1
|
Yeo H, Lee H, Park SM, Kang HN. Paeoniae radix overcomes resistance to EGFR-TKIs via aurora B pathway suppression in lung adenocarcinoma. Life Sci 2024; 357:123097. [PMID: 39362582 DOI: 10.1016/j.lfs.2024.123097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/04/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Targeted therapies using epidermal growth factor receptor (EGFR) inhibitors have markedly improved survival rates and quality of life for patients with EGFR-mutant lung adenocarcinoma (LUAD). Despite these advancements, resistance to EGFR inhibitors remains a significant challenge, limiting the overall effectiveness of the treatment. This study explored the synergistic effects of combining Paeoniae Radix (PR) with first-generation EGFR-tyrosine kinase inhibitors (TKIs), erlotinib and gefitinib, to overcome this resistance. Transcriptomic analysis of EGFR-mutant LUAD cell lines revealed that PR treatment could potentially reverse the gene signatures associated with resistance to EGFR-TKIs, primarily through the suppression of the Aurora B pathway. Experimental validation demonstrated that combining PR with erlotinib and gefitinib enhanced drug responsiveness by inhibiting Aurora kinase activity and inducing apoptosis in LUAD cells. Additionally, gene expression changes confirmed these combined effects, with the suppression of the Aurora B pathway and upregulation of the apoptotic pathway, which was accompanied by increased expression of multiple pro-apoptotic genes. Our findings contribute to the development of natural product-based therapeutic strategies to mitigate drug resistance in LUAD.
Collapse
Affiliation(s)
- Heerim Yeo
- College of Pharmacy, Chungnam National University, Republic of Korea
| | - Haeseung Lee
- College of Pharmacy, Busan National University, Republic of Korea
| | - Sang-Min Park
- College of Pharmacy, Chungnam National University, Republic of Korea.
| | - Han Na Kang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Republic of Korea.
| |
Collapse
|
2
|
Campanelli G, Deabel RA, Puaar A, Devarakonda LS, Parupathi P, Zhang J, Waxner N, Yang C, Kumar A, Levenson AS. Molecular Efficacy of Gnetin C as Dual-Targeted Therapy for Castrate-Resistant Prostate Cancer. Mol Nutr Food Res 2023; 67:e2300479. [PMID: 37863824 DOI: 10.1002/mnfr.202300479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/29/2023] [Indexed: 10/22/2023]
Abstract
SCOPE Resistance of castrate-resistant prostate cancer (CRPC) to enzalutamide (Enz) involves the expression of constitutively active androgen receptor splice variant (AR-V7). In addition to altered AR pathways, CRPC is characterized by "non-AR-driven" signaling, which includes an overexpression of metastasis-associated protein 1 (MTA1). Combining natural compounds with anticancer drugs may enhance drug effectiveness while reducing adverse effects. In this study, the in vitro and in vivo anticancer effects of Gnetin C (GnC) alone and in combination with Enz against CRPC are examined. METHODS AND RESULTS The effects of GnC alone and in combination with Enz are assessed by cell viability, clonogenic survival, cell migration, and AR and MTA1 expression using 22Rv1 cells. The tumor growth in vivo is assessed by bioluminescent imaging, western blots, RT-PCR, and IHC. GnC alone and in combined treatment inhibit cell viability, clonogenic survival and migration, and AR and MTA1 expression in 22Rv1 cells. The underlying AR- and MTA1-targeted anticancer mechanisms of treatments in vivo involve inhibition of proliferation and angiogenesis, and induction of apoptosis. CONCLUSION The findings demonstrate that GnC alone and GnC combined with Enz effectively inhibits AR- and MTA1-promoted tumor-progression in advanced CRPC, which indicates its potential as a novel therapeutic approach for CRPC.
