1
|
Lopes-Ferreira JV, Matos JEM, Dias FCR, Siervo GEML, Gomes MLM. Protective effects of phenolic phytochemicals on male fertility: a narrative review. BRAZ J BIOL 2025; 85:e288879. [PMID: 39968999 DOI: 10.1590/1519-6984.288879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/26/2024] [Indexed: 02/20/2025] Open
Abstract
Infertility is a global health issue and is closely related to oxidative stress, which occurs when high concentrations of free radicals surpass the protective effects of antioxidant molecules and enzymes. Such imbalance causes damage to DNA, as well as cellular proteins and lipids, ultimately leading to the destruction of the blood-testis barrier. This, in turn, hinders spermatogenesis. Various plants and compounds have been employed in an attempt to reverse these damages, such as phenolic compounds. Therefore, this review aims to identify the main phytochemical phenolic compounds and their respective effects when used in the treatment of male infertility. Related information concerning phenolic phytochemical compounds was gathered from studies selected from PubMed, Scopus, and Web of Science databases. The search was conducted using the combination of six terms: "phenolic compounds", "male infertility", "testis", "spermatozoa", "testosterone" and "male fertility". These compounds can raise testosterone levels, reduce lipid peroxidation, and improve tubular histoarchitecture in cases of subfertility associated with diabetes mellitus. They can also mitigate the damage caused by obesity by increasing serum testosterone, antioxidant activity, and sperm motility. When it comes to fertility problems caused by inorganic and organic pollutants, these compounds effectively restore the structure of the seminiferous tubules, increase testosterone levels, and improve sperm quality. Furthermore, phenolic phytochemical compounds have shown beneficial effects in countering the adverse impacts of certain drugs on testicular physiology by reducing apoptosis in testicular tissue, increasing the number of Leydig cells, and promoting spermatocyte production. However, while these compounds may have protective effects on sperm cryopreservation for in vitro fertilization, caution is needed as certain dosages can cause irreversible damage to sperm quality. Overall, plant extracts containing phenolic phytochemical compounds hold promise as a therapeutic avenue for treating infertility and subfertility caused by metabolic disorders and environmental pollutants.
Collapse
Affiliation(s)
- J V Lopes-Ferreira
- Universidade Federal do Triângulo Mineiro, Departamento de Biologia Estrutural, Uberaba, MG, Brasil
| | - J E M Matos
- Universidade Federal do Triângulo Mineiro, Departamento de Biologia Estrutural, Uberaba, MG, Brasil
| | - F C R Dias
- Universidade Federal do Triângulo Mineiro, Departamento de Biologia Estrutural, Uberaba, MG, Brasil
| | - G E M L Siervo
- Universidade Federal do Triângulo Mineiro, Departamento de Patologia, Genética e Evolução, Uberaba, MG, Brasil
| | - M L M Gomes
- Universidade Federal do Triângulo Mineiro, Departamento de Biologia Estrutural, Uberaba, MG, Brasil
| |
Collapse
|
2
|
Ogwoni HA, Aja PM, Eze ED, Agu PC, Moyosore AA, Ale BA, Ekpono EU, Awoke JN, Ogbu PN, Ukachi OU, Orji OU, Nweke PC, Egwu CO, Ekpono EU, Ewa GO, Igwenyi IO, Alum EU, Chukwu DC, Aja L, Ani GO, Offor CE, Yakubu OE, Maduagwuna E, Akobi JB, Noreen S, Awuchi CG. Cucumeropsis mannii seed oil (CMSO) restores testicular mitochondrial dysfunctions by modulating the activities of dysregulated testicular mitochondrial enzymes in male albino rats exposed to bisphenol A. Food Sci Nutr 2024; 12:7854-7863. [PMID: 39479659 PMCID: PMC11521674 DOI: 10.1002/fsn3.4379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 11/02/2024] Open
Abstract
