1
|
Liu H, Feng X, Zhao Y, Lv G, Zhang C, Aruhan, Damba TA, Zhang N, Hao D, Li M. Pharmacophylogenetic relationships of genus Dracocephalum and its related genera based on multifaceted analysis. Front Pharmacol 2024; 15:1449426. [PMID: 39421668 PMCID: PMC11484080 DOI: 10.3389/fphar.2024.1449426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
The Lamiaceae genus Dracocephalum, with over 30 species, is believed to have considerable medicinal properties and is widely used in Eurasian ethnomedicine. Numerous studies have researched on the geographical distribution, metabolite identification, and bioactivity of Dracocephalum species, especially amidst debates concerning the taxonomy of its closely related genera Hyssopus and Lallemantia. These discussions present an opportunity for pharmacophylogenetic studies of these medicinal plants. In this review, we collated extensive literature and data to present a multifaceted view of the geographical distribution, phylogenetics, phytometabolites and chemodiversity, ethnopharmacological uses, and pharmacological activities of Dracocephalum, Hyssopus, and Lallemantia. We found that these genera were concentrated in Europe, with species adapted to various climatic zones. These genera shared close phylogenetic relationships, with Dracocephalum and Hyssopus displaying intertwined patterns in the phylogenetic tree. Our review assessed more than 900 metabolites from these three genera, with terpenoids and flavonoids being the most abundant. Researchers have recently identified novel metabolites within Dracocephalum, expanding our understanding of its chemical constituents. Ethnopharmacologically, these genera have been traditionally used for treating respiratory, liver and gall bladder diseases. Extracts and metabolites from these genera exhibit a range of pharmacological activities such as hepatoprotective, anti-inflammation, antimicrobial action, anti-hyperlipidaemia, and anti-tumour properties. By integrating phylogenetic analyses with network pharmacology, we explored the intrinsic links between metabolite profiles, traditional efficacy, and modern pharmacology of Dracocephalum and its related genera. This study contributes to the discovery of potential medicinal value from closely related species of Dracocephalum and aids in the development and sustainable use of medicinal plant resources.
Collapse
Affiliation(s)
- Haolin Liu
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiaowei Feng
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Yulian Zhao
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Guoshuai Lv
- Central laboratory, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, Inner Mongolia, China
| | - Chunhong Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Aruhan
- Department of Mongolia Medicine Study, Institute of Traditional Medicine and Technology of Mongolia, Ulaanbaatar, Mongolia
| | - Tsend-Ayush Damba
- Department of Mongolia Medicine Study, Institute of Traditional Medicine and Technology of Mongolia, Ulaanbaatar, Mongolia
| | - Na Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Dacheng Hao
- Liaoning Provincial Universities Key Laboratory of Environmental Science and Technology, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, China
| | - Minhui Li
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
- Central laboratory, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, Inner Mongolia, China
| |
Collapse
|
2
|
Dab H, Ben Hamed S, Jery A, Chehidi A, Zourgui L. Effect of Salvia officinalis aqueous infusion on copper sulfate-induced inflammatory response and oxidative stress imbalance in mice liver and kidney. Drug Chem Toxicol 2024; 47:587-596. [PMID: 37357715 DOI: 10.1080/01480545.2023.2228516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/06/2023] [Accepted: 06/11/2023] [Indexed: 06/27/2023]
Abstract
Extracts of Salvia officinalis (S. officinalis) have been described to have many therapeutic properties. However, the effect of S. officinalis on copper sulfate toxicity has not been previously reported. The aim of this study was to investigate the toxicity of copper sulfate and the potential beneficial effects of S. officinalis aqueous infusion on proinflammatory response and antioxidant status. 56 male mice were used and equally divided into 6 groups: control group, copper sulfate treated group (40 mg/kg), S. officinalis aqueous infusion treated groups (200 mg/kg and 400 mg/kg) separately or in combination with copper. IL-6 (interleukine-6) and TNF-α (Tumor necrosis factor alpha) were assessed by Elisa. Catalase (CAT), superoxide dismutase (SOD) and acetylcholinesterase (AChE) activities, malondialdehyde (MDA) and oxygen peroxide levels were determined. Serum biochemical parameters were analyzed. Copper enhanced aspartate aminotransferase (AST), alanine aminotransferase (ALT) and Lactate dehydrogenase (LDH) (p < 0.05). Copper enhances significantly IL-6, TNF-α and MDA levels in liver and kidney and reduced CAT, SOD and AChE activities (p < 0.05). Aqueous infusion of S. officinalis at 400 mg/kg abolished copper-induced changes in AST and ALT activity. S. officinalis aqueous infusion at 200 mg/kg reversed copper-induced IL-6 in kidney and TNF-α in liver at both doses. S. officinalis aqueous infusion at 400 mg/kg restored SOD in kidney and CAT and AChE activities in both liver and kidney. S. officinalis aqueous infusion may be useful in partially ameliorating tissue disorders induced by copper exposure such as inflammatory response, oxidative stress imbalance and organ dysfunction through its phenolic compounds and higher antioxidant capacity.
