patel
- a Department of Drug Metabolism and Pharmacokinetics , Zydus Research Centre, Cadila Healthcare Ltd. , Ahmedabad , India
| | - Manoranjan Sharma
- b Department of Pharmacology , Zydus Research Centre , Ahmedabad , India
| | - Jaideep Singh
- b Department of Pharmacology , Zydus Research Centre , Ahmedabad , India
| | - Abhijit Chatterjee
- b Department of Pharmacology , Zydus Research Centre , Ahmedabad , India
| | - Shekhar Kadam
- c Department of Toxicology , Zydus Research Centre , Ahmedabad , India
| | - Nuggehally R Srinivas
- a Department of Drug Metabolism and Pharmacokinetics , Zydus Research Centre, Cadila Healthcare Ltd. , Ahmedabad , India
| |
Collapse
|
10
|
Haase VH. HIF-prolyl hydroxylases as therapeutic targets in erythropoiesis and iron metabolism. Hemodial Int 2017; 21 Suppl 1:S110-S124. [PMID: 28449418 DOI: 10.1111/hdi.12567] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A classic response to systemic hypoxia is the increase in red blood cell production. This response is controlled by the prolyl hydroxylase domain/hypoxia-inducible factor (HIF) pathway, which regulates a broad spectrum of cellular functions. The discovery of this pathway as a key regulator of erythropoiesis has led to the development of small molecules that stimulate the production of endogenous erythropoietin and enhance iron metabolism. This review provides a concise overview of the cellular and molecular mechanisms that govern HIF-induced erythropoietic responses and provides an update on clinical experience with compounds that target HIF-prolyl hydroxylases for anemia therapy.
Collapse
Affiliation(s)
- Volker H Haase
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Departments of Cancer Biology and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Veterans Affairs Hospital, Medical and Research Services, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Therapeutic targeting of the HIF oxygen-sensing pathway: Lessons learned from clinical studies. Exp Cell Res 2017; 356:160-165. [PMID: 28483447 DOI: 10.1016/j.yexcr.2017.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022]
Abstract
The oxygen-sensitive hypoxia-inducible factor (HIF) pathway plays a central role in the control of erythropoiesis and iron metabolism. The discovery of prolyl hydroxylase domain (PHD) proteins as key regulators of HIF activity has led to the development of inhibitory compounds that are now in phase 3 clinical development for the treatment of renal anemia, a condition that is commonly found in patients with advanced chronic kidney disease. This review provides a concise overview of clinical effects associated with pharmacologic PHD inhibition and was written in memory of Professor Lorenz Poellinger.
Collapse
|