Bisphenol A, a traditional endocrine disruptor, has been implicated in male infertility. This study investigated the effect of Cucumeropsis mannii seed oil (CMSO) on bisphenol A (BPA)-induced biochemical toxicity in the testicular mitochondria of male albino rats. The rats were assigned randomly to six experimental groups (n = 6), A, B, C, D, E, and F. Group A received 1 mL of olive oil. Groups B and C received 100 mL/kg body weight (BW) of BPA and 7.5 mL/kg BW CMSO, respectively. Rats in groups D, E, and F received preadministered doses of 100 mL/kg BW of BPA, 5 mL/kg BW of BPA, and 2.5 mL/kg BW of CMSO, respectively, followed by 6 weeks of exposure to those doses. Some mitochondrial enzymes, mitochondrial membrane potential (MMP), mitochondria testicular protein, and body weight of rats were determined using standard methods. BPA significantly reduced succinate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase, NADH dehydrogenase, and monoamine oxidase activity. Also, BPA prominently decreased the MMP, mitochondrial testicular protein, and body weight of rats. Interestingly, coadministration of BPA and CMSO restored the dysregulated activities of the enzymes and levels of other biomarkers. We postulated that CMSO may be a promising drug for treating systemic toxicity caused by environmental toxicants such as BPA.
Collapse
Affiliation(s)
- H. A. Ogwoni
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
- Department of Medical Biochemistry, Faculty of Basic Medical SciencesCross River University of Technology (CRUTECH)CalabarNigeria
| | - P. M. Aja
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
- Department of Biochemistry, Faculty of Biomedical SciencesKampala International UniversityBushenyiUganda
| | - Ejike Daniel Eze
- Department of Physiology, School of MedicineKabale UniversityKabaleUganda
| | - P. C. Agu
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - Afodun Adam Moyosore
- Department of Anatomy and Cell Biology, Faculty of Health SciencesBusitema UniversitySukuluUganda
| | - B. A. Ale
- Department of Biochemistry, Faculty of Biological SciencesUniversity of NigeriaNsukkaNigeria
| | - E. U. Ekpono
- Department of Science Laboratory Technology, Biochemistry OptionFederal PolytechnicOkoNigeria
| | - J. N. Awoke
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - Patience N. Ogbu
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of MedicineAlex‐Ekwueme Federal University, Ndufu‐AlikeIkwoNigeria
| | - O. U. Ukachi
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - O. U. Orji
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - P. C. Nweke
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - C. O. Egwu
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of MedicineAlex‐Ekwueme Federal University, Ndufu‐AlikeIkwoNigeria
| | - E. U. Ekpono
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - G. O. Ewa
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - I. O. Igwenyi
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - E. U. Alum
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - D. C. Chukwu
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - Lucy Aja
- Department of Science Education, Faculty of EducationEbonyi State UniversityAbakalikiNigeria
| | - G. O. Ani
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - C. E. Offor
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - O. E. Yakubu
- Department of Biochemistry, Faculty of SciencesFederal UniversityWukariNigeria
| | - E. Maduagwuna
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - J. B. Akobi
- Department of Medical Biochemistry, Faculty of Basic Medical SciencesCross River University of Technology (CRUTECH)CalabarNigeria
| | - Sana Noreen
- University Institute of Diet and Nutritional SciencesUniversity of LahoreLahorePakistan
| | - Chinaza Godswill Awuchi
- Department of Biochemistry, Faculty of Biomedical SciencesKampala International UniversityBushenyiUganda
- School of Natural and Applied SciencesKampala International UniversityKampalaUganda
| |
Collapse
|
3
|
Kanu SC, Ejezie FE, Ejezie CS, Eleazu CO. Effect of methanol extract of Plectranthus esculentus N.E.Br tuber and its fractions on indices of benign prostatic hyperplasia in Wistar rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118301. [PMID: 38735419 DOI: 10.1016/j.jep.2024.118301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Many ethnopharmacological properties (anti-tumor, etc.) have been credited to Plectranthus esculentus tuber but the scientific basis has not been established. AIM OF THE STUDY To evaluate the effect of methanol extract of P. esculentus tuber (MEPET) (phase 1) and its fractions (phase 2) on benign prostatic hyperplasia (BPH) in