1
|
Luo X, Li J, Cen Z, Feng G, Hong M, Huang L, Long Q. Exploring the therapeutic potential of lupeol: A review of its mechanisms, clinical applications, and advances in bioavailability enhancement. Food Chem Toxicol 2025; 196:115193. [PMID: 39662867 DOI: 10.1016/j.fct.2024.115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Lupeol, a naturally occurring triterpenoid, has garnered significant attention for its diverse range of biological activities and potential therapeutic applications. This comprehensive review delves into the various aspects of lupeol, including its sources, extraction methods, chemical characteristics, pharmacokinetics, safety evaluation, mechanisms of action, and applications in disease treatment. We highlight the compound's unique carbon skeleton and its role in inflammation regulation, antioxidant activity, and broad-spectrum antimicrobial effects. The review also underscores lupeol's potential in cancer therapy, cardiovascular protection, metabolic disease management, and wound healing. Furthermore, we discuss the challenges and future perspectives of lupeol's clinical application, emphasizing the need for further research to improve its bioavailability and explore its full therapeutic potential. The review concludes by recognizing the significance of lupeol in drug development and healthcare, with expectations for future breakthroughs in medical applications.
Collapse
Affiliation(s)
- Xia Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ji Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhifeng Cen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Gang Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Meiqi Hong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lizhen Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Ren L, Zhang T, Zhang J. Recent advances in dietary androgen receptor inhibitors. Med Res Rev 2024; 44:1446-1500. [PMID: 38279967 DOI: 10.1002/med.22019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
As a nuclear transcription factor, the androgen receptor (AR) plays a crucial role not only in normal male sexual differentiation and growth of the prostate, but also in benign prostatic hyperplasia, prostatitis, and prostate cancer. Multiple population-based epidemiological studies demonstrated that prostate cancer risk was inversely associated with increased dietary intakes of green tea, soy products, tomato, and so forth. Therefore, this review aimed to summarize the structure and function of AR, and further illustrate the structural basis for antagonistic mechanisms of the currently clinically available antiandrogens. Due to the limitations of these antiandrogens, a series of natural AR inhibitors have been identified from edible plants such as fruits and vegetables, as well as folk medicines, health foods, and nutritional supplements. Hence, this review mainly focused on recent experimental, epidemiological, and clinical studies about natural AR inhibitors, particularly the association between dietary intake of natural antiandrogens and reduced risk of prostatic diseases. Since natural products offer multiple advantages over synthetic antiandrogens, this review may provide a comprehensive and updated overview of dietary-derived AR inhibitors, as well as their potential for the nutritional intervention against prostatic disorders.
Collapse
Affiliation(s)
- Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
3
|
Singh D, Khan MA, Mishra D, Goel A, Ansari MA, Akhtar K, Siddique HR. Apigenin enhances sorafenib anti-tumour efficacy in hepatocellular carcinoma. Transl Oncol 2024; 43:101920. [PMID: 38394865 PMCID: PMC10899070 DOI: 10.1016/j.tranon.2024.101920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The "one drug-one target" paradigm has various limitations affecting drug efficacy, such as resistance profiles and adverse effects. Combinational therapies help reduce unexpected off-target effects and accelerate therapeutic efficacy. Sorafenib- an FDA-approved drug for liver cancer, has multiple limitations. Therefore, it is recommended to identify an agent that increases its effectiveness and reduces toxicity. In this regard, Apigenin, a plant flavone, would be an excellent option to explore. METHODS We used in silico, in vitro, and animal models to explore our hypothesis. For the in vitro study, HepG2 and Huh7 cells were exposed to Apigenin (12-96 μM) and Sorafenib (1-10 μM). For the in vivo study, Diethylnitrosamine (DEN) (25 mg/kg) induced tumor-bearing animals were given Apigenin (50 mg/kg) or Sorafenib (10 mg/kg) alone and combined. Apigenin's bioavailability was checked by UPLC. Tumor nodules were studied macroscopically and by Scanning Electron Microscopy (SEM). Biochemical analysis, histopathology, immunohistochemistry, and qRT-PCR were done. RESULTS The results revealed Apigenin's good bioavailability. In silico study showed binding affinity of both chemicals with p53, NANOG, ß-Catenin, c-MYC, and TLR4. We consistently observed a better therapeutic efficacy in combination than alone treatment. Combination treatment showed i) better cytotoxicity, apoptosis induction, and cell cycle arrest of tumor cells, ii) tumor growth reduction, iii) increased expression of p53 and decreased Cd10, Nanog, ß-Catenin, c-Myc, Afp, and Tlr4. CONCLUSIONS In conclusion, Apigenin could enhance the therapeutic efficacy of Sorafenib against liver cancer and may be a promising therapeutic approach for treating HCC. However, further research is imperative to gain more in-depth mechanistic insights.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Dhruv Mishra