Collapse
Affiliation(s)
- Gisella Campanelli
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Rabab Al Deabel
- School of Health Professions and Nursing, Long Island University, Brookville, NY, USA
| | - Anand Puaar
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | | | - Prashanth Parupathi
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | | | - Noah Waxner
- College of Veterinary Medicine, Long Island University, Brookville, NY, USA
| | - Ching Yang
- College of Veterinary Medicine, Long Island University, Brookville, NY, USA
| | - Avinash Kumar
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Anait S Levenson
- College of Veterinary Medicine, Long Island University, Brookville, NY, USA
| |
Collapse
|
3
|
Xia J, Hu JN, Wang Z, Cai EB, Ren S, Wang YP, Lei XJ, Li W. Based on network pharmacology and molecular docking to explore the protective effect of Epimedii Folium extract on cisplatin-induced intestinal injury in mice. Front Pharmacol 2022; 13:1040504. [PMID: 36313368 PMCID: PMC9596753 DOI: 10.3389/fphar.2022.1040504] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Epimedii Folium, as a natural botanical medicine, has been reported to have protective effects on intestinal diseases by modulating multiple signaling pathways. This study aimed to explore the potential targets and molecular mechanisms of Epimedii Folium extract (EFE) against cisplatin-induced intestinal injury through network pharmacology, molecular docking, and animal experiments. Methods: Network pharmacology was used to predict potential candidate targets and related signaling pathways. Molecular docking was used to simulate the interactions between significant potential candidate targets and active components. For experimental validation, mice were intraperitoneally injected with cisplatin 20 mg/kg to establish an intestinal injury model. EFE (100, 200 mg/kg) was administered to mice by gavage for 10 days. The protective effect of EFE on intestinal injury was analyzed through biochemical index detection, histopathological staining, and western blotting. Results: Network pharmacology analysis revealed that PI3K-Akt and apoptosis signaling pathways were thought to play critical roles in EFE treatment of the intestinal injury. Molecular docking results showed that the active constituents of Epimedii Folium, including Icariin, Epimedin A, Epimedin B, and Epimedin C, stably docked with the core AKT1, p53, TNF-α, and NF-κB. In verified experiments, EFE could protect the antioxidant defense system by increasing the levels of glutathione peroxidase (GSH-Px) and catalase (CAT) while reducing the content of malondialdehyde (MDA). EFE could also inhibit the expression of NF-κB and the secretion of inflammatory factors, including TNF-α, IL-1β, and IL-6, thereby relieving the inflammatory damage. Further mechanism studies confirmed that EFE had an excellent protective effect on cisplatin-induced intestinal injury by regulating PI3K-Akt, caspase, and NF-κB signaling pathways. Conclusion: In summary, EFE could mitigate cisplatin-induced intestinal damage by modulating oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Juan Xia
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - En-Bo Cai
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Ying-Ping Wang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Xiu-Juan Lei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
- *Correspondence: Xiu-Juan Lei, ; Wei Li,
| | - Wei Li
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
- *Correspondence: Xiu-Juan Lei, ; Wei Li,
| |
Collapse
|
4
|
Park HJ, Park SH. The Ethanolic Extract of Trichosanthes Kirilowii Root Exerts anti-Cancer Effects in Human Non-Small Cell Lung Cancer Cells Resistant to EGFR TKI. Nutr Cancer 2022; 75:376-387. [PMID: 36004720 DOI: 10.1080/01635581.2022.2114509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of this study was to investigate whether the ethanol extract of the Trichosanthes kirilowii root (ETK), traditionally used to treat lung diseases, exhibits anticancer activity in epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-resistant non-small cell lung cancer (NSCLC) cells. ETK treatment suppressed the growth of EGFR TKI-resistant NSCLC cells, including H1299, H1975, PC9/ER (erlotinib-resistant PC9) and PC9/GR (gefitinib-resistant PC9) cells, in a concentration- and time-dependent manner. Dose-dependent decline in anchorage-dependent and -independent colony formation was also detected following ETK treatment. We demonstrate that the growth-inhibitory effect of ETK was related to apoptosis induction, based on flow cytometry results showing ETK-induced increase in the percentage of cells with sub-G1 DNA and the population of annexin V-positive cells. Consistently, ETK induced chromatin condensation and cleavage of poly(ADP-ribose) polymerase (PARP). As a molecular mechanism, the phosphorylation level of signal transducer and activator of transcription 3 (STAT3) and Src was decreased by ETK. ETK-induced apoptosis was partially reversed by transfection of constitutively activated STAT3, indicating that STAT3 inactivation mediated ETK-induced apoptosis in EGFR TKI-resistant NSCLC cells. Our results provide basic evidence supporting the role of ETK as a novel therapeutic in EGFR TKI-resistant NSCLC.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| | - Shin-Hyung Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| |
Collapse
|
5
|
Lee HYJ, Meng M, Liu Y, Su T, Kwan HY. Medicinal herbs and bioactive compounds overcome the drug resistance to epidermal growth factor receptor inhibitors in non-small cell lung cancer. Oncol Lett 2021; 22:646. [PMID: 34386068 DOI: 10.3892/ol.2021.12907] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Non-small cell lung cancer (NSCLC) accounts for ~85% of all lung cancer cases. Patients harboring epidermal growth factor receptor (EGFR) mutations usually develop resistance to treatment with frontline EGFR-tyrosine kinase inhibitors (EGFR-TKIs). The present review summarizes the current findings and delineates the molecular mechanism of action for the therapeutic effects of herbal extracts and phytochemicals in overcoming EGFR-TKI resistance in NSCLC. Novel molecular targets underlying EGFR-TKI resistance in NSCLC are also discussed. This review provides valuable information for the development of herbal bioactive compounds as alternative treatments for EGFR-TKI-resistant NSCLC.
