1
|
Reguilón MD, Ferrer-Pérez C, Manzanedo C, Miñarro J, Rodríguez-Arias M. Voluntary wheel running during adolescence prevents the increase in ethanol intake induced by social defeat in male mice. Psychopharmacology (Berl) 2025; 242:979-996. [PMID: 37736785 PMCID: PMC12043745 DOI: 10.1007/s00213-023-06461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023]
Abstract
RATIONALE Exposure to social defeat (SD) induces a depressive phenotype, increased ethanol seeking and consumption, accompanied by activation of the neuroinflammatory response. However, a resilient response can be potentiated through physical exercise in the form of voluntary wheel running (VWR) during or after exposure to social stress. Therefore, the aim of this study was to test whether physical exercise during adolescence prior to being exposed to SD can enhance resilience to the increase in ethanol intake. METHODS Male mice had access to VWR during adolescence and the effects of social defeat (4 sessions every 72 h) on oral ethanol self-administration (SA) was evaluated. Based on the social interaction test, mice were classified as resilient or susceptible to depressive-like behavior. Two weeks after the last encounter, mice were subjected to the drinking in the dark and oral ethanol SA paradigms. Mice were then sacrificed to measure brain-derived neurotrophic factor (BDNF) levels in the striatum and hippocampus. RESULTS As expected, susceptible mice increased ethanol intake in the oral SA protocol. However, susceptible mice in the exercise condition did not increase ethanol intake, showing similar consumption and motivation for ethanol than the control and resilient groups. On the other hand, decreased BDNF levels were observed in susceptible mice in both experimental conditions compared to the control groups after ethanol SA. CONCLUSIONS The pre-exposure of VWR prevented the increase in consumption and motivation for ethanol induced by SD in susceptible mice. On the other hand, it appears that VWR did not exhibit any significant long-term effects on BDNF signaling, which is mainly affected in susceptible mice after ethanol intake.
Collapse
Affiliation(s)
- Marina D Reguilón
- Unit of Research on Psychobiology of Drug Dependence, Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain
| | - Carmen Ferrer-Pérez
- Departmento de Psicología Evolutiva, Facultad de Psicología, Universitat de València, Valencia, Spain
| | - Carmen Manzanedo
- Unit of Research on Psychobiology of Drug Dependence, Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain
| | - José Miñarro
- Unit of Research on Psychobiology of Drug Dependence, Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain
| | - Marta Rodríguez-Arias
- Unit of Research on Psychobiology of Drug Dependence, Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain.
| |
Collapse
|
2
|
Zhang XM, Huang J, Ni XY, Zhu HR, Huang ZX, Ding S, Yang XY, Tan YD, Chen JF, Cai JH. Current progression in application of extracellular vesicles in central nervous system diseases. Eur J Med Res 2024; 29:15. [PMID: 38173021 PMCID: PMC10763486 DOI: 10.1186/s40001-023-01606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Early diagnosis and pharmacological treatment of central nervous system (CNS) diseases has been a long-standing challenge for clinical research due to the presence of the blood-brain barrier. Specific proteins and RNAs in brain-derived extracellular vesicles (EVs) usually reflect the corresponding state of brain disease, and therefore, EVs can be used as diagnostic biomarkers for CNS diseases. In addition, EVs can be engineered and fused to target cells for delivery of cargo, demonstrating the great potential of EVs as a nanocarrier platform. We review the progress of EVs as markers and drug carriers in the diagnosis and treatment of neurological diseases. The main areas include visual imaging, biomarker diagnosis and drug loading therapy for different types of CNS diseases. It is hoped that increased knowledge of EVs will facilitate their clinical translation in CNS diseases.
