1
|
Chen A, Gong Y, Wu S, Du Y, Liu Z, Jiang Y, Li J, Miao YB. Navigating a challenging path: precision disease treatment with tailored oral nano-armor-probiotics. J Nanobiotechnology 2025; 23:72. [PMID: 39893419 PMCID: PMC11786591 DOI: 10.1186/s12951-025-03141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/19/2025] [Indexed: 02/04/2025] Open
Abstract
Oral probiotics have significant potential for preventing and treating many diseases. Yet, their efficacy is often hindered by challenges related to survival and colonization within the gastrointestinal tract. Nanoparticles emerge as a transformative solution, offering robust protection and enhancing the stability and bioavailability of these probiotics. This review explores the innovative application of nanoparticle-armored engineered probiotics for precise disease treatment, specifically addressing the physiological barriers associated with oral administration. A comprehensive evaluation of various nano-armor probiotics and encapsulation methods is provided, carefully analyzing their respective merits and limitations, alongside strategies to enhance probiotic survival and achieve targeted delivery and colonization within the gastrointestinal tract. Furthermore, the review explores the potential clinical applications of nano-armored probiotics in precision therapeutics, critically addressing safety and regulatory considerations, and proposing the innovative concept of 'probiotic intestinal colonization with nano armor' for brain-targeted therapies. Ultimately, this review aspires to guide the advancement of nano-armored probiotic therapies, driving progress in precision medicine and paving the way for groundbreaking treatment modalities.
Collapse
Affiliation(s)
- Anmei Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Ying Gong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Shaoquan Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Ye Du
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Zhijun Liu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China.
| | - Jiahong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China.
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China.
| |
Collapse
|
2
|
Durán-Lara EF, Rafael D, Andrade F, G OL, Vijayakumar S. Bacterial Polyhydroxyalkanoates-based Therapeutics-delivery Nano-systems. Curr Med Chem 2024; 31:5884-5897. [PMID: 37828676 DOI: 10.2174/0109298673268775231003111540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/05/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Microbial polyhydroxyalkanoates (PHAs) are bio-based aliphatic biopolyester produced by bacteria as an intracellular storage material of carbon and energy under stressed conditions. PHAs have been paid attention to due to their unique and impressive biological properties including high biodegradability, biocompatibility, low cytotoxicity, and different mechanical properties. Under this context, the development of drug-delivery nanosystems based on PHAs has been revealed to have numerous advantages compared with synthetic polymers that included biocompatibility, biodegradability, non-toxic, and low-cost production, among others. In this review article, we present the available state of the art of PHAs. Moreover, we discussed the potential benefits, weaknesses, and perspectives of PHAs to the develop drug delivery systems.
Collapse
Affiliation(s)
- Esteban F Durán-Lara
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Maule, Chile
- Bio & NanoMaterials Lab, Drug Delivery and Controlled Release, Universidad de Talca, Talca, 3460000, Maule, Chile
| | - Diana Rafael
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
- Networking Research Centre for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Fernanda Andrade
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
- Networking Research Centre for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Lobos G
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Maule, Chile
| | | |
Collapse
|
3
|
Castrejón-Carrillo S, Morales-Moreno LA, Rodríguez-Alegría ME, Zavala-Padilla GT, Bello-Pérez LA, Moreno-Zaragoza J, López Munguía A. Insights into the heterogeneity of levan polymers synthesized by levansucrase Bs-SacB from Bacillus subtilis 168. Carbohydr Polym 2024; 323:121439. [PMID: 37940304 DOI: 10.1016/j.carbpol.2023.121439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023]
Abstract
Levan is an enzymatically synthesized fructose polymer with widely reported structural heterogeneity depending on the producing levansucrase, the reaction conditions employed for its synthesis and the characterization techniques. We studied here the specific properties of levan produced by recombinant levansucrase from B. subtilis 168 (Bs-SacB), often characterized as a bimodal distribution, that is, a mixture of low and high molecular weight levan. We found significant differences between both levans in terms of the already reported molecular weight, size and morphology using different analytical methods. The low molecular weight levan consists of a non-uniform polymer ranging from 50 to 230 kDa, synthesized through a non-processive mechanism that can spontaneously form spherical nanoparticles in the reaction medium. In contrast, high molecular weight levan is a uniform polymer, most probably synthesized through a processive mechanism, with an average molecular weight of 30,750 kDa and a poorly defined nano-structure. This is the first report exploring differences in morphology between low and high molecular weight levans. Our findings demonstrate that only the low molecular weight levan forms spherical nanoparticles in the reaction medium and that high molecular weight levan is mainly composed of a 33,000 kDa fraction with a microgel behavior.
