1
|
Lim JX, Yong YK, Dewi FRP, Chan SY, Lim V. Nanoscale strategies: doxorubicin resistance challenges and enhancing cancer therapy with advanced nanotechnological approaches. Drug Deliv Transl Res 2025:10.1007/s13346-025-01790-3. [PMID: 39955406 DOI: 10.1007/s13346-025-01790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/17/2025]
Abstract
Doxorubicin (DOX), an anthracycline, is widely used in cancer treatment by interfering RNA and DNA synthesis. Its broad antitumour spectrum makes it an effective therapy for a wide array of cancers. However, the prevailing drug-resistant cancer has proven to be a significant drawback to the success of the conventional chemotherapy regime and DOX has been identified as a major hurdle. Furthermore, the clinical application of DOX has been limited by rapid breakdown, increased toxicity, and decreased half-time life, highlighting an urgent need for more innovative delivery methods. Although advancements have been made, achieving a complete cure for cancer remains elusive. The development of nanoparticles offers a promising avenue for the precise delivery of DOX into the tumour microenvironment, aiming to increase the drug concentration at the target site while reducing side effects. Despite the good aspects of this technology, the classical nanoparticles struggle with issues such as premature drug leakage, low bioavailability, and insufficient penetration into tumours due to an inadequate enhanced permeability and retention (EPR) effect. Recent advancements have focused on creating stimuli-responsive nanoparticles and employing various chemosensitisers, including natural compounds and nucleic acids, fortifying the efficacy of DOX against resistant cancers. The efforts to refine nanoparticle targeting precision to improve DOX delivery are reviewed. This includes using receptor-mediated endocytosis systems to maximise the internalisation of drugs. The potential benefits and drawbacks of these novel techniques constitute significant areas of ongoing study, pointing to a promising path forward in addressing the challenges posed by drug-resistant cancers.
Collapse
Affiliation(s)
- Jian Xin Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Firli Rahmah Primula Dewi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Siok Yee Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
2
|
Agrawal SS, Baliga V, Londhe VY. Liposomal Formulations: A Recent Update. Pharmaceutics 2024; 17:36. [PMID: 39861685 PMCID: PMC11769406 DOI: 10.3390/pharmaceutics17010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 01/27/2025] Open
Abstract
Liposome-based drug delivery technologies have showed potential in enhancing medication safety and efficacy. Innovative drug loading and release mechanisms highlighted in this review of next-generation liposomal formulations. Due to poor drug release kinetics and loading capacity, conventional liposomes have limited clinical use. Scientists have developed new liposomal carrier medication release control and encapsulation methods to address these limits. Drug encapsulation can be optimized by creating lipid compositions that match a drug's charge and hydrophobicity. By selecting lipids and adding co-solvents or surfactants, scientists have increased drug loading in liposomal formulations while maintaining stability. Nanotechnology has also created multifunctional liposomes with triggered release and personalized drug delivery. Surface modification methods like PEGylation and ligand conjugation can direct liposomes to disease regions, improving therapeutic efficacy and reducing off-target effects. In addition to drug loading, researchers have focused on spatiotemporal modulation of liposomal carrier medication release. Stimuli-responsive liposomes release drugs in response to bodily signals. Liposomes can be pH- or temperature-sensitive. To improve therapeutic efficacy and reduce systemic toxicity, researchers added stimuli-responsive components to liposomal membranes to precisely control drug release kinetics. Advanced drug delivery technologies like magnetic targeting and ultrasound. Pro Drug, RNA Liposomes approach may improve liposomal medication administration. Magnetic targeting helps liposomes aggregate at illness sites and improves drug delivery, whereas ultrasound-mediated drug release facilitates on-demand release of encapsulated medicines. This review also covers recent preclinical and clinical research showing the therapeutic promise of next-generation liposomal formulations for cancer, infectious diseases, neurological disorders and inflammatory disorders. The transfer of these innovative liposomal formulations from lab to clinical practice involves key difficulties such scalability, manufacturing difficulty, and regulatory limits.