rats. MATERIALS AND METHODS The study was conducted in two phases. Phase 1, thirty-five male albino rats (6 weeks old) were divided into seven groups of five rats each: normal control (NC) received olive oil (subcutaneously) and water (orally); disease control (DC) received testosterone propionate (TP) (3 mg/kg) and water; test groups (1,2,3 and 4) received TP + MEPET at 100, 200, 400, 600 mg/kg respectively; positive control, received TP + finasteride (5 mg/70 kg). After 28 days, their relative prostate weights (RPW) and prostate specific antigen (PSA) were determined. Phase 2, thirty rats were divided into 6 groups of 5 rats each: NC received olive oil (subcutaneously daily) and dimethyl sulfoxide (DMSO) (orally); DC received TP (3 mg/kg), and DMSO; test group 1 received TP and aqueous fraction of MEPET (400 mg/kg); test group 2 received TP and methanol fraction of MEPET (400 mg/kg); test group 3 received TP, and ethyl acetate fraction of MEPET (400 mg/kg); positive control received TP and finasteride (5 mg/70 kg). After 28 days, their erythrocyte sedimentation rates, RPW, prostate levels of PSA, DHT, inflammatory, apoptotic markers and prostate histology were determined. RESULTS Ethyl acetate fraction of MEPET modulated most of the parameters of BPH in the rats in a manner akin to finasteride as corroborated by prostate histology. CONCLUSIONS EFPET could be useful in the treatment of BPH.
Collapse
Affiliation(s)
- Shedrach C Kanu
- Department of Medical Biochemistry, College of Medicine, University of Nigeria Enugu Campus, Enugu State, Nigeria; Department of Biochemistry, Alex-Ekwueme Federal University Ndufu-Alike, Ikwo, Ebonyi State, Nigeria.
| | - Fidelis E Ejezie
- Department of Medical Biochemistry, College of Medicine, University of Nigeria Enugu Campus, Enugu State, Nigeria
| | - Chioma S Ejezie
- Department of Haematology and Immunology, University of Nigeria Teaching Hospital, Ituku-Ozalla Enugu, Nigeria
| | - Chinedum O Eleazu
- Department of Biochemistry, Alex-Ekwueme Federal University Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| |
Collapse
|
4
|
Ekpono EU, Eze ED, Adam AM, Ibiam UA, Obasi OU, Ifie JE, Ekpono EU, Alum EU, Noreen S, Awuchi CG, Aja PM. Ameliorative Potential of Pumpkin Seed Oil ( Cucurbita pepo L.) Against Tramadol-Induced Oxidative Stress. Dose Response 2024; 22:15593258241226913. [PMID: 38234695 PMCID: PMC10793191 DOI: 10.1177/15593258241226913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Background of the Study The increase in the therapeutic use of tramadol in the management of moderate to severe pains in some disease conditions and its unregulated access has led to its associated toxicity and there is little or no information on the protection against its associated toxicity. Aim of the Study Considering the medicinal value of pumpkin seed oil, its availability, and neglected use, it becomes necessary to evaluate the possible potential of the seed oil in tramadol-induced oxidative stress in Wister Albino rats. Methods of the Study This study used fifty-six (56) albino rats to determine the impact of Cucurbita pepo seed oil (CPSO) on tramadol-induced oxidative stress. The rats were grouped into 7. After a week of acclimatization, rats in group 1 (normal control) had access to water and food, while rats in group 2 received 5 mL/Kg (b.w) of normal saline. 100 mg/kg of tramadol (TM) was delivered to groups 3-6 to induce toxicity. The third group (TM control) received no treatment, whilst the other 3 groups (TM-CPSO treatment groups) received 5, 2.5, and 1.5 mL/Kg of CPSO, respectively. Group 7 received only 5 mL/kg CPSO (CPSO group). Similarly, groups 2 through 7 had unrestricted access to food and water for 42 days and received treatments via oral intubation once per day. Indicators of oxidative stress were discovered in the brain homogenate. Results TM toxicity was demonstrated by a considerable increase (P < .05) in the brain MDA level and a significant drop (P < .05) in the brain GSH level, as well as a significant reduction (P < .05) in GPx, catalase, SOD, GST, and quinone reductase activities. Conclusion The dose-dependent delivery of CPSO was able to restore not only the activity but also the concentrations of the altered markers.