- Department of Zoology, DAV College (PG), Maa Shakumbhari University, Muzaffarnagar-251001, India
| | - Aditya Goel
- Department of Biotechnology, SCLS, Jamia Hamdard University, New Delhi 110062, India
| | - Mairaj Ahmed Ansari
- Department of Biotechnology, SCLS, Jamia Hamdard University, New Delhi 110062, India
| | - Kafil Akhtar
- Department of Pathology, JN Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
4
|
Singh D, Khan MA, Siddique HR. Unveiling the therapeutic promise of natural products in alleviating drug-induced liver injury: Present advancements and future prospects. Phytother Res 2024; 38:22-41. [PMID: 37775996 DOI: 10.1002/ptr.8022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Drug-induced liver injury (DILI) refers to adverse reactions to small chemical compounds, biological agents, and medical products. These reactions can manifest as acute or chronic damage to the liver. From 1997 to 2016, eight drugs, including troglitazone, nefazodone, and lumiracoxib, were removed from the market due to their liver-damaging effects, which can cause diseases. We aimed to review the recent research on natural products and their bioactive components as hepatoprotective agents in mitigating DILI. Recent articles were fetched via searching the PubMed, PMC, Google Scholar, and Web of Science electronic databases from 2010 to January 2023 using relevant keywords such as "natural products," "acetaminophen," "antibiotics," "paracetamol," "DILI," "hepatoprotective," "drug-induced liver injury," "liver failure," and "mitigation." The studies reveal that the antituberculosis drug (acetaminophen) is the most frequent cause of DILI, and natural products have been largely explored in alleviating acetaminophen-induced liver injury. They exert significant hepatoprotective effects by preventing mitochondrial dysfunction and inflammation, inhibiting oxidative/nitrative stress, and macromolecular damage. Due to the bioavailability and dietary nature, using natural products alone or as an adjuvant with existing drugs is promising. To advance DILI management, it is crucial to conduct well-designed randomized clinical trials to evaluate natural products' efficacy and develop new molecules clinically. However, natural products are a promising solution for remedying drug-induced hepatotoxicity and lowering the risk of DILI.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics and Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics and Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics and Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
5
|
Khan MA, Singh D, Jameel M, Maurya SK, Singh S, Akhtar K, Siddique HR. Lupeol, an androgen receptor inhibitor, enhances the chemosensitivity of prostate cancer stem cells to antiandrogen enzalutamide-based therapy. Toxicol Appl Pharmacol 2023; 478:116699. [PMID: 37777120 DOI: 10.1016/j.taap.2023.116699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
Enzalutamide is an androgen receptor (AR) antagonist commonly used in the treatment of prostate cancer (CaP). However, due to the potential toxicity and development of resistance associated with Enzalutamide-based therapy, there is a need to explore additional compounds that can enhance its therapeutic effectiveness while minimizing toxicity. Lupeol is a pharmacologically active triterpene having anticancer effects. The objective of this study was to explore Lupeol's potential in enhancing the chemosensitivity of chemoresistant CaP cells to Enzalutamide in vitro and in a mouse model. To test our hypothesis, we performed cell viability and luciferase reporter gene assay, flow cytometry, animal studies, and histopathological analysis. Finally, we analyzed the change in selective metabolites in the prostate tissue by LCMS. Results demonstrated that a combination of Lupeol and Enzalutamide could better (i) suppress the Cancer Stem Cells (CSCs) and chemoresistant cells (PTEN-CaP8 and PC3) viability and migration, (ii) increase cell cycle arrest, (iii) inhibit the transcriptional activity of AR, c-MYC, c-FLIP, and TCF (iv) inhibit tumor growth in a mouse model (v) protect Enzalutamide-induced adverse effects in prostate glands and gut tissue (vi) decrease levels of testosterone and methionine metabolites. In conclusion, Lupeol enhances the pharmacological efficacy of Enzalutamide and reduces the adverse effects. Thus, Lupeol could be a promising adjuvant for improving Enzalutamide-based treatment outcomes and warrant further research.
