1
|
Aranburu AI, Elorza M, Valle PRG, Pazos A, Brodolin A, Herrero-Gómez P, Barcelon JE, Molina-Terriza G, Monrabal F, Rogero C, Cossío FP, Gómez-Cadenas JJ, Tonnelé C, Freixa Z. Iridium-Based Time-Resolved Luminescent Sensor for Ba 2+ Detection. ACS Sens 2025; 10:2487-2498. [PMID: 40213995 DOI: 10.1021/acssensors.4c01892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
We present a new time-resolved chemosensor for the detection of Ba2+ ions. Our sensor is based on an iridium(III) compound with dual (fluorescent and phosphorescent) emission. The nature of the luminescence response of the sensor depends on its state; specifically, the phosphorescence emission of the free state at long wavelengths is strongly suppressed, while that of the Ba2+-chelated compound is strongly enhanced. Furthermore, the residual phosphorescence emission of the free compound decays with two short decay constants, τfree1 ∼ 3.5 ns (88%) and τfree2 ∼ 209 ns (12%), while the chelated compound decays with two long decay constants, τbound1 ∼ 429 ns (21%) and τbound2 ∼ 1128 ns (76%). This exceptional behavior, supported by quantum chemical calculations, allows a time-based separation between the signals of the free and the chelated species. Among other applications, our sensor could be the basis of a Ba2+ tagging detector for neutrinoless double beta decay searches in xenon.
Collapse
Affiliation(s)
- Ane I Aranburu
- Donostia International Physics Center DIPC, San Sebastián/Donostia E-20018, Spain
| | - Mikel Elorza
- Donostia International Physics Center DIPC, San Sebastián/Donostia E-20018, Spain
| | - Pablo R G Valle
- Donostia International Physics Center DIPC, San Sebastián/Donostia E-20018, Spain
- Department of Applied Chemistry, University of the Basque Country (UPV/EHU), San Sebastián/Donostia E-20018, Spain
| | - Ariadna Pazos
- Department of Applied Chemistry, University of the Basque Country (UPV/EHU), San Sebastián/Donostia E-20018, Spain
| | - Alexey Brodolin
- Donostia International Physics Center DIPC, San Sebastián/Donostia E-20018, Spain
| | - Pablo Herrero-Gómez
- Donostia International Physics Center DIPC, San Sebastián/Donostia E-20018, Spain
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - J Eduardo Barcelon
- Donostia International Physics Center DIPC, San Sebastián/Donostia E-20018, Spain
- Centro de Física de Materiales (CSIC-UPV/EHU), San Sebastián/Donostia E-20018, Spain
| | - Gabriel Molina-Terriza
- Donostia International Physics Center DIPC, San Sebastián/Donostia E-20018, Spain
- Centro de Física de Materiales (CSIC-UPV/EHU), San Sebastián/Donostia E-20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao E-48009, Spain
| | - Francesc Monrabal
- Donostia International Physics Center DIPC, San Sebastián/Donostia E-20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao E-48009, Spain
| | - Celia Rogero
- Donostia International Physics Center DIPC, San Sebastián/Donostia E-20018, Spain
- Centro de Física de Materiales (CSIC-UPV/EHU), San Sebastián/Donostia E-20018, Spain
| | - Fernando P Cossío
- Donostia International Physics Center DIPC, San Sebastián/Donostia E-20018, Spain
- Department of Organic Chemistry I, University of the Basque Country (UPV/EHU), San Sebastián/Donostia E-20018, Spain
| | - Juan José Gómez-Cadenas
- Donostia International Physics Center DIPC, San Sebastián/Donostia E-20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao E-48009, Spain
| | - Claire Tonnelé
- Donostia International Physics Center DIPC, San Sebastián/Donostia E-20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao E-48009, Spain
| | - Zoraida Freixa
- Department of Applied Chemistry, University of the Basque Country (UPV/EHU), San Sebastián/Donostia E-20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao E-48009, Spain
| |
Collapse
|
2
|
Beaudelot J, Oger S, Peruško S, Phan TA, Teunens T, Moucheron C, Evano G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022; 122:16365-16609. [PMID: 36350324 DOI: 10.1021/acs.chemrev.2c00033] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photocatalyzed and photosensitized chemical processes have seen growing interest recently and have become among the most active areas of chemical research, notably due to their applications in fields such as medicine, chemical synthesis, material science or environmental chemistry. Among all homogeneous catalytic systems reported to date, photoactive copper(I) complexes have been shown to be especially attractive, not only as alternative to noble metal complexes, and have been extensively studied and utilized recently. They are at the core of this review article which is divided into two main sections. The first one focuses on an exhaustive and comprehensive overview of the structural, photophysical and electrochemical properties of mononuclear copper(I) complexes, typical examples highlighting the most critical structural parameters and their impact on the properties being presented to enlighten future design of photoactive copper(I) complexes. The second section is devoted to their main areas of application (photoredox catalysis of organic reactions and polymerization, hydrogen production, photoreduction of carbon dioxide and dye-sensitized solar cells), illustrating their progression from early systems to the current state-of-the-art and showcasing how some limitations of photoactive copper(I) complexes can be overcome with their high versatility.
