1
|
Zhu J, Zhang Z, Wen Y, Song X, Tan WK, Ong CN, Li J. Recent Advances in Superabsorbent Hydrogels Derived from Agro Waste Materials for Sustainable Agriculture: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72. [PMID: 39215710 PMCID: PMC11487571 DOI: 10.1021/acs.jafc.4c04970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Superabsorbent hydrogels made from agro waste materials have the potential to promote sustainable agriculture and environmental sustainability. These hydrogels not only help reduce water consumption and increase crop yields but also contribute to minimizing waste and lowering greenhouse gas emissions. Recent research on superabsorbent hydrogels derived from agro wastes has focused on the preparation of hydrogels based on natural polymers isolated from agro wastes, such as cellulose, hemicellulose, and lignin. This review provides an in-depth examination of hydrogels developed from raw agro waste materials and natural polymers extracted from agro wastes, highlighting that these studies start with raw wastes as the main materials. The utilization strategies for specific types of agro wastes are comprehensively described. This review outlines different methods utilized in the production of these hydrogels, including physical cross-linking techniques such as dissolution-regeneration and freeze-thawing, as well as chemical cross-linking methods involving various cross-linking agents and graft polymerization techniques such as free radical polymerization, microwave-assisted polymerization, and γ radiation graft polymerization. Specifically, this review explores the applications of agro waste-based superabsorbent hydrogels in enhancing soil properties such as water retention and slow-release of fertilizers for sustainable agriculture.
Collapse
Affiliation(s)
- Jingling Zhu
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental
Research Institute (NERI), National University
of Singapore, 5A Engineering
Drive 1, Singapore117411, Singapore
| | - Zhongxing Zhang
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Yuting Wen
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- National
University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215000, China
- National
University of Singapore (Chongqing) Research Institute, Yubei District, Chongqing 401120, China
| | - Xia Song
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Wee Kee Tan
- NUS Environmental
Research Institute (NERI), National University
of Singapore, 5A Engineering
Drive 1, Singapore117411, Singapore
| | - Choon Nam Ong
- NUS Environmental
Research Institute (NERI), National University
of Singapore, 5A Engineering
Drive 1, Singapore117411, Singapore
- Saw Swee
Hock School of Public Health, National University
of Singapore, 12 Science
Drive 2, Singapore 117549, Singapore
| | - Jun Li
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental
Research Institute (NERI), National University
of Singapore, 5A Engineering
Drive 1, Singapore117411, Singapore
- National
University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215000, China
- National
University of Singapore (Chongqing) Research Institute, Yubei District, Chongqing 401120, China
| |
Collapse
|
2
|
Dovzhenko AP, Yapryntseva OA, Sinyashin KO, Doolotkeldieva T, Zairov RR. Recent progress in the development of encapsulated fertilizers for time-controlled release. Heliyon 2024; 10:e34895. [PMID: 39144920 PMCID: PMC11320312 DOI: 10.1016/j.heliyon.2024.e34895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
This review describes the latest achievements in the development of encapsulated controlled-release fertilizers, which encompasses sustainability issues in agriculture. The research community's interest in this particular area of science has doubled over the last couple of years due to the yearly increasing complexity of the food and supply situation, as well as maintaining the development of modern society in the era of population outbreak. This review covers demand in timely systematization and comprehensive analysis of emerging research in so-called "smart fertilizers" that release mineral components in accordance with the needs for nutrients classified into controlled- and slow-release fertilizers (CRFs and SRFs). Along with the thoroughly selected fundamental studies published in this area, the review specially focuses on the materials-based classification, emphasizing the importance of the host matrix in the time-controlled release of dopant. This substantially differentiates our review and renders scientific novelty and relevancy to it. The review is divided into sections, dealing with the types of slow- and controlled-release fertilizers each, and supplemented with the critical view on their usage. All data regarding encapsulated fertilizers in this review are systematized for the convenience of the readership when becoming familiarized with the latest achievements in this area. Perspectives and potential pathways are also described to recommend and guide researchers working on the related academic fields.