Collapse
Affiliation(s)
- Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Jameel
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Santosh K Maurya
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Swati Singh
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Kafil Akhtar
- Department of Pathology, JNMC, Aligarh 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
6
|
Singh D, Khan MA, Akhtar K, Rehman S, Parveen S, Amin KMY, Siddique HR. Protective effects of a polyherbal medicine, Majoon Suranjan against bisphenol-A induced genetic, oxidative and tissue damages. Drug Chem Toxicol 2023; 46:1057-1069. [PMID: 36120934 DOI: 10.1080/01480545.2022.2124519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/03/2022]
Abstract
Bisphenol-A (BPA) is a toxic chemical largely produced and used in polycarbonate plastics worldwide. Majoon Suranjan (MS), a polyherbal formulation, is used as an anti-inflammatory medicine against rheumatoid arthritis. The present study aimed to evaluate BPA-induced toxicity and its possible amelioration by MS. To test our hypothesis, we performed gas chromatography-mass spectrometry (GC-MS) analysis, DNA interaction studies, genotoxicity tests, oxidative stress parameters, and histopathological examinations. GC-MS profiling of MS revealed the presence of various anti-oxidant compounds. DNA interaction studies showed that both chemicals intercalate between DNA base pairs. Next, we observed BPA-induced genotoxicity and oxidative damage. The observed effects might be due to BPA-induced reactive oxygen species production. Further, BPA changed the anti-oxidant enzyme activities, increased the malondialdehyde, alanine aminotransferase, alkaline phosphatase, and total bilirubin levels, and caused gross damage to the liver and kidney. Interestingly, these effects were significantly reversed by MS. In conclusion, MS shows protective effects against BPA-induced toxicity and could be a potential alternative medicine against BPA toxicity, especially in third-world countries where BPA uses are not strictly regulated.Highlights:Bisphenol-A (BPA) induces multiple toxic effects.BPA induces genotoxicity, oxidative and tissue damage.Majoon Suranjan (MS) ameliorates the BPA induced toxic effects.GC-MS profiling show various active anti-oxidant compounds in MS.MS is anti-genotoxic, anti-oxidant, and hepato-renal protective.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Kafil Akhtar
- Department of Pathology, JN Medical College, Aligarh Muslim University, Aligarh, India
| | - Sumbul Rehman
- Department of Ilmul Advia, AK Tibbiya College, Aligarh Muslim University, Aligarh, India
| | - Sabiha Parveen
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - K M Yusuf Amin
- Department of Ilmul Advia, AK Tibbiya College, Aligarh Muslim University, Aligarh, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
7
|
Jameel M, Fatma H, Nadtochii LA, Siddique HR. Molecular Insight into Prostate Cancer: Preventive Role of Selective Bioactive Molecules. Life (Basel) 2023; 13:1976. [PMID: 37895357 PMCID: PMC10608662 DOI: 10.3390/life13101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Prostate cancer (CaP) is one of the most prevalent male malignancies, accounting for a considerable number of annual mortalities. However, the prompt identification of early-stage CaP often faces delays due to diverse factors, including socioeconomic inequalities. The androgen receptor (AR), in conjunction with various other signaling pathways, exerts a central influence on the genesis, progression, and metastasis of CaP, with androgen deprivation therapy (ADT) serving as the primary therapeutic strategy. Therapeutic modalities encompassing surgery, chemotherapy, hormonal intervention, and radiotherapy have been formulated for addressing early and metastatic CaP. Nonetheless, the heterogeneous tumor microenvironment frequently triggers the activation of signaling pathways, culminating in the emergence of chemoresistance, an aspect to which cancer stem cells (CSCs) notably contribute. Phytochemicals emerge as reservoirs of bioactive agents conferring manifold advantages against human morbidity. Several of these phytochemicals demonstrate potential chemoprotective and chemosensitizing properties against CaP, with selectivity exhibited towards malignant cells while sparing their normal counterparts. In this context, the present review aims to elucidate the intricate molecular underpinnings associated with metastatic CaP development and the acquisition of chemoresistance. Moreover, the contributions of phytochemicals to ameliorating CaP initiation, progression, and chemoresistance are also discussed.