Collapse
Affiliation(s)
- Jérôme Beaudelot
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Samuel Oger
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| | - Stefano Peruško
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Tuan-Anh Phan
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium.,Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000Mons, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| |
Collapse
|
3
|
Nohara I, Wegeberg C, Devereux M, Prescimone A, Housecroft CE, Constable EC. The surprising effects of sulfur: achieving long excited-state lifetimes in heteroleptic copper(i) emitters. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:3089-3102. [PMID: 35340713 PMCID: PMC8870442 DOI: 10.1039/d1tc05591g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
A series of heteroleptic [Cu(N^N)(P^P)][PF6] complexes is reported in which N^N is a di(methylsulfanyl)-1,10-phenanthroline (2,9-, 3,8- or 4,7-(MeS)2phen) or di(methoxy)-1,10-phenanthroline (2,9-, 3,8- or 4,7-(MeO)2phen) and P^P is bis(2-(diphenylphosphano)phenyl)ether (POP) or 4,5-bis(diphenylphosphano)-9,9-dimethylxanthene (xantphos). The effects of the different substituents are investigated through structural, electrochemical and photophysical studies and by using DFT and TD-DFT calculations. Introducing methylsulfanyl groups in the 2,9-, 3,8- or 4,7-positions of the phen domain alters the composition of the frontier molecular orbitals of the [Cu(N^N)(P^P)]+ complexes significantly, so that ligand-centred (LC) transitions become photophysically relevant with respect to metal-to-ligand charge transfer (MLCT). Within this series, [Cu(2,9-(MeS)2phen)(POP)][PF6] exhibits the highest photoluminescence quantum yield of 15% and the longest excited-state lifetime of 8.3 μs in solution. In the solid state and in frozen matrices at 77 K, the electronic effects of the methylsulfanyl or methoxy substituents are highlighted, thus resulting in luminescence lifetimes of 2 to 4.2 ms at 77 K with predominantly LC character for both the 3,8- and 4,7-(MeS)2phen containing complexes. The results of the investigation give new guidelines on how to influence the luminescence properties in [Cu(N^N)(P^P)]+ complexes which will aid in the development of new sustainable and efficient copper(i) emitters.
Collapse
Affiliation(s)
- Isaak Nohara
- Department of Chemistry, University of Basel, BPR 1096 Mattenstrasse 24a CH-4058 Basel Switzerland
| | - Christina Wegeberg
- Department of Chemistry, University of Basel, BPR 1096 Mattenstrasse 24a CH-4058 Basel Switzerland
- Department of Chemistry, University of Basel St Johanns-Ring 19 CH-4056 Basel Switzerland
| | - Mike Devereux
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, BPR 1096 Mattenstrasse 24a CH-4058 Basel Switzerland
| | - Catherine E Housecroft
- Department of Chemistry, University of Basel, BPR 1096 Mattenstrasse 24a CH-4058 Basel Switzerland
| | - Edwin C Constable
- Department of Chemistry, University of Basel, BPR 1096 Mattenstrasse 24a CH-4058 Basel Switzerland
| |
Collapse
|
4
|
Findlay JA, Ross DAW, Crowley JD. Ferrocene Rotary Switches Featuring 2‐Pyridyl‐1,2,3‐triazole “Click” Chelates. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- James A. Findlay
- Department of Chemistry University of Otago Dunedin 9054 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington 6140 New Zealand
| | - Daniel A. W. Ross
- Department of Chemistry University of Otago Dunedin 9054 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington 6140 New Zealand
| | - James D. Crowley
- Department of Chemistry University of Otago Dunedin 9054 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington 6140 New Zealand
| |
Collapse
|
5
|