Collapse
Affiliation(s)
- Sol Castrejón-Carrillo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos, Mexico.
| | - Luis Alberto Morales-Moreno
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - María Elena Rodríguez-Alegría
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Guadalupe Trinidad Zavala-Padilla
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos, Mexico.
| | - Luis Arturo Bello-Pérez
- Instituto Politécnico Nacional, CEPROBI, km 6 Carr. Yautepec-Jojutla, Calle Ceprobi No. 8, Apartado Postal 24, Yautepec, Morelos 62731, Mexico.
| | - Josué Moreno-Zaragoza
- Instituto Politécnico Nacional, CEPROBI, km 6 Carr. Yautepec-Jojutla, Calle Ceprobi No. 8, Apartado Postal 24, Yautepec, Morelos 62731, Mexico.
| | - Agustín López Munguía
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
4
|
Yang Y, Yue C, Zhang C, Yuan J. Chemotactic response of Escherichia coli to polymer solutions. Phys Biol 2022; 19. [PMID: 35545074 DOI: 10.1088/1478-3975/ac6eb1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/11/2022] [Indexed: 11/12/2022]
Abstract
Polymers are important components of the complex fluid environment for microorganisms. The mechanical effects on bacterial motile behavior due to the viscous or viscoelastic properties of polymers were extensively studied, whereas possible chemical effects on bacterial motility through bacterial chemoreception of the polymers were unclear. Here we studied the chemotactic response of Escherichia coli to polymeric solutions by combining the bead assay and FRET measurements. We found that the wild-type E. coli strain exhibited an attractant response to widely used polymers such as Ficoll 400, PEG 20000 and PVP 360000, and the response amplitude from chemoreception was much larger than that from the load-dependence of motor switching due to viscosity change. The chemotactic response depended on the type of receptors and the chain length of the polymers. Our findings here provided novel ingredients for further studies of bacterial motile behavior in complex fluids.
Collapse
Affiliation(s)
- Yue Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, 96 Jinzhai Rd, Hefei, Anhui, 230026, CHINA
| | - Caijuan Yue
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, 96 Jinzhai Rd, Hefei, Anhui, 230026, CHINA
| | - Chi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, 96 Jinzhai Rd, Hefei, Anhui, 230026, CHINA
| | - Junhua Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, 96 Jinzhai Rd, Hefei, Anhui, 230026, CHINA
| |
Collapse
|
5
|
Puppi D, Braccini S, Ranaudo A, Chiellini F. Poly(3-hydroxybutyrate-co-3-hydroxyexanoate) scaffolds with tunable macro- and microstructural features by additive manufacturing. J Biotechnol 2020; 308:96-107. [DOI: 10.1016/j.jbiotec.2019.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/06/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
|
6
|
Lee K, Choi S, Kim C, Kang WS, Son W, Bae SC, Oh JW, Lee SK, Cha C. Implementation of Combinatorial Genetic and Microenvironmental Engineering to Microbial-Based Field-Deployable Microbead Biosensors for Highly Sensitive and Remote Chemical Detection. ACS Sens 2019; 4:2716-2723. [PMID: 31512857 DOI: 10.1021/acssensors.9b01183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Bioreporters, microbial species genetically engineered to provide measurable signals in response to specific chemicals, have been widely investigated as sensors for biomedical and environmental monitoring. More specifically, the bioreporter encapsulated within a biocompatible material, such as a hydrogel that can provide a suitable microenvironment for its prolonged activity as well as efficient scalable production, has been viewed as a more broadly applicable mode of biosensors. In this study, alginate-based microbeads encapsulated with the bacterial bioreporter capable of expressing green fluorescence protein in response to nitro compounds (e.g., trinitrotoluene and dinitrotoluene) are developed as biosensors. To significantly enhance the sensitivity of the microbial-based microbead biosensors, "multifaceted" modification strategies are simultaneously employed: (1) multiple genetic modifications of the bioreporter, (2) tuning the physicomechanical properties of the encapsulating microbeads, (3) controlling the initial cell density within the microbeads, and (4) enrichment of nitro compounds inside microbeads via functional nanomaterials. These microbial and microenvironmental engineering approaches combine to significantly enhance the sensing capability, even allowing highly sensitive remote detection under a low-vapor phase. Thus, the strategy developed herein is expected to contribute to various cell-based biosensors.
