1
|
Engineered nanoparticles as emerging gene/drug delivery systems targeting the nuclear factor-κB protein and related signaling pathways in cancer. Biomed Pharmacother 2022; 156:113932. [DOI: 10.1016/j.biopha.2022.113932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
|
2
|
Saraei M, Sarvari R, Fakhri E, Fariyan S. Antibacterial polymeric micelles based on kojic acid/acrylic acid/chitosan. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2131786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mahnaz Saraei
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Raana Sarvari
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Sarvaran Shimi Pishro(S.Sh.P) Co, Tabriz, Iran
| | - Elaheh Fakhri
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Fariyan
- Department of Chemistry, Payame Noor University, Tehran, Iran
| |
Collapse
|
3
|
Zhu J, Zhao L, Zhao P, Yang J, Shi J, Zhao J. Charge-conversional polyethylenimine-entrapped gold nanoparticles with 131I-labeling for enhanced dual mode SPECT/CT imaging and radiotherapy of tumors. Biomater Sci 2020; 8:3956-3965. [PMID: 32555790 DOI: 10.1039/d0bm00649a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Novel theranostic nanosystems demonstrate great potential to achieve timely diagnosis and effective therapy at the same time. However, due to the relatively low accumulation of theranostic nanosystems at the tumor site, the theranostic efficiency is limited. In this study, a novel theranostic nanosystem with a pH-responsive charge conversion property was constructed to improve the cellular uptake towards cancer cells for enhanced single photon emission computed tomography (SPECT)/computed tomography (CT) dual mode imaging and radiotherapy of tumors. In detail, polyethylenimine (PEI) was utilized as a nanoplatform to link with polyethylene glycol (PEG) monomethyl ether with one end of N-hydroxylsuccinimide (mPEG-NHS), PEG with ends of maleimide and succinimidyl valerate (MAL-PEG-SVA), alkoxyphenyl acylsulfonamide (APAS), 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO), and fluorescein isothiocyanate (FI), successively. The formed functionalized PEI was then utilized to entrap gold nanoparticles, acetylate the remaining amines of PEI and label with radioactive iodine-131 (131I) to build theranostic nanosystems. The result demonstrated that the theranostic nanosystem has a 3.8 nm Au core and showed excellent colloidal stability. On account of the charge conversion property of APAS, the APAS linked PEI entrapped gold nanoparticles could switch from neutral to positive in a slightly acidic microenvironment, which induced improved cellular uptake. Above all, after 131I labeling, the generated theranostic nanosystem could achieve enhanced SPECT/CT dual mode imaging and radiotherapy of cancer cells in vitro and a xenograft tumor model in vivo. The constructed APAS-linked PEI nanosystem has great potential to be used as a model for SPECT/CT imaging and radiotherapy of various types of cancer.
Collapse
Affiliation(s)
- Jingyi Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
4
|
Ghorbani M, Zarei M, Mahmoodzadeh F, Roshangar L, Nikzad B. Improvement of delivery and anticancer activity of doxorubicin by sildenafil citrate encapsulated with a new redox and pH-responsive nanogel. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1765362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Marjan Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Zarei
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Nikzad
- Department of Psychology, Faculty of Psychology, Tabriz University, Tabriz, Iran
| |
Collapse
|
5
|
Jaymand M. Chemically Modified Natural Polymer-Based Theranostic Nanomedicines: Are They the Golden Gate toward a de Novo Clinical Approach against Cancer? ACS Biomater Sci Eng 2019; 6:134-166. [DOI: 10.1021/acsbiomaterials.9b00802] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| |
Collapse
|
6
|
Zamanlu M, Eskandani M, Barar J, Jaymand M, Pakchin PS, Farhoudi M. Enhanced thrombolysis using tissue plasminogen activator (tPA)-loaded PEGylated PLGA nanoparticles for ischemic stroke. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101165] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Abstract
Synthetic polymers, biopolymers, and their nanocomposites are being studied, and some of them are already used in different medical areas. Among the synthetic ones that can be mentioned are polyolefins, fluorinated polymers, polyesters, silicones, and others. Biopolymers such as polysaccharides (chitosan, hyaluronic acid, starch, cellulose, alginates) and proteins (silk, fibroin) have also become widely used and investigated for applications in medicine. Besides synthetic polymers and biopolymers, their nanocomposites, which are hybrids formed by a macromolecular matrix and a nanofiller (mineral or organic), have attracted great attention in the last decades in medicine and in other fields due to their outstanding properties. This review covers studies done recently using the polymers, biopolymers, nanocomposites, polymer micelles, nanomicelles, polymer hydrogels, nanogels, polymersomes, and liposomes used in medicine as drugs or drug carriers for cancer therapy and underlines their responses to internal and external stimuli able to make them more active and efficient. They are able to replace conventional cancer drug carriers, with better results.