Collapse
Affiliation(s)
- Xiang-Min Zhang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Jie Huang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Xiao-Ying Ni
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Hui-Ru Zhu
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Zhong-Xin Huang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Shuang Ding
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Xin-Yi Yang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Yan-Di Tan
- Department of Ultrasound the Third Affiliated Hospital of Chongqing Medical University, No. 1, Shuanghu Branch Road, Huixing Street, Chongqing, 401120, China
| | - Jian-Fu Chen
- Department of Ultrasound, The Second People's Hospital of Yunnan Province, No. 176, Qingnian Road, Kunming, 650021, China
| | - Jin-Hua Cai
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China.
| |
Collapse
|
3
|
BDNF and pro-BDNF in serum and exosomes in major depression: Evolution after antidepressant treatment. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110229. [PMID: 33358963 DOI: 10.1016/j.pnpbp.2020.110229] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The study of clinically related biological indicators in Major Depression (MD) is important. The Brain Derived Neurotrophic Factor (BDNF) appears to play an important role in MD, through its neurotrophic effect, and its levels are significantly decreased. The variation in the serum levels of its precursor proBDNF, which has opposite effects, is not known. Their distribution between serum and exosomes and their evolution during antidepressant treatment is also not known, and may be important in modulating their effects. The aim of this study is to evaluate whether serum and exosome mBDNF and proBDNF levels are altered in patients with MD during antidepressant treatment compared to controls, and their association with clinical improvement and clinical variables. MATERIALS AND METHODS 42 MD subjects and 40 controls were included. Questionnaires to assess the severity of depression and cognitive impairment and blood samples were collected during the three visits at D0 (inclusion) and 3 and 7 weeks after the start of antidepressant treatment. Assays for mBDNF and proBDNF levels were performed in serum and exosomes by ELISA. RESULTS MD subjects had decreased serum and exosomal BDNF levels and increased proBDNF levels at D0 compared to controls. BDNF and pro-BDNF vary in an inverse manner in both serum and exosomes during antidepressant treatment. No relationship of BDNF and proBDNF levels to clinical improvement and depression scales was found. CONCLUSION We demonstrated an evolution of those molecules either in serum or in exosomes after MD treatment. These transport vesicles could have a role in the regulation of BDNF.
Collapse
|
4
|
Wang N, Liu X, Li XT, Li XX, Ma W, Xu YM, Liu Y, Gao Q, Yang T, Wang H, Peng Y, Zhu XF, Guan YZ. 7,8-Dihydroxyflavone Alleviates Anxiety-Like Behavior Induced by Chronic Alcohol Exposure in Mice Involving Tropomyosin-Related Kinase B in the Amygdala. Mol Neurobiol 2021; 58:92-105. [PMID: 32895785 DOI: 10.1007/s12035-020-02111-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/01/2020] [Indexed: 01/08/2023]
Abstract
Alcohol use-associated disorders are highly comorbid with anxiety disorders; however, their mechanism remains unknown. The amygdala plays a central role in anxiety. We recently found that 7,8-dihydroxyflavone (7,8-DHF) significantly reduces withdrawal symptoms in a rat model of chronic intermittent alcohol (ethanol) exposure. This study aimed to determine the role of 7,8-DHF in regulating anxiety induced by chronic alcohol exposure and its associated underlying mechanism. Male C57BL/6J mice were exposed to chronic intermittent alcohol for 3 weeks followed by alcohol withdrawal for 12 h with or without 7,8-DHF administered intraperitoneally. All mice were tested using an open field test and elevated plus maze to assess anxiety-like behaviors. Synaptic activity and intrinsic excitability in basal and lateral amygdala (BLA) neurons were assessed using electrophysiological recordings. 7,8-DHF alleviated alcohol-induced anxiety-like behavior and attenuated alcohol-induced enhancement of activities in BLA pyramidal neurons. Furthermore, 7,8-DHF prevented alcohol withdrawal-evoked augmentation of glutamatergic transmission in the amygdala and had no effect on GABAergic transmission in the amygdala, as demonstrated by unaltered frequency and amplitude of spontaneous inhibitory postsynaptic currents. Microinjection of K252a, a tropomyosin-related kinase B (TrkB) antagonist, into the BLA blocked the effects of 7,8-DHF on anxiety-like behavior and neuronal activity in the BLA. Our findings suggest that 7,8-DHF alleviates alcohol-induced anxiety-like behavior induced by chronic alcohol exposure through regulation of glutamate transmission involving TrKB in the BLA.