Collapse
Affiliation(s)
- Ezebuilo U. Ekpono
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
- Department of Science Laboratory Technology, Federal Polytechnique, Oko, Nigeria
| | - Ejike D. Eze
- Department of Physiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Afodun M Adam
- Department of Medical Imaging Science, School of Health Sciences, University of Rwanda, Rwanda
| | - Udu A. Ibiam
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
| | - Orji U. Obasi
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
| | - Josiah E. Ifie
- Department of Biochemistry, Kampala International University, Bushenyi, Uganda
| | - Ejike U. Ekpono
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
| | - Esther U. Alum
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
- Department of Research Publication and Extensions, Kampala International University, Kampala, Uganda
| | - Sana Noreen
- University Institute of Diet and Nutritional Sciences, University of Lahore, Lahore, Pakistan
| | - Chinaza G. Awuchi
- Department of Biochemistry, Kampala International University, Bushenyi, Uganda
- School of Natural and Applied Sciences, Kampala International University, Kampala, Uganda
| | - Patrick M. Aja
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
- Department of Biochemistry, Kampala International University, Bushenyi, Uganda
| |
Collapse
|
5
|
Aja PM, Ogwoni HA, Agu PC, Ekpono EU, Awoke JN, Ukachi OU, Orji OU, Ale BA, Nweke CP, Igwenyi IO, Alum EU, Chukwu DC, Offor CE, Asuk AA, Eze ED, Yakubu OE, Akobi JB, Ani OG, Awuchi CG. Cucumeropsis mannii seed oil protects against Bisphenol A-induced testicular mitochondrial damages. Food Sci Nutr 2023; 11:2631-2641. [PMID: 37324897 PMCID: PMC10261808 DOI: 10.1002/fsn3.3260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 09/20/2024] Open
Abstract
There has been increasing search for the ameliorative properties of seed oils against toxicants. bisphenol A acts as an estrogenic endocrine-disrupting chemical capable of causing male infertility. This study aimed to explore Cucumeropsis mannii seed oil effects against mitochondrial damage in rats using bisphenol A. Forty-eight rats were randomly assigned to six groups (n = 6) of eight rats each and fed the same food and water for 6 weeks. The group A rats were given 1 mL olive oil, while the ones in group B were given bisphenol A at 100 mL/kg body weight via oral route. Group C received C. mannii seed oil 7.5 mL/kg body weight C. mannii seed oil, while group D, group E, and group F were pre-administered bisphenol A at 100 mL/kg body weight, followed by treatment with C. mannii seed oil at 7.5, 5, and 2.5 mL/kg body weight, respectively. Antioxidant enzymes, glutathione, reactive oxygen species, testicular volume, malondialdehyde, body weight, and testicular studies were done using standard methods. The results of the bisphenol A-administered group showed a significant decrease in the antioxidant enzymes, glutathione, body weight, and testicular volume with elevation in the levels of reactive oxygen species, malondialdehyde, and testicular indices. BPA + CMSO-treated group showed a significant increase in GPx activity compared with BPA-exposed rats. CMSO treatment significantly increased catalase activity in comparison with that of rats exposed to BPA. Remarkably, C. mannii seed oil and bisphenol A co-administration significantly reversed the abnormalities observed in the dysregulated biochemical biomarkers. Our findings suggest that C. mannii seed oil has considerable antioxidant potential which can be explored in therapeutic development against systemic toxicity induced by exposure to bisphenol A. Cucumeropsis mannii seed oil protects against bisphenol A-induced testicular mitochondria damages.