Ross DW, Findlay JA, Vasdev RAS, Crowley JD. Can 2-Pyridyl-1,2,3-triazole "Click" Ligands be Used to Develop Cu(I)/Cu(II) Molecular Switches? ACS OMEGA 2021; 6:30115-30129. [PMID: 34778683 PMCID: PMC8582268 DOI: 10.1021/acsomega.1c04977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Molecular switching processes are important in a range of areas including the development of molecular machines. While there are numerous organic switching systems available, there are far less examples that exploit inorganic materials. The most common inorganic switching system remains the copper(I)/copper(II) switch developed by Sauvage and co-workers over 20 years ago. Herein, we examine if bidentate 2-(1-benzyl-1H-1,2,3-triazol-4-yl)pyridine (pytri) and tridentate 2,6-bis[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridine (tripy) moieties can be used to replace the more commonly exploited polypyridyl ligands 2,2'-bypyridine (bpy)/1,10-phenanthroline (phen) and 2,2';6',2″-terpyridine (terpy) in a copper(I)/(II) switching system. Two new ditopic ligands that feature bidentate (pytri, L1 or bpytri, L2) and tridentate tripy metal binding pockets were synthesized and used to generate a family of heteroleptic copper(I) and copper(II) 6,6'-dimesityl-2,2'-bipyridine (diMesbpy) complexes. Additionally, we synthesized a series of model copper(I) and copper(II) diMesbpy complexes. A combination of techniques including nuclear magnetic resonance (NMR) and UV-vis spectroscopies, high-resolution electrospray ionization mass spectrometry, and X-ray crystallography was used to examine the behavior of the compounds. It was found that L1 and L2 formed [(diMesbpy)Cu(L1 or L2)]2+ complexes where the copper(II) diMesbpy unit was coordinated exclusively in the tridenate tripy binding site. However, when the ligands (L1 and L2) were complexed with copper(I) diMesbpy units, a complex mixture was obtained. NMR and MS data indicated that a 1:1 stoichiometry of [Cu(diMesbpy)]+ and either L1 or L2 generated three complexes in solution, the dimetallic [(diMesbpy)2Cu2(L1 or L2)]2+ and the monometallic [(diMesbpy)Cu(L1 or L2)]+ isomers where the [Cu(diMesbpy)]+ unit is coordinated to either the bidentate or tridentate tripy binding sites of the ditopic ligands. The dimetallic [(diMesbpy)2Cu2(L1 or L2)](PF6)2 complexes were structurally characterized using X-ray crystallography. Both complexes feature a [Cu(diMesbpy)]+ coordinated to the bidentate (pytri or bpytri) pocket of the ditopic ligands (L1 or L2), as expected. They also feature a second [Cu(diMesbpy)]+ coordinated to the nominally tridentate tripy binding site in a four-coordinate hypodentate κ2-fashion. Competition experiments with model complexes showed that the binding strength of the bidentate pytri is similar to that of the κ2-tripy ligand, leading to the lack of selectivity. The results suggest that the pytri/tripy and bpytri/tripy ligand pairs cannot be used as replacements for the more common bpy/phen-terpy partners due to the lack of selectivity in the copper(I) state.
Collapse
Affiliation(s)
- Daniel
A. W. Ross
- Department
of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - James A. Findlay
- Department
of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Roan A. S. Vasdev
- Department
of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - James D. Crowley
- Department
of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
6
|
Grupe M, Boden P, Di Martino‐Fumo P, Gui X, Bruschi C, Israil R, Schmitt M, Nieger M, Gerhards M, Klopper W, Riehn C, Bizzarri C, Diller R. Time-Resolved Spectroscopy and Electronic Structure of Mono-and Dinuclear Pyridyl-Triazole/DPEPhos-Based Cu(I) Complexes. Chemistry 2021; 27:15251-15270. [PMID: 34550622 PMCID: PMC8597052 DOI: 10.1002/chem.202102760] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 12/20/2022]
Abstract
Chemical and spectroscopic characterization of the mononuclear photosensitizers [(DPEPhos)Cu(I)(MPyrT)]0/+ (CuL, CuLH) and their dinuclear analogues (Cu2 L', Cu2 L'H2 ), backed by (TD)DFT and high-level GW-Bethe-Salpeter equation calculations, exemplifies the complex influence of charge, nuclearity and structural flexibility on UV-induced photophysical pathways. Ultrafast transient absorption and step-scan FTIR spectroscopy reveal flattening distortion in the triplet state of CuLH as controlled by charge, which also appears to have a large impact on the symmetry of the long-lived triplet states in Cu2 L' and Cu2 L'H2 . Time-resolved luminescence spectroscopy (solid state), supported by transient photodissociation spectroscopy (gas phase), confirm a lifetime of some tens of μs for the respective triplet states, as well as the energetics of thermally activated delayed luminescence, both being essential parameters for application of these materials based on earth-abundant copper in photocatalysis and luminescent devices.