Collapse
Affiliation(s)
| | | | - Chuntae Kim
- Department of Nano Fusion Technology, Pusan National University, Busan 46241, Korea
| | | | | | | | - Jin-Woo Oh
- Department of Nano Fusion Technology, Pusan National University, Busan 46241, Korea
| | | | | |
Collapse
|
7
|
Shershneva AM, Murueva AV, Zhila NO, Volova TG. Antifungal activity of P3HB microparticles containing tebuconazole. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:196-204. [PMID: 30638127 DOI: 10.1080/03601234.2018.1550299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, tebuconazole (TEB)-loaded poly-3-hydroxybutyrate (P3HB)-based microparticles were developed and comprehensively characterized. TEB-loaded microparticles with the initial loading amounts of the fungicide of 10, 25, and 50% of the polymer mass (TEB 10, TEB 25, and TEB 50%) were prepared using emulsion technique. Encapsulation efficiency of TEB varied from 59 to 86%. As the loading amount was increased, the average diameter of microparticles increased too, from 41.3 to 71.7 µm, while zeta potential was not influenced by TEB loading, varying between -32.6 and -35.7 mV. TEB was gradually released from the microparticles to the model medium, and after 60 d, from 25 to 43% of TEB was released depending on the content of the encapsulated fungicide. The data obtained from in vitro TEB release were fitted to different mathematical models. It was shown that the release profiles of TEB could be best explained by the Zero-order, Higuchi, and Hixson-Crowell models. The antifungal activity of the P3HB/TEB microparticles against phytopathogenic fungi Fusarium moniliforme and Fusarium solani was demonstrated by in vitro tests conducted in Petri dishes. Thus, hydrophobic agrochemicals (TEB) can be effectively encapsulated into P3HB microparticles to construct slow-release formulations.
Collapse
Affiliation(s)
- Anna M Shershneva
- a Siberian Federal University , Institute of Fundamental Biology and Biotechnology , Krasnoyarsk , Russia
| | - Anastasia V Murueva
- b Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS" , Krasnoyarsk , Russia
| | - Natalia O Zhila
- a Siberian Federal University , Institute of Fundamental Biology and Biotechnology , Krasnoyarsk , Russia
- b Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS" , Krasnoyarsk , Russia
| | - Tatiana G Volova
- a Siberian Federal University , Institute of Fundamental Biology and Biotechnology , Krasnoyarsk , Russia
- b Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS" , Krasnoyarsk , Russia
| |
Collapse
|
8
|
Farjadian F, Moghoofei M, Mirkiani S, Ghasemi A, Rabiee N, Hadifar S, Beyzavi A, Karimi M, Hamblin MR. Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: Set the bugs to work? Biotechnol Adv 2018; 36:968-985. [PMID: 29499341 PMCID: PMC5971145 DOI: 10.1016/j.biotechadv.2018.02.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 12/28/2022]
Abstract
Drug delivery is a rapidly growing area of research motivated by the nanotechnology revolution, the ideal of personalized medicine, and the desire to reduce the side effects of toxic anti-cancer drugs. Amongst a bewildering array of different nanostructures and nanocarriers, those examples that are fundamentally bio-inspired and derived from natural sources are particularly preferred. Delivery of vaccines is also an active area of research in this field. Bacterial cells and their components that have been used for drug delivery, include the crystalline cell-surface layer known as "S-layer", bacterial ghosts, bacterial outer membrane vesicles, and bacterial products or derivatives (e.g. spores, polymers, and magnetic nanoparticles). Considering the origin of these components from potentially pathogenic microorganisms, it is not surprising that they have been applied for vaccines and immunization. The present review critically summarizes their applications focusing on their advantages for delivery of drugs, genes, and vaccines.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soroush Mirkiani
- Biomaterials Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Shima Hadifar
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Beyzavi