Collapse
Affiliation(s)
- Surendra S. Agrawal
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DU), Sawangi (M), Wardha 442001, Maharashtra, India;
| | - Vrinda Baliga
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Vaishali Y. Londhe
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| |
Collapse
|
3
|
Marabada D, Li J, Wei S, Huang Q, Wang Z. Cyclodextrin based nanoparticles for smart drug delivery in colorectal cancer. Chem Biol Drug Des 2023; 102:1618-1631. [PMID: 37705133 DOI: 10.1111/cbdd.14344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
The advancement of colorectal cancer (CRC) prevention, detection, and treatment is essential to ensure that survivors live longer and higher-quality lives. The field of cancer detection and therapy has undergone a revolution with the development of nanotechnology for targeted drug delivery. The significant problems with the delivery of cancer drugs are their solubility, stability, and nonspecific distribution. There is a challenge that the acidic and enzymatic environment in the digestive tract will modify or destroy the medication or the active pharmaceutical ingredient. To overcome the problems, nanoparticles have been widely employed during the past several years to increase the specificity, selectivity, and controlled release of drug delivery systems. The site-specific and targeted delivery leads to reduce toxicity and side effects. With respect to the capability and utilization of cyclodextrin-based nanoparticles in different aspects of the tumour microenvironment and gut microbiota, a survey of current research papers was conducted via looking through databases including GoogleScholar, PubMed, Web of Science, and Scopus. This review aims to summarize cutting-edge nanoparticulate-based technologies and therapies for CRC.
Collapse
Affiliation(s)
- Davies Marabada
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jinlei Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shijie Wei
- General Hospital, Ningxia Medical University, Yinchuan, China
| | - Qing Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, China
| | - Zhizhong Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, China
| |
Collapse
|
4
|
Siddiqui B, Ahmed H, Haq IU, Rehman AU, Ahmed N. Development and validation of HPLC method for simultaneous determination of Leflunomide and folic acid in the nanoparticulate system by reversed-phase HPLC. Drug Dev Ind Pharm 2023; 49:497-507. [PMID: 37470519 DOI: 10.1080/03639045.2023.2239346] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
OBJECTIVE The main objective of this study was to develop a highly sensitive, accurate, and reproducible analytical method for the simultaneous detection of LEF and FA in polymeric nanocarriers. SIGNIFICANCE Leflunomide (LEF), is widely employed in the treatment of rheumatoid arthritis (RA). However, long-term delivery of the drug is associated with systemic side effects. Therefore, folate (FA) conjugated LEF nanocarriers were fabricated for targeting the nanocarriers toward activated macrophages. HPLC is considered one of the most sensitive and precise analytical techniques for the simultaneous detection and estimation of different components in a particular sample. METHODS Analysis was performed on HPLC (Shimadzu 10 A), having a reversed-phase C-18 column (Beckmen, 250 X 4.6 mm, 5 µm) equipped with a photodiode detector set at a wavelength of 260 nm (LEF) and 285 nm (Folic acid). The isocratic mobile phase was composed of acetonitrile, water, and trimethylamine in a ratio of 65:35:0.5 at pH 4. Rapid analysis of both agents was performed, with a total run time of 10 min (FA = 2.1 ± 0.1 min, LEF = 5.9 ± 1 min) at a 1 mL/min flow rate. RESULTS The assay demonstrated good linearity of 0.9989 of 0.9997 for LEF and FA respectively with a recovery in the range of 95-100%. The method also depicted good specificity, and intra and inter-day precision based on relative standard deviation (RSD) values. CONCLUSIONS The study concludes, that the developed method was helpful in the detection and quantitation of lower values of both agents from polymeric nanocarriers.