Collapse
Affiliation(s)
- Merten Grupe
- Department of PhysicsTU KaiserslauternErwin-Schrödinger-Straße 4667663KaiserslauternGermany
| | - Pit Boden
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| | - Patrick Di Martino‐Fumo
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| | - Xin Gui
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Cecilia Bruschi
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Roumany Israil
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| | - Marcel Schmitt
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| | - Martin Nieger
- Department of ChemistryUniversity of HelsinkiA.I. Virtasen aukio 100014HelsinkiFinland
| | - Markus Gerhards
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
- Research Center OPTIMASErwin-Schrödinger-Straße 4667663KaiserslauternGermany
| | - Wim Klopper
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Christoph Riehn
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
- Research Center OPTIMASErwin-Schrödinger-Straße 4667663KaiserslauternGermany
| | - Claudia Bizzarri
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Rolf Diller
- Department of PhysicsTU KaiserslauternErwin-Schrödinger-Straße 4667663KaiserslauternGermany
| |
Collapse
|
7
|
Ross DAW, Mapley JI, Cording AP, Vasdev RAS, McAdam CJ, Gordon KC, Crowley JD. 6,6'-Ditriphenylamine-2,2'-bipyridine: Coordination Chemistry and Electrochemical and Photophysical Properties. Inorg Chem 2021; 60:11852-11865. [PMID: 34311548 DOI: 10.1021/acs.inorgchem.1c01435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A 2,2'-bipyridine with bulky triphenylamine substituents in the 6 and 6' positions of the ligand (6,6'-ditriphenylamine-2,2'-bipyridine, 6,6'-diTPAbpy) was generated. Despite the steric bulk, the ligand readily formed bis(homoleptic) complexes with copper(I) and silver(I) ions. Unfortunately, efforts to use the 6,6'-diTPAbpy system to generate heteroleptic [Cu(6,6'-diTPAbpy)(bpy)]+ complexes were unsuccessful with only the [Cu(6,6'-diTPAbpy)2](PF6) complex observed. The 6,6'-diTPAbpy ligand could also be reacted with 6-coordinate metal ions that featured small ancillary ligands, namely, the [Re(CO)3Cl] and [Ru(CO)2Cl2] fragments. While the complexes could be formed in good yields, the steric bulk of the TPA units does alter the coordination geometry. This is most readily seen in the [(6,6'-diTPAbpy)Re(CO)3Cl] complex where the Re(I) ion is forced to sit 23° out of the plane formed by the bpy unit. The electrochemical and photophysical properties of the family of compounds were also examined. 6,6'-diTPAbpy exhibits a strong ILCT absorption band (356 nm, 50 mM-1 cm-1) which displays a small increase in intensity for the homoleptic complexes ([Cu(6,6'-diTPAbpy)2]+; 353 nm, 72 mM-1 cm-1, [Ag(6,6'-diTPAbpy)2]+; 353 nm, 75 mM-1 cm-1), despite containing 2 equiv of the ligand, attributed to an increased dihedral angle between the TPA and bpy moieties. For the 6-coordinate complexes the ILCT band is further decreased in intensity and overlaps with MLCT bands, consistent with a further increased TPA-bpy dihedral angle. Emission from the 1ILCT state is observed at 436 nm (τ = 4.4 ns) for 6,6'-diTPAbpy and does not shift for the Cu, Ag, and Re complexes, although an additional 3MLCT emission is observed for [Re(6,6'-diTPAbpy)(CO)3Cl] (640 nm, τ = 13.8 ns). No emission was observed for [Ru(6,6'-diTPAbpy)(CO)2Cl2]. Transient absorption measurements revealed the population of a 3ILCT state for the Cu and Ag complexes (τ = 80 ns). All assignments were supported by TD-DFT calculations and resonance Raman spectroscopic measurements.