- Koch institute of MIT, 500 Main Street, Cambridge, MA, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Laromaine A, Tronser T, Pini I, Parets S, Levkin PA, Roig A. Free-standing three-dimensional hollow bacterial cellulose structures with controlled geometry via patterned superhydrophobic-hydrophilic surfaces. SOFT MATTER 2018; 14:3955-3962. [PMID: 29736513 DOI: 10.1039/c8sm00112j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bacteria can produce cellulose, one of the most abundant biopolymer on earth, and emerge as an interesting candidate to fabricate advanced materials. Cellulose produced by Komagataeibacter Xylinus, a bacterial strain, is a pure water insoluble biopolymer, without hemicellulose or lignin. Bacterial cellulose (BC) exhibits a nanofibrous porous network microstructure with high strength, low density and high biocompatibility and it has been proposed as cell scaffold and wound healing material. The formation of three dimensional (3D) cellulose self-standing structures is not simple. It either involves complex multi-step synthetic procedures or uses chemical methods to dissolve cellulose and remold it. Here we present an in situ single-step method to produce self-standing 3D-BC structures with controllable wall thickness, size and geometry in a reproducible manner. Parameters such as hydrophobicity of the surfaces, volume of the inoculum and time of culture define the resulting 3D-BC structures. Hollow spheres and convex domes can be easily obtained by changing the surface wettability. The potential of these structures as a 3D cell scaffold is exemplified supporting the growth of mouse embryonic stem cells within a hollow spherical BC structure, indicating its biocompatibility and future prospective.
Collapse
Affiliation(s)
- Anna Laromaine
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Catalunya, Spain.
| | | | | | | | | | | |
Collapse
|
10
|
Barouti G, Jaffredo CG, Guillaume SM. Advances in drug delivery systems based on synthetic poly(hydroxybutyrate) (co)polymers. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Lourenço SC, Torres CAV, Nunes D, Duarte P, Freitas F, Reis MAM, Fortunato E, Moldão-Martins M, da Costa LB, Alves VD. Using a bacterial fucose-rich polysaccharide as encapsulation material of bioactive compounds. Int J Biol Macromol 2017; 104:1099-1106. [PMID: 28687391 DOI: 10.1016/j.ijbiomac.2017.07.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/06/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022]
Abstract
The potential of a bacterial exopolysaccharide named FucoPol, produced by the bacterium Enterobacter A47, as encapsulation matrix was explored. Spherical capsules with a smooth surface were produced by spray drying. The obtained microcapsules had average diameters ranging from 0.5 to 26.7μm and presented thin walls (thickness from 222 to 1094nm). The capsules were loaded with two bioactive compounds: gallic acid (GA) and oregano essential oil (OEO). Both bioactive materials were encapsulated in FucoPol particles, retaining their antioxidant activity after the drying process. Release studies showed that GA release in simulated gastric and intestinal fluids was faster than that of OEO, envisaging that the latter had established stronger interactions with the polymer matrix. These results suggest that FucoPol has a good potential for use as encapsulating material of bioactive compounds for application in several areas, including food, cosmetic or pharmaceutical products.
Collapse
Affiliation(s)
- Sofia C Lourenço
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal.
| | - Cristiana A V Torres
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Daniela Nunes
- CENIMAT/i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and CEMOP-UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Paulo Duarte
- CENIMAT/i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and CEMOP-UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Filomena Freitas
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Maria A M Reis
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Elvira Fortunato
- CENIMAT/i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and CEMOP-UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Margarida Moldão-Martins
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal.
| | - Luísa Beirão da Costa
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal.
| | - Vítor D Alves
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal.
| |
Collapse
|
12
|
Li Z, Loh XJ. Recent advances of using polyhydroxyalkanoate-based nanovehicles as therapeutic delivery carriers. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [DOI: 10.1002/wnan.1429] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/26/2016] [Accepted: 07/30/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Zibiao Li
- Institute of Materials Research and Engineering; A*STAR (Agency for Science, Technology and Research); Singapore Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering; A*STAR (Agency for Science, Technology and Research); Singapore Singapore
- Department of Materials Science and Engineering; National University of Singapore; Singapore Singapore
- Singapore Eye Research Institute; Singapore Singapore
| |
Collapse
|