Collapse
|
8
|
|
9
|
Nezhad-Mokhtari P, Ghorbani M, Mahmoodzadeh F. Smart co-delivery of 6-mercaptopurine and methotrexate using disulphide-based PEGylated-nanogels for effective treatment of breast cancer. NEW J CHEM 2019; 43:12159-12167. [DOI: 10.1039/c9nj02470k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Smart co-delivery of 6-mercaptopurine and methotrexate using disulphide-based PEGylated-nanogels.
Collapse
Affiliation(s)
- Parinaz Nezhad-Mokhtari
- Research Laboratory of Polymer
- Department of Organic and Biochemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz
| | - Marjan Ghorbani
- Stem Cell Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | | |
Collapse
|
10
|
Massoumi B, Mozaffari Z, Jaymand M. A starch-based stimuli-responsive magnetite nanohydrogel as de novo drug delivery system. Int J Biol Macromol 2018; 117:418-426. [DOI: 10.1016/j.ijbiomac.2018.05.211] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/10/2018] [Accepted: 05/28/2018] [Indexed: 10/16/2022]
|
11
|
Mahmoodzadeh F, Abbasian M, Jaymand M, Salehi R, Bagherzadeh-Khajehmarjan E. A novel gold-based stimuli-responsive theranostic nanomedicine for chemo-photothermal therapy of solid tumors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:880-889. [PMID: 30274125 DOI: 10.1016/j.msec.2018.08.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/26/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023]
Abstract
The chemo-photothermal therapy performance of a novel theranostic nanoparticles that fabricated through the conjugation of HS-poly(ε-caprolactone)-block-poly(N-isopropylacrylamide)-block-poly(acrylic acid) (HS-PCL-b-PNIPAAm-b-PAA) and gold nanoparticles (GNPs) was extensively investigated. The GNPs@polymer conjugate theranostic NPs was loaded with doxorubicin hydrochloride (DOX) as an anticancer drug through electrostatic interactions to afford GNPs@polymer-DOX theranostic nanomedicine. Temperature and pH-triggered in vitro drug release behavior of the developed theranostic nanomedicine were also examined. The biocompatibility of the synthesized GNPs@polymer theranostic NPs was confirmed through the assessing survival rate of breast cancer cell line (MCF7) using MTT assay. In vitro cytotoxic effects of the GNPs@polymer-DOX theranostic nanomedicine was also evaluated against MCF7 cells in both with or without laser irradiation (532 nm, 145 mJ per pulse, 5 min) conditions, and the results obtained were compared with free DOX as the reference. As the results, the developed GNPs@polymer-DOX can be considered as theranostic nanomedicine for chemo-photothermal therapy of solid tumors.