Collapse
Affiliation(s)
- Na Wang
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xing Liu
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xin-Tong Li
- Department of Neurology, The Affiliated First Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Xin-Xin Li
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Wei Ma
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yan-Min Xu
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yong Liu
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Qing Gao
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Tao Yang
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Hongxuan Wang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510828, China
| | - Ying Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510828, China
| | - Xiao-Feng Zhu
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China.
| | - Yan-Zhong Guan
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China.
| |
Collapse
|
5
|
Marton S, González B, Rodríguez-Bottero S, Miquel E, Martínez-Palma L, Pazos M, Prieto JP, Rodríguez P, Sames D, Seoane G, Scorza C, Cassina P, Carrera I. Ibogaine Administration Modifies GDNF and BDNF Expression in Brain Regions Involved in Mesocorticolimbic and Nigral Dopaminergic Circuits. Front Pharmacol 2019; 10:193. [PMID: 30890941 PMCID: PMC6411846 DOI: 10.3389/fphar.2019.00193] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/14/2019] [Indexed: 01/07/2023] Open
Abstract
Ibogaine is an atypical psychedelic alkaloid, which has been subject of research due to its reported ability to attenuate drug-seeking behavior. Recent work has suggested that ibogaine effects on alcohol self-administration in rats are related to the release of Glial cell Derived Neurotrophic Factor (GDNF) in the Ventral Tegmental Area (VTA), a mesencephalic region which hosts the soma of dopaminergic neurons. Although previous reports have shown ibogaine’s ability to induce GDNF expression in rat midbrain, there are no studies addressing its effect on the expression of GDNF and other neurotrophic factors (NFs) such as Brain Derived Neurotrophic Factor (BDNF) or Nerve Growth Factor (NGF) in distinct brain regions containing dopaminergic neurons. In this work, we examined the effect of ibogaine acute administration on the expression of these NFs in the VTA, Prefrontal Cortex (PFC), Nucleus Accumbens (NAcc) and the Substantia Nigra (SN). Rats were i.p. treated with ibogaine 20 mg/kg (I20), 40 mg/kg (I40) or vehicle, and NFs expression was analyzed after 3 and 24 h. At 24 h an increase of the expression of the NFs transcripts was observed in a site and dose dependent manner. Only for I40, GDNF was selectively upregulated in the VTA and SN. Both doses elicited a large increase in the expression of BDNF transcripts in the NAcc, SN and PFC, while in the VTA a significant effect was found only for I40. Finally, NGF mRNA was upregulated in all regions after I40, while I20 showed a selective upregulation in PFC and VTA. Regarding protein levels, an increase of GDNF was observed in the VTA only for I40 but no significant increase for BDNF was found in all the studied areas. Interestingly, an increase of proBDNF was detected in the NAcc for both doses. These results show for the first time a selective increase of GDNF specifically in the VTA for I40 but not for I20 after 24 h of administration, which agrees with the effective dose found in previous self-administration studies in rodents. Further research is needed to understand the contribution of these changes to ibogaine’s ability to attenuate drug-seeking behavior.