Collapse
Affiliation(s)
- Houcine Dab
- Laboratory of Biodiversity, Molecules, Applications, (LR22ES02) Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Said Ben Hamed
- Laboratory of Epidemiology and Veterinary Microbiology (LEMV), Institut Pasteur de Tunis, Tunisia
| | - Amel Jery
- Laboratory of Biodiversity, Molecules, Applications, (LR22ES02) Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Amel Chehidi
- Laboratory of Biodiversity, Molecules, Applications, (LR22ES02) Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Lazhar Zourgui
- Laboratory of Biodiversity, Molecules, Applications, (LR22ES02) Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| |
Collapse
|
3
|
Ko CY, Wu CH, Nguyen TKN, Chen LW, Wu JSB, Huang WC, Shen SC. Alleviative Effect of Ficus formosana Extract on Peripheral Neuropathy in Ovariectomized Diabetic Mice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3774. [PMID: 37960130 PMCID: PMC10649879 DOI: 10.3390/plants12213774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
In diabetes mellitus, Ficus formosana has been reported to ameliorate blood sugar levels and inhibit inflammation through its polyphenol and flavonoid contents. However, its effect on diabetic peripheral neuropathy (DPN) remains unknown. This study aimed to investigate the effect of Ficus formosana extract (FFE) on DPN in ovariectomized diabetic mice. Ovariectomized female C57BL/6J mice fed a high-fat diet plus streptozotocin injections to induce type 2 diabetes were orally administered FEE at 20 or 200 mg/kg BW daily, for 6 weeks. To evaluate the pain responses in the paws of the mice, a von Frey filament test and a thermal hyperalgesia test were performed. Additionally, the intraepidermal and sciatic nerve sections were examined, along with an assessment of inflammation- and pain response-related mRNA expression in the paws of the mice. The results showed that the oral administration of both 20 and 200 mg/kg BW FEE significantly alleviated the hypersensitivity of the paw and the abnormal proliferation and rupture of the C fiber, and reduced the mRNA expression of interleukin-1β, interleukin-6, interferon-γ, cyclooxygenase-2, and voltage-gated sodium channel 1.8 in the sciatic nerve of ovariectomized diabetic mice. We propose that FFE ameliorates peripheral neuropathy by suppressing oxidative damage in ovariectomized diabetic mice.
Collapse
Affiliation(s)
- Chih-Yuan Ko
- Department of Clinical Nutrition, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China;
- School of Public Health, Fujian Medical University, Fuzhou 350122, China
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China
| | - Chung-Hsin Wu
- School of Life Science, National Taiwan Normal University, Taipei 10617, Taiwan;
| | - Thi Kim Ngan Nguyen
- Graduate Program of Nutrition Science, National Taiwan Normal University, Taipei 10617, Taiwan; (T.K.N.N.); (L.-W.C.)
| | - Li-Wen Chen
- Graduate Program of Nutrition Science, National Taiwan Normal University, Taipei 10617, Taiwan; (T.K.N.N.); (L.-W.C.)
| | - James Swi-Bea Wu
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan;
| | - Szu-Chuan Shen
- Graduate Program of Nutrition Science, National Taiwan Normal University, Taipei 10617, Taiwan; (T.K.N.N.); (L.-W.C.)