Collapse
Affiliation(s)
- Patrick Maduabuchi Aja
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
- Department of BiochemistryKampala International UniversityBushenyiUganda
- Department of BiochemistryMbarara University of Science and TechnologyMbararaUganda
| | | | | | | | | | | | - Obasi Uche Orji
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | | | | | | | - Esther Ugo Alum
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | | | | | - Atamgba Agbor Asuk
- Department of Medical BiochemistryCross River University of Technology (CRUTECH)CalabarNigeria
| | | | | | - J. B. Akobi
- Department of Medical BiochemistryCross River University of Technology (CRUTECH)CalabarNigeria
| | | | - Chinaza Godswill Awuchi
- Department of BiochemistryKampala International UniversityBushenyiUganda
- School of Natural and Applied SciencesKampala International UniversityKampalaUganda
| |
Collapse
|
6
|
Aja PM, Chiadikaobi CD, Agu PC, Ale BA, Ani OG, Ekpono EU, Ogwoni HA, Awoke JN, Ogbu PN, Aja L, Nwite FE, Ukachi OU, Orji OU, Nweke PC, Egwu CO, Ekpono EU, Ewa GO, Igwenyi IO, Tusubira D, Offor CE, Maduagwuna EK, Alum EU, Uti DE, Njoku A, Atoki VA, Awuchi CG. Cucumeropsis mannii seed oil ameliorates Bisphenol-A-induced adipokines dysfunctions and dyslipidemia. Food Sci Nutr 2023; 11:2642-2653. [PMID: 37324904 PMCID: PMC10261814 DOI: 10.1002/fsn3.3271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/07/2023] [Accepted: 02/06/2023] [Indexed: 02/20/2023] Open
Abstract
This study demonstrated the therapeutic potentials of Cucumeropsis mannii seed oil (CMSO) capable of alleviating BPA-induced dyslipidemia and adipokine dysfunction. In this study, we evaluated the effects of CMSO on adipokine dysfunctions and dyslipidemia in bisphenol-A (BPA)-induced male Wistar rats. Six-week-old 36 albino rats of 100-200 g weight were assigned randomly to six groups, which received varied doses of BPA and/or CMSO. The administration of BPA and CMSO was done at the same time for 42 days by oral intubation. The adipokine levels and lipid profile were measured in adipose tissue and plasma using standard methods. BPA induced significant (p < .05) increases in triglycerides, cholesterol, leptin, LDL-C, and atherogenic and coronary risk indices in adipose tissue and plasma, as well as a decrease in adiponectin and HDL-C levels in Group II animals. BPA administration significantly (p < .05) elevated Leptin levels and reduced adiponectin levels. BPA plus CMSO reduced triglycerides, cholesterol, leptin, LDL-C, and atherogenic and coronary risk indices while increasing adiponectin levels and HDL-C in adipose tissue and plasma (p < .05). The results showed that BPA exposure increased adipose tissue as well as serum levels of the atherogenic index, triglycerides, cholesterol, coronary risk index, LDL-C, leptin, and body weight with decreased adiponectin levels and HDL-C. Treatment with CMSO reduced the toxicities caused by BPA in rats by modulating the body weight, adiponectin/leptin levels, and lipid profiles in serum and adipose tissue. This study has shown that CMSO ameliorates BPA-induced dyslipidemia and adipokine dysfunctions. We suggest for further clinical trial to establish the clinical applications.