Collapse
Affiliation(s)
- Alexey P. Dovzhenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
- Aleksander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kremlyovskaya str., 18, 420008 Kazan, Russian Federation
| | - Olga A. Yapryntseva
- Aleksander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kremlyovskaya str., 18, 420008 Kazan, Russian Federation
| | - Kirill O. Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Tinatin Doolotkeldieva
- Kyrgyz National Agrarian University named after K.I. Skryabin, Mederov str., 68, 720005, Bishkek, Kyrgyzstan
| | - Rustem R. Zairov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
- Aleksander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kremlyovskaya str., 18, 420008 Kazan, Russian Federation
| |
Collapse
|
3
|
Guo Y, Zhuang F, Cui Q, Zhang S, Hao Z, Shi Y, Lu H, Shi X. Preparation and characterization of liquefied eggplant branch bio-based controlled-release fertilizer. BMC Chem 2024; 18:71. [PMID: 38609971 PMCID: PMC11010369 DOI: 10.1186/s13065-024-01180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Bio-based coating materials have received increased attention because of their low-cost, environmentally friendly, and sustainable properties. In this paper, a novel coating material was developed to coat ureas using bio-based coating material derived from liquefied eggplant branches to form controlled-release ureas (CRUs). Also, the optimum proportion of liquefier was studied. Furthermore, dimethyl siloxane was used to modify liquified eggplant branches to make them hydrophobic, resulting in hydrophobic controlled-release ureas (SCRUs). This hydrophobic-enabled coating is environmentally friendly and highly efficient. The products were characterized by specific scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry, and the water contact angles of CRUs and SCRUs were determined. The nutrient-release characteristics of the SCRUs in water were determined at 25 °C and compared with those of CRUs. The results showed that the modification with dimethyl siloxane reduced the N release rate and increased the longevity of the fertilizer coated with hydrophobic bio-based coating material. In addition, organosilicon atoms on the SCRU surface also block the micro-holes on the coating and thus reduce the entry of water onto the coating. The results suggest that the new coating technology can create a hydrophobic surface on bio-based coating material and thus improve their controlled-release characteristics.
Collapse
Affiliation(s)
- Yanle Guo
- College of Horticulture and Landscape Architecture, Jinling Institute of Technology, Nanjing, 210038, China
| | - Fengyuan Zhuang
- College of Horticulture and Landscape Architecture, Jinling Institute of Technology, Nanjing, 210038, China
| | - Qunxiang Cui
- College of Horticulture and Landscape Architecture, Jinling Institute of Technology, Nanjing, 210038, China.
| | - Shugang Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering and Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Zhenping Hao
- College of Horticulture and Landscape Architecture, Jinling Institute of Technology, Nanjing, 210038, China
| | - Yiyun Shi
- College of Horticulture and Landscape Architecture, Jinling Institute of Technology, Nanjing, 210038, China
| | - Hao Lu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoqing Shi
- Huacheng Vegetable Cooperative Co., Ltd, Nanjing, 211299, China
| |
Collapse
|
4
|
Liu Y, Gao H, Liu S, Li J, Kong F. Synthesizing a Water-Soluble Polymeric Nitrification Inhibitor with Novel Soil-Loosening Ability. Polymers (Basel) 2023; 16:107. [PMID: 38201772 PMCID: PMC10780483 DOI: 10.3390/polym16010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Nitrification inhibitor is essential for increasing the nitrogen utilization efficiency of agricultural plants, thus reducing environmental pollution and increasing crop yield. However, the easy volatilization and limited functional property is still the bottleneck of nitrification inhibitors. Herein, a novel water-soluble polymeric nitrification inhibitor was synthesized through the copolymerization of acrylamide and bio-based acrylic acid, which was synthesized from biomass-derived furfural, and the complexation of carboxyl groups and 3,4-dimethylpyrazole. The results showed that the nitrification inhibitor was an amorphous polymer product with a glass transition temperature of 146 °C and a thermal decomposition temperature of 176 °C, and the content of 3,4-dimethylpyrazole reached 2.81 wt%, which was 115% higher than our earlier product (1.31 wt%). The polymeric nitrification inhibitor can inhibit the activity of ammonia-oxidizing bacteria effectively, thus inhibiting the conversion of ammonium nitrogen to nitrate nitrogen and converting the insoluble phosphate into soluble and absorbable phosphate. By introducing a copolymer structure with a strong flocculation capacity, the polymeric nitrification inhibitor is further endowed with a soil-loosening function, which can increase the porosity of soil to improve the soil environment. Therefore, the nitrification inhibitor can be used in water-soluble and liquid fertilizers, as well as in high tower melting granulated compound fertilizers.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China (F.K.)
| | - Hui Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China (F.K.)