| |
Collapse
|
4
|
Dong J, Du C, Xu C, Wang Q, Wang Z, Zhu Q, Lv X, Zhang L, Li J, Huang C, Wang H, Ma T. Verbenalin attenuates hepatic damage and mitochondrial dysfunction in alcohol-associated steatohepatitis by regulating MDMX/PPARα-mediated ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116227. [PMID: 36739928 DOI: 10.1016/j.jep.2023.116227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Verbenalin is a major compound in Verbena officinalis L. Verbena officinalis L was first recorded in the 'Supplementary Records of Famous Physicians.' Verbenalin (VE) is its active constituent and has been found to have many biological effects, including anti-obesity, anti-inflammatory, and antioxidant activities, removing jaundice, and treating malaria. It could treat lump accumulation, dysmenorrhea, throat obstruction, edema, jaundice, and malaria. Palmitic acid (PA), oleic acid (OA), ethanol, and acetaminophen liver injuries have been proven to benefit from verbenalin. AIM OF THE STUDY To study the effects of verbenalin on the prevention of alcoholic steatohepatitis (ASH) through the regulation of oxidative stress and mitochondrial dysfunction by regulating MDMX (Murine double minute X)/PPARα (Peroxisome proliferator-activated receptor alpha)-mediated ferroptosis. MATERIAL AND METHODS C57BL/6 mice treated with alcohol followed by the Gao-Binge protocol were administered verbenalin by gavage simultaneously. The mitochondrial mass and morphology were visualized using TEM. AML-12 cells were stimulated with ethanol to mimic ASH in vitro. Western blotting, co-immunoprecipitation, and kit determination were simultaneously performed. The target protein of verbenalin was identified by molecular docking, and cellular thermal shift assay (CETSA) further confirmed its interactions. RESULTS Verbenalin alleviates oxidative stress and ferroptosis in alcohol-associated steatohepatitis. To elucidate the molecular mechanism by which verbenalin inhibits abnormal mitochondrial dysfunction, molecular docking was performed, and MDMX was identified as the target protein of verbenalin. CETSA assays revealed a specific interaction between MDMX and verbenalin. Co-immunoprecipitation demonstrated that PPARα played a critical role in promoting the ability of MDMX to affect ferroptosis. Verbenalin regulates MDMX/PPARα-mediated ferroptosis in AML-12 cells. CONCLUSION Verbenalin regulates ferroptosis and highlights the therapeutic potential of verbenalin and ferroptosis inhibition in reducing alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Jiahui Dong
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Changlin Du
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Chuanting Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Qi Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Zhonghao Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Qian Zhu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, China
| | - Lei Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230036, China.
| | - Taotao Ma
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, China.
| |
Collapse
|
5
|
Kowalczyk M, Piwowarski JP, Wardaszka A, Średnicka P, Wójcicki M, Juszczuk-Kubiak E. Application of In Vitro Models for Studying the Mechanisms Underlying the Obesogenic Action of Endocrine-Disrupting Chemicals (EDCs) as Food Contaminants-A Review. Int J Mol Sci 2023; 24:ijms24021083. [PMID: 36674599 PMCID: PMC9866663 DOI: 10.3390/ijms24021083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Obesogenic endocrine-disrupting chemicals (EDCs) belong to the group of environmental contaminants, which can adversely affect human health. A growing body of evidence supports that chronic exposure to EDCs can contribute to a rapid increase in obesity among adults and children, especially in wealthy industrialized countries with a high production of widely used industrial chemicals such as plasticizers (bisphenols and phthalates), parabens, flame retardants, and pesticides. The main source of human exposure to obesogenic EDCs is through diet, particularly with the consumption of contaminated food such as meat, fish, fruit, vegetables, milk, and dairy products. EDCs can promote obesity by stimulating adipo- and lipogenesis of target cells such as adipocytes and hepatocytes, disrupting glucose metabolism and insulin secretion, and impacting hormonal appetite/satiety regulation. In vitro models still play an essential role in investigating potential environmental obesogens. The review aimed to provide information on currently available two-dimensional (2D) in vitro animal and human cell models applied for studying the mechanisms of obesogenic action of various industrial chemicals such as food contaminants. The advantages and limitations of in vitro models representing the crucial endocrine tissue (adipose tissue) and organs (liver and pancreas) involved in the etiology of obesity and metabolic diseases, which are applied to evaluate the effects of obesogenic EDCs and their disruption activity, were thoroughly and critically discussed.