Collapse
Affiliation(s)
- Patrick M. Aja
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
- Department of BiochemistryMbarara University of Science and Technology (MUST)MbararaUganda
- Department of BiochemistryKampala International UniversityBushenyiUganda
| | | | - Peter C. Agu
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Boniface A. Ale
- Department of BiochemistryUniversity of NigeriaNsukkaNigeria
| | - Onyedika G. Ani
- Department of Public Health and NutritionUniversity of ChesterChesterUK
| | - Ezebuilo U. Ekpono
- Department of BiochemistryMbarara University of Science and Technology (MUST)MbararaUganda
| | - Hilary A. Ogwoni
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Joshua N. Awoke
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Patience N. Ogbu
- Department of Medical BiochemistryAlex‐Ekwueme Federal University, Ndufu‐Alike, IkwoAbakalikiEbonyi StateNigeria
| | - Lucy Aja
- Department of Science EducationEbonyi State UniversityAbakalikiNigeria
- Department of BiochemistryFederal University of Health SciencesOtukpoNigeria
| | - Felix E. Nwite
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Oliver U. Ukachi
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Obasi U. Orji
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Peter C. Nweke
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Chinedu O. Egwu
- Department of BiochemistryUniversity of NigeriaNsukkaNigeria
| | - Ejike U. Ekpono
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Gift O. Ewa
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | | | - Deusdedit Tusubira
- Department of BiochemistryMbarara University of Science and Technology (MUST)MbararaUganda
| | | | | | - Esther U. Alum
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Daniel E. Uti
- Department of Science Laboratory TechnologyFederal Polytechnic OkoOkoAnambra StateNigeria
| | | | - Victor A. Atoki
- Department of BiochemistryKampala International UniversityBushenyiUganda
| | - Chinaza G. Awuchi
- Department of BiochemistryKampala International UniversityBushenyiUganda
- School of Natural and Applied Sciences, Kampala International UniversityKampalaUganda
| |
Collapse
|
7
|
Tusubira D, Munezero J, Agu PC, Ajayi CO, Oloro J, Namale N, Ssedyabane F, Nakiguli CK, Adegboyega AE, Aja PM. In-vivo and in-silico studies revealed the molecular mechanisms of Colocasia esculenta phenolics as novel chemotherapy against benign prostatic hyperplasia via inhibition of 5α-reductase and α1-adrenoceptor. In Silico Pharmacol 2023; 11:4. [PMID: 36873908 PMCID: PMC9978050 DOI: 10.1007/s40203-023-00141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/11/2023] [Indexed: 03/05/2023] Open
Abstract
Benign Prostatic Hyperplasia (BPH) is a major cause of lower urinary tract infections and erectile dysfunction thus a major contributor to lowering the quality of life among older men. In this study, we investigated the molecular mechanism of Colocasia esculenta (CE) as a novel agent for BPH chemotherapy. In vivo, we assigned 45 male Wistar albino rats about 6 weeks old into 9 experimental groups (n = 5). BPH was induced in groups 2-9 with 3 mg/kg of Testosterone Propionate (TP) subcutaneously. Group 2 (BPH) was not treated. Group 3 was treated with 5 mg/kg Finasteride (standard drug). Group 4-9 were treated each with 200 mg/kg body weight (b.w) of CE crude tuber extracts/fractions (ethanol, hexane, dichloromethane, ethyl acetate, butanol, aqueous). At the end of treatment, we sampled the rats' serum to check the level of PSA. In silico, we conducted a molecular docking of the crude extract of CE phenolics (CyP) previously reported, targeting 5α-Reductase and α1-Adrenoceptor linked to the BPH progressions. We adopted the standard inhibitors/antagonists (5α-reductase: finasteride; α1-adrenoceptor: tamsulosin) of the target proteins as controls. Furthermore, the pharmacological properties of the lead molecules were studied in terms of ADMET