- Key Laboratory of Paper Science and Technology of Ministry of Education, Faculty of Light Industry, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Shanshan Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China (F.K.)
- Key Laboratory of Paper Science and Technology of Ministry of Education, Faculty of Light Industry, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jinrong Li
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China;
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China (F.K.)
- Key Laboratory of Paper Science and Technology of Ministry of Education, Faculty of Light Industry, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
5
|
Yuan S, Zhou T, Tan Z. New Straw Coating Material for Improving the Slow-Release Performance of Fertilizers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39818-39826. [PMID: 37574720 DOI: 10.1021/acsami.3c06408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
In this work, we extracted cellulose from agricultural waste and produced a new straw coating material (ethyl cellulose, EC) through a series of modification operations. The slow-release properties of ethyl cellulose-coated urea (EU) and its absorption and utilization by plants were evaluated. The surface of EU can form a smooth and fine film, and the initial nutrient release rate is only 37.91% that of the uncoated fertilizer. Compared with common urea, the nitrogen of plants cultivated with EU increased by 17.69%, and the leached nitrogen decreased by 61.29%, indicating that EU can reduce nitrogen waste to the greatest extent and continuously supply nutrients to crops. Therefore, the application of EU could be a more practical, environmentally friendly, and sustainable alternative to nitrogen fertilizers.
Collapse
Affiliation(s)
- Shengnan Yuan
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, No. 1 Lion Hill Street, Hongshan District, Wuhan 430070, People's Republic of China
| | - Tuo Zhou
- State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhongxin Tan
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, No. 1 Lion Hill Street, Hongshan District, Wuhan 430070, People's Republic of China
| |
Collapse
|
6
|
Abdul Khalil HPS, Jha K, Yahya EB, Panchal S, Patel N, Garai A, Kumari S, Jameel M. Insights into the Potential of Biopolymeric Aerogels as an Advanced Soil-Fertilizer Delivery Systems. Gels 2023; 9:666. [PMID: 37623121 PMCID: PMC10453695 DOI: 10.3390/gels9080666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Soil fertilizers have the potential to significantly increase crop yields and improve plant health by providing essential nutrients to the soil. The use of fertilizers can also help to improve soil structure and fertility, leading to more resilient and sustainable agricultural systems. However, overuse or improper use of fertilizers can lead to soil degradation, which can reduce soil fertility, decrease crop yields, and damage ecosystems. Thus, several attempts have been made to overcome the issues related to the drawbacks of fertilizers, including the development of an advanced fertilizer delivery system. Biopolymer aerogels show promise as an innovative solution to improve the efficiency and effectiveness of soil-fertilizer delivery systems. Further research and development in this area could lead to the widespread adoption of biopolymer aerogels in agriculture, promoting sustainable farming practices and helping to address global food-security challenges. This review discusses for the first time the potential of biopolymer-based aerogels in soil-fertilizer delivery, going through the types of soil fertilizer and the advert health and environmental effects of overuse or misuse of soil fertilizers. Different types of biopolymer-based aerogels were discussed in terms of their potential in fertilizer delivery and, finally, the review addresses the challenges and future directions of biopolymer aerogels in soil-fertilizer delivery.
Collapse
Affiliation(s)
- H. P. S. Abdul Khalil
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (K.J.); (N.P.); (S.K.)