Collapse
Affiliation(s)
- Monika Kowalczyk
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Jakub P. Piwowarski
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland
- Correspondence: (J.P.P.); (E.J.-K.)
| | - Artur Wardaszka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
- Correspondence: (J.P.P.); (E.J.-K.)
| |
Collapse
|
6
|
Demiryürek AN, Göktürk Ö, Saracaloglu A, Demiryürek S, Demiryürek AT. Protective effects of verbenalin and (+)-eudesmin against 6-hydroxydopamine-induced oxidative/nitrosative stress in SH-SY5Y cells. Mol Biol Rep 2023; 50:331-338. [PMID: 36331750 DOI: 10.1007/s11033-022-08039-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The purpose of this research was to study whether verbenalin, an iridoid glucoside, and (+)-eudesmin, a furofuran lignan isolated from different plant families, can attenuate cell damage and death induced by 6-hydroxydopamine (6-OHDA) in human neuroblastoma SH-SY5Y cells. METHODS SH-SY5Y cells were incubated with 6-OHDA (35 µM) for 1 day. Verbenalin and (+)-eudesmin were administrated with various concentrations (1, 2.5, 5, 10, 20, and 50 µM) one hour before the 6-OHDA treatment. After 1 day, cell viability and neuroprotective effect were investigated with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Nitrosative stress was determined with measurements of nitric oxide (NO) and 3-nitrotyrosine (3-NT), a biomarker of peroxynitrite formation. RESULTS We observed that 6-OHDA declined viability and augmented LDH leakage in SH-SY5Y cells. MTT analyses showed that pretreatment with verbenalin and (+)-eudesmin markedly prevented the toxicity due to 6-OHDA (P < 0.05). Verbenalin and (+)-eudesmin suppressed LDH release induced by 6-OHDA (P < 0.01). Although 6-OHDA treatment produced no marked effects on NO levels, (+)-eudesmin at high concentrations (10-50 µM) markedly attenuated NO levels (P < 0.01). There was a significant increase in 3-NT levels with 6-OHDA exposure in cells. Pretreatment with verbenalin, but not (+)-eudesmin, diminished 3-NT levels at low concentrations (1-20 µM) and prevented the cytotoxic effect of 6-OHDA (P < 0.01). CONCLUSION These results indicated that verbenalin and (+)-eudesmin exert potent cytoprotective activities against cytotoxicity triggered by 6-OHDA in neuroblastoma cells. This is the first report demonstrating that verbenalin may act as a peroxynitrite scavenger.
Collapse
Affiliation(s)
- Ayşe Nur Demiryürek
- Gaziantep Sahinbey Municipality Science and Art Center, 27470, Gaziantep, Turkey
| | - Özge Göktürk
- Gaziantep Sahinbey Municipality Science and Art Center, 27470, Gaziantep, Turkey
| | - Ahmet Saracaloglu
- Department of Medical Pharmacology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey
| | - Seniz Demiryürek
- Department of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey
| | - Abdullah Tuncay Demiryürek
- Department of Medical Pharmacology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey.
| |
Collapse
|
7
|
Pawłowska I, Kuźbicka K, Krzyżaniak N, Kocić I. Interactions between selected over-the-counter drugs and food: clinical relevance and prevention. Int J Food Sci Nutr 2022; 73:1005-1018. [PMID: 36068659 DOI: 10.1080/09637486.2022.2119214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The use of medicines is associated with both therapeutic and adverse effects and interactions. In particular, interactions between drugs and food are common, and can either enhance the action of drugs or diminish their effect. Health professionals have a responsibility to screen for and educate patients about food-drug interactions, as well as to assist in decreasing their occurrence. The aim of this study was to identify any interactions present between food and selected over-the-counter (OTC) drugs. Sixty-five publications out of a potential 1112 found in the search were included in the study and among them 28 concerned painkillers, 6 - antihistamines, 4 - nasal decongestants, 10 were for proton pump inhibitors and for iron and 8 for sildenafil. Interactions between food and OTC drugs do exist. These drugs should not be taken regardless of the meal. Providing relevant information to the patient will increase drug safety and efficacy.