Collapse
Affiliation(s)
- Daniel A W Ross
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Joseph I Mapley
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Andrew P Cording
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Roan A S Vasdev
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - C John McAdam
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Keith C Gordon
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
8
|
Sutton JJ, Preston D, Traber P, Steinmetzer J, Wu X, Kayal S, Sun XZ, Crowley JD, George MW, Kupfer S, Gordon KC. Excited-State Switching in Rhenium(I) Bipyridyl Complexes with Donor-Donor and Donor-Acceptor Substituents. J Am Chem Soc 2021; 143:9082-9093. [PMID: 34111929 DOI: 10.1021/jacs.1c02755] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The optical properties of two Re(CO)3(bpy)Cl complexes in which the bpy is substituted with two donor (triphenylamine, TPA, ReTPA2) as well as both donor (TPA) and acceptor (benzothiadiazole, BTD, ReTPA-BTD) groups are presented. For ReTPA2 the absorption spectra show intense intraligand charge-transfer (ILCT) bands at 460 nm with small solvatochromic behavior; for ReTPA-BTD the ILCT transitions are weaker. These transitions are assigned as TPA → bpy transitions as supported by resonance Raman data and TDDFT calculations. The excited-state spectroscopy shows the presence of two emissive states for both complexes. The intensity of these emission signals is modulated by solvent. Time-resolved infrared spectroscopy definitively assigns the excited states present in CH2Cl2 to be MLCT in nature, and in MeCN the excited states are ILCT in nature. DFT calculations indicated this switching with solvent is governed by access to states controlled by spin-orbit coupling, which is sufficiently different in the two solvents, allowing to select out each of the charge-transfer states.
Collapse
Affiliation(s)
- Joshua J Sutton
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| | - Dan Preston
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| | - Philipp Traber
- Institute for Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Johannes Steinmetzer
- Institute for Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Xue Wu
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Surajit Kayal
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Xue-Z Sun
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - James D Crowley
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| | - Michael W George
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom.,Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100 China
| | - Stephan Kupfer
- Institute for Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Keith C Gordon
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| |
Collapse
|
9
|
Carlton ES, Sutton JJ, Gale AG, Shields GC, Gordon KC, Wagenknecht PS. Insights into the charge-transfer character of electronic transitions in RCp 2Ti(C 2Fc) 2 complexes using solvatochromism, resonance Raman spectroscopy, and TDDFT. Dalton Trans 2021; 50:2233-2242. [PMID: 33502417 DOI: 10.1039/d0dt04282j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of complexes with low-energy FeII to TiIV metal-to-metal charge-transfer (MMCT) transitions, Cp2Ti(C2Fc)2, Cp*2Ti(C2Fc)2, and MeOOCCp2Ti(C2Fc)2, was investigated using solvatochromism and resonance Raman spectroscopy (RRS) augmented with time-dependent density functional theory (TDDFT) calculations in order to interrogate the nature of the CT transitions. Computational models were benchmarked against the experimental UV-Vis spectra and B3LYP/6-31G(d) was found to most faithfully represent the spectra. The energy of the MMCT transition was measured in 15 different solvents and a multivariate fit to the Catalán solvent parameters - solvent polarizability (SP), solvent dipolarity (SdP), solvent basicity (SB), and solvent acidity (SA) - was performed. The effect of SP indicates a greater degree of electron delocalization in the excited state (ES) than the ground state (GS). The small negative solvatochromism with respect to SdP indicates a smaller dipole moment in the ES than the GS. The effect of SB is consistent with charge-transfer to Ti. Upon excitation into the MMCT absorption band, the RRS data show enhancement of the alkyne stretching modes and of the out-of-plane bending modes of the cyclopentadienyl ring connected to Fe and the alkyne bridge. This is consistent with changes in the oxidation states of Ti and Fe, respectively. The higher-energy transitions (350-450 nm) show enhancement of vibrational modes consistent with ethnylcyclopentadienyl to Ti ligand-to-metal charge transfer (LMCT). The RRS data is consistent with the TDDFT predicted character of these transitions. TDDFT suggests that the lowest-energy transition in Cp2Ti(C2Fc)2CuI, where CuI is coordinated between the alkynes, retains its FeII to TiIV MMCT character, in agreement with the RRS data, but that the lowest-energy transitions have significant CuI to Ti character. For Cp2Ti(C2Fc)2CuI, excitation into the low-energy MMCT absorption band results in selective enhancement of the symmetric alkynyl stretching mode.
Collapse
Affiliation(s)
| | - Joshua J Sutton
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Ariel G Gale
- Department of Chemistry, Furman University, Greenville, SC 29613, USA.
| | - George C Shields
- Department of Chemistry, Furman University, Greenville, SC 29613, USA.
| | - Keith C Gordon
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | |
Collapse
|