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Kanchan Jha
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (K.J.); (N.P.); (S.K.)
| | - Esam Bashir Yahya
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Sandeep Panchal
- Department of Civil Engineering, Government Polytechnic Mankeda, Agra 283102, Uttar Pradesh, India;
| | - Nidhi Patel
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (K.J.); (N.P.); (S.K.)
| | - Arindam Garai
- Department of Mathematics, Sonarpur Mahavidyalaya, Kolkata 700149, West Bengal, India;
| | - Soni Kumari
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (K.J.); (N.P.); (S.K.)
| | - Mohammed Jameel
- Department of Civil Engineering, College of Engineering, King Khalid University, Abha 61421, Asir, Saudi Arabia;
| |
Collapse
|
7
|
Kavitha R, Latifah O, Ahmed OH, Charles PW, Susilawati K. Potential of Rejected Sago Starch as a Coating Material for Urea Encapsulation. Polymers (Basel) 2023; 15:polym15081863. [PMID: 37112010 PMCID: PMC10146585 DOI: 10.3390/polym15081863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Increases in food production to meet global food requirements lead to an increase in the demand for nitrogen (N) fertilizers, especially urea, for soil productivity, crop yield, and food security improvement. To achieve a high yield of food crops, the excessive use of urea has resulted in low urea-N use efficiency and environmental pollution. One promising alternative to increase urea-N use efficiency, improve soil N availability, and lessen the potential environmental effects of the excessive use of urea is to encapsulate urea granules with appropriate coating materials to synchronize the N release with crop assimilation. Chemical additives, such as sulfur-based coatings, mineral-based coatings, and several polymers with different action principles, have been explored and used for coating the urea granule. However, their high material cost, limited resources, and adverse effects on the soil ecosystem limit the widespread application of urea coated with these materials. This paper documents a review of issues related to the materials used for urea coating and the potential of natural polymers, such as rejected sago starch, as a coating material for urea encapsulation. The aim of the review is to unravel an understanding of the potential of rejected sago starch as a coating material for the slow release of N from urea. Rejected sago starch from sago flour processing is a natural polymer that could be used to coat urea because the starch enables a gradual, water-driven mechanism of N release from the urea-polymer interface to the polymer-soil interface. The advantages of rejected sago starch for urea encapsulation over other polymers are that rejected sago starch is one of the most abundant polysaccharide polymers, the cheapest biopolymer, and is fully biodegradable, renewable, and environmentally friendly. This review provides information on the potential of rejected sago starch as a coating material, the advantages of using rejected sago starch as coating material over other polymer materials, a simple coating method, and the mechanisms of N release from urea coated with rejected sago starch.
Collapse
Affiliation(s)
- Rajan Kavitha
- Department of Crop Science, Faculty of Agricultural Science and Forestry, Universiti Putra Malaysia, Bintulu Sarawak Campus, Bintulu 97008, Malaysia
| | - Omar Latifah
- Department of Crop Science, Faculty of Agricultural Science and Forestry, Universiti Putra Malaysia, Bintulu Sarawak Campus, Bintulu 97008, Malaysia
- Institute of Ecosystem Science Borneo, Universiti Putra Malaysia, Bintulu Sarawak Campus, Bintulu 97008, Malaysia
| | - Osumanu Haruna Ahmed
- Faculty of Agriculture, University Sultan Sharif Ali Brunei, Kampus Sinaut, Km 33, Jalan Tutong, Kampung Sinaut, Tutong TB1741, Brunei
| | - Primus Walter Charles
- Department of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra Malaysia, Bintulu Sarawak Campus, Bintulu 97008, Malaysia
| | - Kasim Susilawati
- Department of Land Management, Faculty of Agriculture, Serdang 43400, Malaysia
| |
Collapse
|
8
|
Zhang Z, Abidi N, Lucia L, Chabi S, Denny CT, Parajuli P, Rumi SS. Cellulose/nanocellulose superabsorbent hydrogels as a sustainable platform for materials applications: A mini-review and perspective. Carbohydr Polym 2023; 299:120140. [PMID: 36876763 DOI: 10.1016/j.carbpol.2022.120140] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Superabsorbent hydrogels (SAH) are crosslinked three-dimensional networks distinguished by their super capacity to stabilize a large quantity of water without dissolving. Such behavior enables them to engage in various applications. Cellulose and its derived nanocellulose can become SAHs as an appealing, versatile, and sustainable platform because of abundance, biodegradability, and renewability compared to petroleum-based materials. In this review, a synthetic strategy that reflects starting cellulosic resources to their associated synthons, crosslinking types, and synthetic controlling factors was highlighted. Representative examples of cellulose and nanocellulose SAH and an in-depth discussion of structure-absorption relationships were listed. Finally, various applications of cellulose and nanocellulose SAH, challenges and existing problems, and proposed future research pathways were listed.