Collapse
Affiliation(s)
- Iga Pawłowska
- Department of Pharmacology, Medical University of Gdańsk, Gdańsk, Poland
| | - Karolina Kuźbicka
- Department of Pharmacology, Medical University of Gdańsk, Gdańsk, Poland
| | - Natalia Krzyżaniak
- School of Pharmacy, The University of Queensland, Brisbane, Woolloongabba, Australia
| | - Ivan Kocić
- Department of Pharmacology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
8
|
Discovery of Phenolic Glycoside from Hyssopus cuspidatus Attenuates LPS-Induced Inflammatory Responses by Inhibition of iNOS and COX-2 Expression through Suppression of NF-κB Activation. Int J Mol Sci 2021; 22:ijms222212128. [PMID: 34830006 PMCID: PMC8623068 DOI: 10.3390/ijms222212128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 11/17/2022] Open
Abstract
It seems quite necessary to obtain effective substances from natural products against inflammatory response (IR) as there are presently clinical problems regarding accompanying side effects and lowered quality of life. This work aimed to investigate the abilities of hyssopuside (HY), a novel phenolic glycoside isolated from Hyssopus cuspidatus (H. cuspidatus), against IR in lipopolysaccharide (LPS)-induced RAW 264.7 cells and mouse peritoneal macrophages. The results indicated that HY could reduce nitric oxide (NO) production and inhibit the production and secretion of pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in LPS-stimulated macrophages. Moreover, data from the immunofluorescence study showed that HY suppressed nuclear translocation of nuclear factor-kappa B (NF-κB) upon LPS induction. The Western blot results suggested that HY reversed the LPS-induced degradation of IκB (inhibitor of NF-κB), which is normally required for the activation of NF-κB. Meanwhile, the overexpression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) diminished significantly with the presence of HY in response to LPS stimulation. On the other hand, HY had a negligible impact on the activation of mitogen-activated protein kinase (MAPK) pathways. Moreover, an in silico study of HY against four essential proteins/enzymes revealed that COX-2 was the most efficient enzyme for the interaction, and binding of residues Phe179, Asn351, and Ser424 with HY played crucial roles in the observed activity. The structure analysis indicated the typical characterizations with phenylethanoid glycoside contributed to the anti-inflammatory effects of HY. These results indicated that HY manipulated its anti-inflammatory effects mainly through blocking the NF-κB signal transduction pathways. Collectively, we believe that HY could be a potential alternative phenolic agent for alleviating excessive inflammation in many inflammation-associated diseases.
Collapse
|
9
|
Jambor T, Arvay J, Ivanisova E, Tvrda E, Kovacik A, Greifova H, Lukac N. Investigation of the Properties and Effects of Salvia Officinalis L. on the Viability, Steroidogenesis and Reactive Oxygen Species (ROS) Production in TM3 Leydig Cells in Vitro. Physiol Res 2020; 69:661-673. [PMID: 32584137 DOI: 10.33549/physiolres.934457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The aim of our study was to reveal the in vitro effects of Salvia officinalis L. (37.5, 75, 150, 200, 250, 300 and 600 µg/ml) extract on the TM3 Leydig cell viability, membrane integrity, steroidogenesis and reactive oxygen species production after 24 h and 48 h cultivation. For the present study, the extract prepared from Salvia officinalis L. leaves was analysed by high performance liquid chromatography (HPLC) for selected flavonoids and phenolic acids followed by a determination of its free radicals scavenging activity (DPPH). Furthermore, Leydig cell viability was assessed by the mitochondrial toxicity assay (MTT), while the membrane integrity was evaluated by 5- carboxyfluorescein diacetate-acetoxymethyl ester (5-CFDA-AM). The level of steroid hormones was performed by enzyme-linked immunosorbent assay (ELISA) from the culture media, while the superoxide radical generation was measured by the nitroblue tetrazolium chloride (NBT) assay. The results show that experimental concentrations did not damage the cell membrane integrity and viability when present at below 300 µg/ml, it was only at 600 µg/ml that a significant (P<0.05) cell viability decline was observed after a 48 h cultivation. A significant (P<0.05) stimulation of testosterone secretion was recorded at 250 µg/ml for 24 h, while the prolonged cultivation time significantly (P<0.05) increased the testosterone and progesterone production at 150, 200, 250 and 300 µg/ml. Furthermore, none of the selected doses exhibited significant ROS-promoting effects however, the highest dose of Salvia initiated the free radical scavenging activity in cultured mice Leydig cells.
Collapse
Affiliation(s)
- T Jambor
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, itra, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|