Collapse
Affiliation(s)
- Mohd Jameel
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India (H.F.)
| | - Homa Fatma
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India (H.F.)
| | - Liudmila A. Nadtochii
- Department of Microbiology, Saint Petersburg State Chemical & Pharmaceutical University, 197022 Saint Petersburg, Russia
| | - Hifzur R. Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India (H.F.)
| |
Collapse
|
8
|
Jameel M, Alam MF, Fatma H, Singh D, Khan MA, Qureshi MA, Javed S, Younus H, Jamal K, Siddique HR. Flubendiamide induced genetic and cellular damages directly influence the life cycle of the oriental leaf worm, Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105448. [PMID: 37248017 DOI: 10.1016/j.pestbp.2023.105448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Accepted: 04/29/2023] [Indexed: 05/31/2023]
Abstract
Indiscriminate uses of insecticide greatly damage the environment as well as non-target organisms. Thus, multiple levels of bioassays can help better management of our environment. Flubendiamide is a phthalic acid diamide insecticide that ceases the function of insect muscle leading to paralysis and death. Here, we aimed to explore the effects of Flubendiamide on the life cycle of Spodoptera litura vis-a-vis the mode of action. Fourth instar larvae of the same age (120 ± 2 h) and size were fed with different concentrations (20-80 μg/mL) of Flubendiamide for 12-72 h. We performed a pharmacokinetics study, different biochemical assays, p450, Ecdysone receptor (EcR) and other genes expression analyses by Real-Time PCR and gross damages by Dye exclusion assay and histopathology. Our results demonstrate that the mean concentration of Flubendiamide after 48 h is 9.907 μg/mL and (i) altered the molting, metamorphosis, and reproduction at 80 μg/mL (24 h) (ii) increases all oxidative stress parameters (ROS/RNS, MDA, 8OHdG), decreases oxidative defense mechanisms (SOD, CAT, GST) at 80 μg/mL (48 h) and p450 in a time and concentration-dependent manner, (iii) activates CncC/Maf apoptotic pathways at 80 μg/mL concentration at 24 h while the expression declined from 48 h onwards, (iii) downregulates the EcR expression in a time and concentration-dependent manner, which might be responsible for disturbed molting, metamorphosis, and reproduction, and (iv) increase the expression of apoptotic genes (Caspase 1, -3, and - 5), in time and concentration-dependent manner causing gross morphological and histological damages. In conclusion, indiscriminate use of this insecticide can affect the ecosystem and have the capacity to cause multiple hazardous effects on experimental organisms. Thus, it warrants further investigations to improve and optimize the integrated pest management packages, including Flubendiamide for better management.