Collapse
Affiliation(s)
- Zhen Zhang
- Fiber and Biopolymer Research Institute, Department of Soil and Plant Science, Texas Tech University, Lubbock, TX, USA; Department of Mechanical Engineering, The University of New Mexico, Albuquerque, NM, USA; Department of Forest Biomaterials, NC State University, Raleigh, NC, USA.
| | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Department of Soil and Plant Science, Texas Tech University, Lubbock, TX, USA.
| | - Lucian Lucia
- Department of Forest Biomaterials, NC State University, Raleigh, NC, USA; Department of Chemistry, NC State University, Raleigh, NC, USA; Joint Department of Biomedical Engineering, NC State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA.
| | - Sakineh Chabi
- Department of Mechanical Engineering, The University of New Mexico, Albuquerque, NM, USA
| | - Christian T Denny
- Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, NM, USA
| | - Prakash Parajuli
- Fiber and Biopolymer Research Institute, Department of Soil and Plant Science, Texas Tech University, Lubbock, TX, USA
| | - Shaida Sultana Rumi
- Fiber and Biopolymer Research Institute, Department of Soil and Plant Science, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
9
|
Narayanasamy R, Thiyagarajan C, Pillai MP, Muthunalliappan M, Subburamu K, Subramanian M. Organic acid and amino acid coated multi-nutrient fertilizer granules (MNFG): synthesis and characterization. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
10
|
Zhai J, Zhang C, Zhao C, Yang W. Preparation of Slow-Release Coated Urea Based on C8-Maleic Anhydride Copolymer-Cured Epoxidized Soybean Oil. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiaxin Zhai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Chen Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Changwen Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education Beijing, Beijing University of Chemical Technology, Beijing100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education Beijing, Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
11
|
Lu H, Dun C, Jariwala H, Wang R, Cui P, Zhang H, Dai Q, Yang S, Zhang H. Improvement of bio-based polyurethane and its optimal application in controlled release fertilizer. J Control Release 2022; 350:748-760. [PMID: 36030990 DOI: 10.1016/j.jconrel.2022.08.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022]
Abstract
In the past decades, polyurethane has emerged as a new material that has been widely developed and applied in coated controlled release fertilizers (CRFs). Particularly in recent years, the excessive consumption of petroleum resources and increasing demand for sustainable development have resulted in considerable interest in bio-based polyurethane coated controlled-release fertilizers. This review article focuses on the application and progress of environmentally friendly bio-based materials in the polyurethane-coated CRF industry. We also explore prospects for the green and sustainable development of coated CRFs. Using animal and plant oils, starch, lignin, and cellulose as raw materials, polyols can be produced by physical, chemical, and biological means to replace petroleum-based materials and polyurethane film coating for CRFs can be prepared. Various modifications can also improve the hydrophobicity and degradability of polyurethane film. A growing body of research on bio-based polyurethane has revealed its great potential in the production and application of coated CRFs. The purpose of this review is to highlight the practicality of bio-based materials in the application of polyurethane-coated CRFs and to clarify their current limitations.