Collapse
Affiliation(s)
- Soledad Marton
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Bruno González
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Rodríguez-Bottero
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ernesto Miquel
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Martínez-Palma
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mariana Pazos
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - José Pedro Prieto
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Paola Rodríguez
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York, NY, United States
| | - Gustavo Seoane
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Scorza
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Patricia Cassina
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ignacio Carrera
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
6
|
Toledo Nunes P, Vedder LC, Deak T, Savage LM. A Pivotal Role for Thiamine Deficiency in the Expression of Neuroinflammation Markers in Models of Alcohol-Related Brain Damage. Alcohol Clin Exp Res 2019; 43:425-438. [PMID: 30589435 DOI: 10.1111/acer.13946] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alcohol-related brain damage (ARBD) is associated with neurotoxic effects of heavy alcohol use and nutritional deficiency, in particular thiamine deficiency (TD), both of which induce inflammatory responses in brain. Although neuroinflammation is a critical factor in the induction of ARBD, few studies have addressed the specific contribution(s) of ethanol (EtOH) versus TD. METHODS Adult rats were randomly divided into 6 conditions: chronic EtOH treatment (CET) where rats consumed a 20% v/v solution of EtOH for 6 months; CET with injections of thiamine (CET + T); severe pyrithiamine-induced TD (PTD); moderate PTD; moderate PTD during CET; and pair-fed controls. After the treatments, the rats were split into 3 recovery phase time points: the last day of treatment (time point 1), acute recovery (time point 2: 24 hours posttreatment), and delayed recovery (time point 3: 3 weeks posttreatment). At these time points, vulnerable brain regions (thalamus, hippocampus, frontal cortex) were collected and changes in neuroimmune markers were assessed using a combination of reverse transcription polymerase chain reaction and protein analysis. RESULTS CET led to minor fluctuations in neuroimmune genes, regardless of the structure being examined. In contrast, PTD treatment led to a profound increase in neuroimmune genes and proteins within the thalamus. Cytokine changes in the thalamus ranged in magnitude from moderate (3-fold and 4-fold increase in interleukin-1β [IL-1β] and IκBα) to severe (8-fold and 26-fold increase in tumor necrosis factor-α and IL-6, respectively). Though a similar pattern was observed in the hippocampus and frontal cortex, overall fold increases were moderate relative to the thalamus. Importantly, neuroimmune gene induction varied significantly as a function of severity of TD, and most genes displayed a gradual recovery across time. CONCLUSIONS These data suggest an overt brain inflammatory response by TD and a subtle change by CET alone. Also, the prominent role of TD in the immune-related signaling pathways leads to unique regional and temporal profiles of induction of neuroimmune genes.
Collapse
Affiliation(s)
- Polliana Toledo Nunes
- Behavioral Neuroscience Program (PTN, LCV, TD, LMS), Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| | - Lindsey C Vedder
- Behavioral Neuroscience Program (PTN, LCV, TD, LMS), Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| | - Terrence Deak
- Behavioral Neuroscience Program (PTN, LCV, TD, LMS), Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| | - Lisa M Savage
- Behavioral Neuroscience Program (PTN, LCV, TD, LMS), Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| |
Collapse
|
7
|
Abstract
Alcohol dependence is a worldwide problem with a great social and economic burden in many countries. A number of studies have suggested that BDNF (mature BDNF) and its precursor (proBDNF) play important roles in the alcohol dependence. However, what roles of the mBDNF/proBDNF pathways play during the pathological process of alcohol dependence are not clearly understood. In our clinical study, peripheral blood was sampled from 30 male patients with alcohol dependence and 50 healthy males (as control). The protein levels of proBDNF, p75NTR, sortilin, mBDNF, TrkB and mRNA levels of BDNF, p75NTR, sortilin, and TrkB were detected in the peripheral blood in our study. We found that the protein levels of proBDNF and p75NTR were increased, but not the sortilin protein level; while the TrkB protein level was decreased in the alcohol dependence patients compared with healthy controls. Moreover, the mRNA levels of p75NTR and sortilin from the lymphocytes were slightly increased; while BDNF and TrkB were significantly decreased. The ELISA results of mBDNF and TrkB were declined in the alcohol dependence group. The levels of mBDNF and TrkB were negatively correlated with the average amount of daily ethanol consumption, and the levels of proBDNF, p75NTR and sortilin were positively correlated with the average amount of ethanol consumption per day. The ratio of proBDNF to mBDNF was altered in alcohol dependence patients. The balance between the proBDNF/p75NTR and mBDNF/TrkB signalling pathways appeared dysregulated in alcohol dependence. Our results suggested that both pathways may participate in the complex processes of alcohol dependence.
Collapse
|