Collapse
Affiliation(s)
- Mohd Jameel
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Md Fazle Alam
- Institute of Biomedical Science, Fudan University, Shanghai 200437, China; Department of Biomedical Sciences, College of Rockford, University of Illinois, Chicago, United States of America
| | - Homa Fatma
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Deepti Singh
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | | | - Mohd Aamir Qureshi
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Saleem Javed
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Khowaja Jamal
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| | - Hifzur R Siddique
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
9
|
An Update on Phytochemicals in Redox Homeostasis: “Virtuous or Evil” in Cancer Chemoprevention? CHEMISTRY 2023. [DOI: 10.3390/chemistry5010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Redox homeostasis, a dynamic process ensuring a balance between cellular oxidizing and reducing reactions, is crucial for maintaining healthy cellular physiology and regulating many biological processes, requiring continuous monitoring and fine-tuning. Reactive species play a critical role in intra/intercellular signaling, and each cell has a specific system guarding cellular redox homeostasis. ROS signaling and oxidative stress are involved in cancer initiation and progression. However, the generation of reactive species beyond the threshold level inside the tumor microenvironment is considered one of the therapeutic approaches. Various studies have shown that some phytochemicals can target the redox homeostasis of the tumor microenvironment. Recent advances have focused on developing and introducing phytochemical interventions as favorable therapeutic options against cancer. However, studies have also suggested the “virtuous” and “evil” impacts of phytochemicals. Some phytochemicals enhance therapeutic efficacy by promoting intracellular oxidant accumulation. However, under certain conditions, some phytochemicals may harm the cellular microenvironment to promote cancer and tend to target different pathways for cancer initiation and development instead of targeting redox homeostasis. In this context, this review is focused on providing an overall understanding of redox homeostasis and intends to highlight the potential positive and negative impacts of phytochemicals in redox homeostasis and disease development. We also discuss the recent nanotechnology-based advancements in combating cancer development.
Collapse
|
10
|
Apigenin in cancer prevention and therapy: A systematic review and meta-analysis of animal models. Crit Rev Oncol Hematol 2022; 176:103751. [PMID: 35752426 DOI: 10.1016/j.critrevonc.2022.103751] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Apigenin is being increasingly recognized as a cancer chemopreventive agent. We aimed to investigate the anticancer effects of Apigenin in in-vivo studies to know its present research status and how close or how far it is from the clinics. METHODS Several electronic databases such as PubMed, Springer, Cochrane, and ctri.gov.in were searched to fetch the relevant articles. We focused only on published animal studies that reported the anticancer effects of Apigenin against various cancers. Two reviewers independently assessed the risk of bias for each analysis, and the conflicting views were resolved later by consensus. RESULTS A total of 25 studies focused on the anticancer effects of Apigenin on various cancer types, including liver, prostate, pancreatic, lung, nasopharyngeal, skin, colon, colorectal, colitis-associated carcinoma, head and neck squamous cell carcinoma, leukemia, renal cell carcinoma, Ehrlich ascites carcinoma, and breast cancer were included. Overall, Apigenin reduces tumor volume (SMD=-3.597, 95% CI: -4.502 to -2.691, p < 0.001), tumor-weight (SMD=-2.213, 95% CI: -2.897 to -1.529, p < 0.001), tumor number (SMD=-1.081, 95% CI: -1.599 to -0.563, p < 0.001) and tumor load (SMD=-1.556, 95% CI: -2.336 to -0.776, p < 0.001). Further, it has no significant effect on the animal's body-weight (SMD=-0.345, 95% CI: -0.832 to 0.143, p = 0.165). Apigenin exerts anti-tumor effects mainly by inducing apoptosis/cell-cycle arrest. CONCLUSIONS Our analysis suggests that Apigenin has potential anticancer effects against various cancers. However, the poor symmetry of the funnel plot suggested publication bias. Thus, it warrants further research to evaluate the potential of Apigenin alone or as an adjuvant for cancer treatment.
Collapse
|
11
|
Singh D, Khan MA, Akhtar K, Arjmand F, Siddique HR. Apigenin alleviates cancer drug Sorafenib induced multiple toxic effects in Swiss albino mice via anti-oxidative stress. Toxicol Appl Pharmacol 2022; 447:116072. [DOI: 10.1016/j.taap.2022.116072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 12/14/2022]
|