Collapse
Affiliation(s)
- Hao Lu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Saline-alkali Soil Improvement and Utilization (Coastal Saline-alkali Lands), Ministry of Agriculture and Rural Affairs, P.R. China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Canping Dun
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hiral Jariwala
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Rui Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Peiyuan Cui
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Haipeng Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qigen Dai
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Saline-alkali Soil Improvement and Utilization (Coastal Saline-alkali Lands), Ministry of Agriculture and Rural Affairs, P.R. China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shuo Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hongcheng Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
12
|
Dutta S, Pal S, Panwar P, Sharma RK, Bhutia PL. Biopolymeric Nanocarriers for Nutrient Delivery and Crop Biofortification. ACS OMEGA 2022; 7:25909-25920. [PMID: 35936412 PMCID: PMC9352165 DOI: 10.1021/acsomega.2c02494] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/07/2022] [Indexed: 05/17/2023]
Abstract
Driven by the possibility of precise transformational change in nutrient-enrichment technology to meet global food demand, advanced nutrient delivery strategies have emerged to pave the path toward success for nutrient enrichment in edible parts of crops through bioderived nanocarriers with increased productivity. Slow and controlled release of nutrient carrier materials influences the nutrient delivery rate in soil and in the edible parts of crops with a sluggish nutrient delivery to enhance their availability in roots by minimizing nutrient loss. With a limited understanding of the nutrient delivery mechanism in soil and the edible parts of crops, it is envisaged to introduce nutrient-enrichment technology for nutrient delivery that minimizes environmental impact due to its biodegradable nature. This article attempts to analyze the possible role of the cellulose matrix for nutrient release and the role of cellulose nanocomposites and nanofibers. We have proposed a few cellulose derived biofortificant materials as nutrient carriers, such as (1) nanofibers, (2) polymer-nanocellulose-clay composites, (3) silk-fibroin derived nanocarriers, and (4) carboxymethyl cellulose. An effort is undertaken to describe the research need by linking a biopolymer derived nanocarrier for crop growth regulation and experimental nitrogen release analysis. We have finally provided a perspective on cellulose nanofibers (CNFs) for microcage based nutrient loading ability. This article aims to explain why biopolymer derived nutrient carriers are the alternative candidate for alleviating nutrient deficiency challenges which are involved in focusing the nutrient delivery profile of biopolymers and promising biofortification of crops.
Collapse
Affiliation(s)
- Saikat Dutta
- Electrochemical
Energy & Sensor Research Laboratory, Amity Institute of Click
Chemistry Research & Studies, Amity
University, Noida 201303, India
| | - Sharmistha Pal
- Research
Center, ICAR-Indian Institute of Soil &
Water Conservation, Sector 27 A Madhya Marg, Chandigarh 160019, India
| | - Pankaj Panwar
- Research
Center, ICAR-Indian Institute of Soil &
Water Conservation, Sector 27 A Madhya Marg, Chandigarh 160019, India
| | - Rakesh K. Sharma
- Sustainable
Materials and Catalysis Research Laboratory (SMCRL), Department of
Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342037, Rajasthan, India
| | - Pempa Lamu Bhutia
- Division
of Agroforestry, Indian Council of Agriculture
Research (ICAR), Research Complex for NEH Region, Nagaland Centre, Umiam, Nagaland 797106, India
| |
Collapse
|
13
|
Jariwala H, Santos RM, Lauzon JD, Dutta A, Wai Chiang Y. Controlled release fertilizers (CRFs) for climate-smart agriculture practices: a comprehensive review on release mechanism, materials, methods of preparation, and effect on environmental parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53967-53995. [PMID: 35624378 DOI: 10.1007/s11356-022-20890-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Fertilizers play an essential role in increasing crop yield, maintaining soil fertility, and provide a steady supply of nutrients for plant requirements. The excessive use of conventional fertilizers can cause environmental problems associated with nutrient loss through volatilization in the atmosphere, leaching to groundwater, surface run-off, and denitrification. To mitigate environmental issues and improve the longevity of fertilizer in soil, controlled release fertilizers (CRFs) have been developed. The application of CRFs can reduce the loss of nutrients, provide higher nutrient use efficiency, and improve soil health simultaneously to achieve the goals of climate-smart agricultural (CSA) practices. The major findings of this review paper are (1) CRFs can prevent direct exposure of fertilizer granule to soil and prevent loss of nutrients such as nitrate and nitrous oxide emissions; (2) CRFs are less affected by the change in environmental parameters, and that can increase longevity in soil compared to conventional fertilizers; and (3) CRFs can maintain required soil nitrogen levels, increase water retention, reduce GHG emissions, lead to optimum pH for plant growth, and increase soil organic matter content. This paper could give good insights into the ongoing development and future perspectives of CRFs for CSA practices.
Collapse
Affiliation(s)
- Hiral Jariwala
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Rafael M Santos
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - John D Lauzon
- School of Environmental Science, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Animesh Dutta
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Yi Wai Chiang
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|