Collapse
Affiliation(s)
| | | | - Mehdi Jaymand
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Roya Salehi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
12
|
Mozaffari Z, Hatamzadeh M, Massoumi B, Jaymand M. Synthesis and characterization of a novel stimuli-responsive magnetite nanohydrogel based on poly(ethylene glycol) and poly(N
-isopropylacrylamide) as drug carrier. J Appl Polym Sci 2018. [DOI: 10.1002/app.46657] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Zahra Mozaffari
- Department of Chemistry; Payame Noor University, P.O. Box: 19395-3697; Tehran Iran
| | - Maryam Hatamzadeh
- Department of Chemistry; Payame Noor University, P.O. Box: 19395-3697; Tehran Iran
| | - Bakhshali Massoumi
- Department of Chemistry; Payame Noor University, P.O. Box: 19395-3697; Tehran Iran
| | - Mehdi Jaymand
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
13
|
Mozafari Z, Massoumi B, Jaymand M. A Novel Stimuli-Responsive Magnetite Nanocomposite as De Novo Drug Delivery System. POLYM-PLAST TECH MAT 2018. [DOI: 10.1080/03602559.2018.1471718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zahra Mozafari
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | | | - Mehdi Jaymand
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Sofla SFI, Abbasian M, Mirzaei M. Synthesis and micellar characterization of novel pH-sensitive thiol-ended triblock copolymer via combination of RAFT and ROP processes. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1445630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Mortaza Mirzaei
- Department of Chemistry (Organic chemistry), Miyaneh branch, Islamic Azad University, Miyaneh, Iran
| |
Collapse
|
15
|
Poorgholy N, Massoumi B, Ghorbani M, Jaymand M, Hamishehkar H. Intelligent anticancer drug delivery performances of two poly(N-isopropylacrylamide)-based magnetite nanohydrogels. Drug Dev Ind Pharm 2018; 44:1254-1261. [PMID: 29452515 DOI: 10.1080/03639045.2018.1442845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This article evaluates the anticancer drug delivery performances of two nanohydrogels composed of poly(N-isopropylacrylamide-co-itaconic anhydride) [P(NIPAAm-co-IA)], poly(ethylene glycol) (PEG), and Fe3O4 nanoparticles. For this purpose, the magnetite nanohydrogels (MNHGs) were loaded with doxorubicin hydrochloride (DOX) as a universal anticancer drug. The morphologies and magnetic properties of the DOX-loaded MNHGs were investigated using transmission electron microscopy (TEM) and vibrating-sample magnetometer (VSM), respectively. The sizes and zeta potentials (ξ) of the MNHGs and their corresponding DOX-loaded nanosystems were also investigated. The DOX-loaded MNHGs showed the highest drug release values at condition of 41 °C and pH 5.3. The drug-loaded MNHGs at physiological condition (pH 7.4 and 37 °C) exhibited negligible drug release values. In vitro cytotoxic effects of the DOX-loaded MNHGs were extensively evaluated through the assessing survival rate of HeLa cells using the MTT assay, and there in vitro cellular uptake into the mentioned cell line were examined using fluorescent microscopy and fluorescence-activated cell sorting (FACS) flow cytometry analyses. As the results, the DOX-loaded MNHG1 exhibited higher anticancer drug delivery performance in the terms of cytotoxic effect and in vitro cellular uptake. Thus, the developed MNHG1 can be considered as a promising de novo drug delivery system, in part due to its pH and thermal responsive drug release behavior as well as proper magnetite character toward targeted drug delivery.