Collapse
Affiliation(s)
- Bazla Siddiqui
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Haroon Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ihsan-Ul- Haq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
5
|
Al-Gethami W, Al-Qasmi N, Ismail SH, Sadek AH. QCM-Based MgFe 2O 4@CaAlg Nanocomposite as a Fast Response Nanosensor for Real-Time Detection of Methylene Blue Dye. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:97. [PMID: 36616006 PMCID: PMC9824339 DOI: 10.3390/nano13010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Methylene blue (MB) dye is a common colorant used in numerous industries, particularly the textile industry. When methylene blue is discharged into water bodies without being properly treated, it may seriously damage aquatic and human life. As a result, a variety of methods have been established to remove dyes from aqueous systems. Thanks to their distinguishing features e.g., rapid responsiveness, cost-effectiveness, potential selectivity, portability, and simplicity, the electrochemical methods provided promising techniques. Considering these aspects, a novel quartz crystal microbalance nanosensors based on green synthesized magnesium ferrite nanoparticles (QCM-Based MgFe2O4 NPs) and magnesium ferrite nanoparticles coated alginate hydrogel nanocomposite (QCM-Based MgFe2O4@CaAlg NCs) were designed for real-time detection of high concentrations of MB dye in the aqueous streams at different temperatures. The characterization results of MgFe2O4 NPs and MgFe2O4@CaAlg NCs showed that the MgFe2O4 NPs have synthesized in good crystallinity, spherical shape, and successfully coated by the alginate hydrogel. The performance of the designed QCM-Based MgFe2O4 NPs and MgFe2O4@CaAlg NCs nanosensors were examined by the QCM technique, where the developed nanosensors showed great potential for dealing with continuous feed, very small volumes, high concentrations of MB, and providing an instantaneous response. In addition, the alginate coating offered more significant attributes to MgFe2O4 NPs and enhanced the sensor work toward MB monitoring. The sensitivity of designed nanosensors was evaluated at different MB concentrations (100 mg/L, 400 mg/L, and 800 mg/L), and temperatures (25 °C, 35 °C, and 45 °C). Where a real-time detection of 400 mg/L MB was achieved using the developed sensing platforms at different temperatures within an effective time of about 5 min. The results revealed that increasing the temperature from 25 °C to 45 °C has improved the detection of MB using the MgFe2O4@CaAlg NCs nanosensor and the MgFe2O4@CaAlg NCs nanosensor exhibited high sensitivity for different MB concentrations with more efficiency than the MgFe2O4 NPs nanosensor.
Collapse
Affiliation(s)
- Wafa Al-Gethami
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Noha Al-Qasmi
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Sameh H. Ismail
- Nano Engineering-Xnem Program, Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Campus, Cairo University, 6th October City, Giza 12588, Egypt
| | - Ahmed H. Sadek
- Nano Engineering-Xnem Program, Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Campus, Cairo University, 6th October City, Giza 12588, Egypt
- Environmental Engineering Program, Zewail City of Science, Technology and Innovation, 6th October City, Giza 12578, Egypt
| |
Collapse
|
6
|
Pourmadadi M, Rahmani E, Shamsabadipour A, Mahtabian S, Ahmadi M, Rahdar A, Díez-Pascual AM. Role of Iron Oxide (Fe 2O 3) Nanocomposites in Advanced Biomedical Applications: A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3873. [PMID: 36364649 PMCID: PMC9653814 DOI: 10.3390/nano12213873] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Nanomaterials have demonstrated a wide range of applications and recently, novel biomedical studies are devoted to improving the functionality and effectivity of traditional and unmodified systems, either drug carriers and common scaffolds for tissue engineering or advanced hydrogels for wound healing purposes. In this regard, metal oxide nanoparticles show great potential as versatile tools in biomedical science. In particular, iron oxide nanoparticles with different shape and sizes hold outstanding physiochemical characteristics, such as high specific area and porous structure that make them idoneous nanomaterials to be used in diverse aspects of medicine and biological systems. Moreover, due to the high thermal stability and mechanical strength of Fe2O3, they have been combined with several polymers and employed for various nano-treatments for specific human diseases. This review is focused on summarizing the applications of Fe2O3-based nanocomposites in the biomedical field, including nanocarriers for drug delivery, tissue engineering, and wound healing. Additionally, their structure, magnetic properties, biocompatibility, and toxicity will be discussed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Erfan Rahmani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Shima Mahtabian
- Department of Materials Engineering, Shahreza Bramch, Islamic Azad University, Shahreza, Isfahan 61349-37333, Iran
| | - Mohammadjavad Ahmadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
7
|
Saleem K, Siddiqui B, .ur.Rehman A, Taqi MM, Ahmed N. Exploiting Recent Trends in the Treatment of Androgenic Alopecia through Topical Nanocarriers of Minoxidil. AAPS PharmSciTech 2022; 23:292. [DOI: 10.1208/s12249-022-02444-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
|
8
|
Enhanced Antimicrobial Activity of Silver Sulfadiazine Cosmetotherapeutic Nanolotion for Burn Infections. COSMETICS 2022. [DOI: 10.3390/cosmetics9050093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Burns are highly traumatizing injuries that can be complicated by various microbial infections, leading to morbidity and mortality. The ultimate goal of burn therapy is to prevent any microbial infection and rapid wound healing with epithelization. The current study aimed to develop and investigate the potential of nanoemulsion-based cosmetotherapeutic lotion of silver sulfadiazine (SSD) for increased antimicrobial activity to treat burn injuries. Silver sulfadiazine is the standard topical treatment for burn patients, but is allied with major limitations of poor solubility, low bioavailability, and other hematologic effects, hindering its pharmaceutical applications. The nanoformulation was fabricated through the ultrasonication technique and optimized by selecting various parameters and concentrations for the formation of water-in-oil (w/o) emulsion. The optimized formulation depicts a smaller particle size of 213 nm with an encapsulation efficiency of approx. 80%. Further, nanoemulsion-based SSD lotion by utilizing argan oil as a cosmetotherapeutic agent was prepared for scar massaging with improved permeation properties. The designed cosmeceutical formulation was characterized in terms of physical appearance, refractive index, particle size, encapsulation efficiency, and biocompatibility. The compatibility of the formulation ingredients were determined through FTIR (Fourier Transform Infrared Spectroscopy). The formulated nanolotion containing SSD demonstrated superior antimicrobial activities against different bacterial strains in comparison to commercialized burn creams.