using swissadme and pKCSM resources, respectively. Results showed that administration of TP in male Wistar albino rats significantly (p < 0.05) elevated serum PSA levels whereas CE crude extracts/fractions significantly (p < 0.05) lowered the serum PSA level. Also, fourteen of the CyPs bind to at least one or two of the target proteins with their binding affinity of between - 9.3 to - 5.6 kcal/mol and - 6.9 to - 4.2 kcal/mol, respectively. The CyPs possess better pharmacological properties compared to the standard drugs. Therefore, they have the potentials to be enlisted for clinical trials towards the management of BPH. Graphical Abstract
Collapse
Affiliation(s)
- Deusdedit Tusubira
- Biochemistry Department, Faculty of Medicine, Mbarara University of Science and Technology, P. O. Box 1410, Mbarara, Uganda
- Mbarara University of Science and Technology, Biochemistry Department, Mbarara, Uganda
| | - Jonasi Munezero
- Biochemistry Department, Faculty of Medicine, Mbarara University of Science and Technology, P. O. Box 1410, Mbarara, Uganda
| | - Peter Chinedu Agu
- Department of Biochemistry, Faculty of Science, Ebonyi State University, PMB 053, Abakaliki, Nigeria
| | | | - Joseph Oloro
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Nathiim Namale
- Biochemistry Department, Faculty of Medicine, Mbarara University of Science and Technology, P. O. Box 1410, Mbarara, Uganda
| | - Frank Ssedyabane
- Medical Laboratory Science, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Caroline Kiwanuka Nakiguli
- Department of Chemistry, Faculty of Science, Mbarara University of Science and Technology, Mbarara, Uganda
| | | | - Patrick Maduabuchi Aja
- Biochemistry Department, Faculty of Medicine, Mbarara University of Science and Technology, P. O. Box 1410, Mbarara, Uganda
- Department of Biochemistry, Faculty of Science, Ebonyi State University, PMB 053, Abakaliki, Nigeria
| |
Collapse
|
8
|
Cucumeropsis mannii seed oil (CMSO) attenuates alterations in testicular biochemistry and histology against Bisphenol a-induced toxicity in male Wister albino rats. Heliyon 2022; 8:e09162. [PMID: 35846473 PMCID: PMC9280550 DOI: 10.1016/j.heliyon.2022.e09162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/14/2021] [Accepted: 03/18/2022] [Indexed: 11/22/2022] Open
Abstract
Background Male reproductive health has deteriorated in recent years as a result of industrialization, which has led to the use of desirable chemicals, like Bisphenol A (BPA), of underlying toxicity. Cucumeropsis mannii seed is a common soup thickener that produces vegetable oil as well as essential nutrients making it a source of nutraceuticals enlisted with a wide range of therapeutic effects. Methods A total of 48 adult male Wistar rats (120 ± 200g) were used in this study. They were completely randomized and divided into six groups: A (1ml olive oil) irrespective of the weight, B [BPA 100 mg/kg body weight (bw)], C (CMSO 7.5 ml/kg bw), D (CMSO 7.5 ml/kg bw + BPA 100 mg/kg bw), E (CMSO 5.0 ml/kg bw + BPA 100 mg/kg bw), and E (CMSO 2.5 ml/kg bw + BPA 100 mg/kg bw). At the end of the administration via oral routes, rats were sacrificed and testes were collected for biochemistry and histological analysis. Results BPA significantly (P < 0.05) decreased total testicular protein, epididymal sperm parameters (count, volume, and motility), Mitochondrial Membrane Potential (MMP), body weight, testicular volume; and significantly (P < 0.05) increased testicular enzymes (alkaline phosphatase and lactate dehydrogenase), testicular index; plus histological damages. Interestingly, co-administration of BPA and CMSO significantly (P < 0.05) reversed the biochemical and histological changes. Conclusions CMSO prevented the biochemistry and histological alterations hence reducing the testicular toxicity. Therefore, CMSO has the potential to be a promising novel nutraceutical for the treatment and management of BPA-induced testicular toxicity.
Collapse
|