Collapse
Affiliation(s)
- Nahid Poorgholy
- a Department of Chemistry , Payame Noor University , Tehran , Iran
| | | | - Marjan Ghorbani
- b Stem Cell Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mehdi Jaymand
- c Immunology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Hamed Hamishehkar
- d Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
16
|
Jafarizad A, Taghizadehgh-Alehjougi A, Eskandani M, Hatamzadeh M, Abbasian M, Mohammad-Rezaei R, Mohammadzadeh M, Toğar B, Jaymand M. PEGylated graphene oxide/Fe3O4 nanocomposite: Synthesis, characterization, and evaluation of its performance as de novo drug delivery nanosystem. Biomed Mater Eng 2018; 29:177-190. [DOI: 10.3233/bme-171721] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Abbas Jafarizad
- Faculty of Chemical Engineering, Sahand University of Technology, P.O. Box: 51335-1996 Tabriz, Iran
| | - Ali Taghizadehgh-Alehjougi
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, P.O. Box: 25240 Erzurum, Turkey
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, P.O. Box: 51656-65811, Tabriz, Iran
| | - Maryam Hatamzadeh
- Department of Chemistry, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran
| | - Mojtaba Abbasian
- Department of Chemistry, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran
| | - Rahim Mohammad-Rezaei
- Analytical Chemistry Research Laboratory, Faculty of Sciences, Azarbaijan Shahid Madani University, P.O. Box: 53714-161, Tabriz, Iran
| | - Maryam Mohammadzadeh
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, P.O. Box: 25240 Erzurum, Turkey
| | - Başak Toğar
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, P.O. Box: 25240 Erzurum, Turkey
| | - Mehdi Jaymand
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
pH-responsive magnetic nanocomposites based on poly(2-succinyloxyethyl methacrylate-co-methylmethacrylate) for anticancer doxorubicin delivery applications. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-017-1431-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, Sahandi Zangabad K, Ghamarypour A, Aref AR, Karimi M, Hamblin MR. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv Drug Deliv Rev 2018; 123:33-64. [PMID: 28782570 PMCID: PMC5742034 DOI: 10.1016/j.addr.2017.08.001] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/20/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Abstract
According to the latest report from the World Health Organization, an estimated 265,000 deaths still occur every year as a direct result of burn injuries. A widespread range of these deaths induced by burn wound happens in low- and middle-income countries, where survivors face a lifetime of morbidity. Most of the deaths occur due to infections when a high percentage of the external regions of the body area is affected. Microbial nutrient availability, skin barrier disruption, and vascular supply destruction in burn injuries as well as systemic immunosuppression are important parameters that cause burns to be susceptible to infections. Topical antimicrobials and dressings are generally employed to inhibit burn infections followed by a burn wound therapy, because systemic antibiotics have problems in reaching the infected site, coupled with increasing microbial drug resistance. Nanotechnology has provided a range of molecular designed nanostructures (NS) that can be used in both therapeutic and diagnostic applications in burns. These NSs can be divided into organic and non-organic (such as polymeric nanoparticles (NPs) and silver NPs, respectively), and many have been designed to display multifunctional activity. The present review covers the physiology of skin, burn classification, burn wound pathogenesis, animal models of burn wound infection, and various topical therapeutic approaches designed to combat infection and stimulate healing. These include biological based approaches (e.g. immune-based antimicrobial molecules, therapeutic microorganisms, antimicrobial agents, etc.), antimicrobial photo- and ultrasound-therapy, as well as nanotechnology-based wound healing approaches as a revolutionizing area. Thus, we focus on organic and non-organic NSs designed to deliver growth factors to burned skin, and scaffolds, dressings, etc. for exogenous stem cells to aid skin regeneration. Eventually, recent breakthroughs and technologies with substantial potentials in tissue regeneration and skin wound therapy (that are as the basis of burn wound therapies) are briefly taken into consideration including 3D-printing, cell-imprinted substrates, nano-architectured surfaces, and novel gene-editing tools such as CRISPR-Cas.
Collapse
Affiliation(s)
- Mirza Ali Mofazzal Jahromi
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences (JUMS), Jahrom, Iran; Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences (JUMS), Jahrom, Iran
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Masoud Moosavi Basri
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran; Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Keyvan Sahandi Zangabad
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Polymer Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz, Iran; Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ameneh Ghamarypour
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad university, Tehran, Iran
| | - Amir R Aref
- Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Dermatology, Harvard Medical School, Boston, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, USA.