Collapse
|
9
|
Sargazi S, Siddiqui B, Qindeel M, Rahdar A, Bilal M, Behzadmehr R, Mirinejad S, Pandey S. Chitosan nanocarriers for microRNA delivery and detection: A preliminary review with emphasis on cancer. Carbohydr Polym 2022; 290:119489. [DOI: 10.1016/j.carbpol.2022.119489] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 02/08/2023]
|
10
|
Bashir K, Khan MFA, Alhodaib A, Ahmed N, Naz I, Mirza B, Tipu MK, Fatima H. Design and Evaluation of pH-Sensitive Nanoformulation of Bergenin Isolated from Bergenia ciliata. Polymers (Basel) 2022; 14:polym14091639. [PMID: 35566808 PMCID: PMC9104231 DOI: 10.3390/polym14091639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the current study is extraction and isolation of bergenin from Bergenia ciliata and fabrication of pH-sensitive Eudragit® L100 (EL100) polymeric nanoparticles (NP) to tackle limitations of solubility. Bergenin-loaded EL100 nanoparticles (BN-NP) were fabricated via nanoprecipitation and an experimental design was conducted for optimization. A reverse phase-high performance liquid chromatography (RP-HPLC) method was developed for the quantitation of bergenin. The optimized nanoformulation was characterized by its particle size, morphology, loading capacity, entrapment efficiency, drug-excipient interaction and crystallinity. An in vitro assay was executed to gauge the release potential of pH-sensitive nanoformulation. The mean particle size, zeta potential and polydispersity index (PDI) of the optimized nanoparticles were observed to be 86.17 ± 2.1 nm, -32.33 ± 5.53 mV and 0.30 ± 0.03, respectively. The morphological analysis confirmed the spherical nature of the nanoparticles. Drug loading capacity and entrapment efficiency were calculated to be 16 ± 0.34% and 84 ± 1.3%, respectively. Fourier transform infrared spectroscopy (FTIR) studies unfolded that no interaction was present between the drug and the excipients in the nanoformulation. Crystallography studies revealed that the crystalline nature of bergenin was changed to amorphous and the nanoformulation was stable for up to 3 months at 40 °C. The present study confirms that bergenin isolation can be scaled up from abundantly growing B. ciliata. Moreover, it could also be delivered by entrapment in stimuli-responsive polymer, preventing the loss of drug in healthy tissues.
Collapse
Affiliation(s)
- Kashaf Bashir
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (K.B.); (M.F.A.K.); (N.A.); (M.K.T.)
| | - Muhammad Farhan Ali Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (K.B.); (M.F.A.K.); (N.A.); (M.K.T.)
| | - Aiyeshah Alhodaib
- Department of Physics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia
- Correspondence: (A.A.); (H.F.)
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (K.B.); (M.F.A.K.); (N.A.); (M.K.T.)
| | - Iffat Naz
- Science Unit, Department of Biology, Deanship of Educational Services, Qassim University, Buraidah 51452, Saudi Arabia;
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (K.B.); (M.F.A.K.); (N.A.); (M.K.T.)
| | - Humaira Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (K.B.); (M.F.A.K.); (N.A.); (M.K.T.)
- Correspondence: (A.A.); (H.F.)
| |
Collapse
|