| |
Collapse
|
19
|
Ghamkhari A, Massoumi B, Salehi R. A new style for synthesis of thermo-responsive Fe3O4/poly (methylmethacrylate-b-N-isopropylacrylamide-b-acrylic acid) magnetic composite nanosphere and theranostic applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1985-2005. [DOI: 10.1080/09205063.2017.1364459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Aliyeh Ghamkhari
- Yong Researchers and Elite Club, Jolfa Branch, Islamic Azad University, Jolfa, Iran
| | | | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Novel nanofibrous electrically conductive scaffolds based on poly(ethylene glycol)s-modified polythiophene and poly(ε-caprolactone) for tissue engineering applications. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.11.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Davaran S, Ghamkhari A, Alizadeh E, Massoumi B, Jaymand M. Novel dual stimuli-responsive ABC triblock copolymer: RAFT synthesis, "schizophrenic" micellization, and its performance as an anticancer drug delivery nanosystem. J Colloid Interface Sci 2016; 488:282-293. [PMID: 27837719 DOI: 10.1016/j.jcis.2016.11.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 12/13/2022]
Abstract
A novel pH- and thermo-responsive ABC triblock copolymer {poly[(2-succinyloxyethyl methacrylate)-b-(N-isopropylacrylamide)-b-[(N-4-vinylbenzyl),N,N-diethylamine]]} [P(SEMA-b-NIPAAm-b-VEA)] was successfully synthesized via reversible addition of fragmentation chain transfer (RAFT) polymerization technique. The molecular weights of PHEMA, PNIPAAm, and PVEA segments in the synthesized triblock copolymer were calculated to be 10,670, 6140, and 9060gmol-1, respectively, from proton nuclear magnetic resonance (1H NMR) spectroscopy. The "schizophrenic" self-assembly behavior of the synthesized P(SEMA-b-NIPAAm-b-VEA) triblock copolymer under pH and thermal stimulus were investigated by means of 1H NMR and ultraviolet-visible (UV-vis) spectroscopies as well as dynamic light scattering (DLS) and zeta potential (ξ) measurements. The doxorubicin hydrochloride (DOX)-loading capacity, and stimuli-responsive drug release ability of the synthesized triblock copolymer were also investigated. The biocompatibility of the synthesized triblock copolymer was confirmed through the assessing survival rate of breast cancer cell line (MCF7) using MTT assay. In contrast, DOX-loaded triblock copolymer exhibited an efficient anticancer performance in comparison with free DOX verified by MTT and DAPI staining assays. As the results, we envision that the synthesized P(SEMA-b-NIPAAm-b-VEA) triblock copolymer can be applied as an enhanced anticancer drug delivery nanosystem, mainly due to its smart physicochemical and biocompatibility properties.
Collapse
Affiliation(s)
- Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box: 51656-65811, Tabriz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, P.O. Box: 51664-14766, Tabriz, Iran
| | - Aliyeh Ghamkhari
- Department of Chemistry, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, P.O. Box: 51548-53431, Tabriz, Iran
| | - Bakhshali Massoumi
- Department of Chemistry, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran.
| | - Mehdi Jaymand
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, P.O. Box: 51656-65811, Tabriz, Iran.
| |
Collapse
|
22
|
Hatamzadeh M, Najafi-Moghadam P, Beygi-Khosrowshahi Y, Massoumi B, Jaymand M. Electrically conductive nanofibrous scaffolds based on poly(ethylene glycol)s-modified polyaniline and poly(ε-caprolactone) for tissue engineering applications. RSC Adv 2016. [DOI: 10.1039/c6ra22280c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The objective of this study was to design and development of electrically conductive nanofibrous scaffolds composed of PEGs-b-(PANI)4 and PCL for tissue engineering applications.
Collapse
Affiliation(s)
- Maryam Hatamzadeh
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Urmia
- Urmia
- Iran
| | | | - Younes Beygi-Khosrowshahi
- Stem Cell and Tissue Engineering Research Laboratory
- Sahand University of Technology
- Tabriz
- Iran
- Chemical Engineering Department
| | | | - Mehdi Jaymand
- Research Center for Pharmaceutical Nanotechnology
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| |
Collapse
|