Collapse
Affiliation(s)
- Hiu Yan Jennifer Lee
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| | - Mingjing Meng
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yulong Liu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| | - Tao Su
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| |
Collapse
|
6
|
Li X, Liang S, Tan CH, Cao S, Xu X, Er Saw P, Tao W. Nanocarriers in the Enhancement of Therapeutic Efficacy of Natural Drugs. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2020-0040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abstract Since time immemorial, plant derived natural products have been used for the treatment of various human diseases before the intervention of modern medicine. The basis of modern medicine is still being inspired from traditional medicine and therapies. However, despite
their tremendous therapeutic potential, these natural drugs often have poor bioavailability, metabolic instability, and aqueous insolubility. These factors greatly impede a natural drug’s commercialization potential as a mainstream medicine. Therefore, the development of nanocarrier
drug delivery systems is indispensable in overcoming the various constraints of the bottlenecks which occur with natural drugs. Of particular interest in this review are four plant materials endogenous to China with the common names of barrenwort or horny goat weed (Epimedium), Shu
Di Huang (Rehmannia glutinosa, RG), ginseng (Panax ginseng), and Dong Quai or female ginseng (Angelica sinensis, AS), each having been scientifically investigated for a wide range of therapeutic uses as has been originally discovered from the long history of traditional
usage and anecdotal information by local population groups in Asia. The integration of natural drugs from the East and nanocarrier drug delivery systems developed from the West is paving the way towards further accurate and efficient medicine therapy. We further discuss the potential benefits
of these plants and the enhancement of their therapeutic efficacy by nanotechnology intervention.
Collapse
Affiliation(s)
- Xiuling Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shunung Liang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510004, China
| | - Chee Hwee Tan
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510004, China
| | - Shuwen Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Wei Tao
- Center for Nanomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Chen T, Liu L, Zou Y, Hu X, Zhang W, Zhou T, Luo X, Fu W, Xu J. Nobiletin downregulates the SKP2-p21/p27-CDK2 axis to inhibit tumor progression and shows synergistic effects with palbociclib on renal cell carcinoma. Cancer Biol Med 2021; 18:227-244. [PMID: 33628597 PMCID: PMC7877181 DOI: 10.20892/j.issn.2095-3941.2020.0186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Objective: Natural extracts, including nobiletin, have been reported to enhance the efficacy and sensitivity of chemotherapeutic drugs. However, whether and how nobiletin affects tumor growth and progression in renal cell carcinoma (RCC) are still unclear. Methods: Cell proliferation, cell cycle and apoptosis analyses, colony-formation assays, immunoblotting analysis, and qRT-PCR analysis were performed to investigate how nobiletin affected RCC cell proliferation in vitro. The nude mouse model was used to test the efficacy of nobiletin alone or in combination with palbociclib. Results: Nobiletin inhibited cell proliferation by inducing G1 cell cycle arrest and cell apoptosis in RCC cells. Mechanistically, nobiletin decreased SKP2 protein expression by reducing its transcriptional level. The downregulated SKP2 caused accumulation of its substrates, p27 and p21, which further inhibited the activity of the G1 phase-related protein, CDK2, leading to inhibition of cell proliferation and tumor formation. A higher SKP2 protein level indicated less sensitivity to the CDK4/6 inhibitor, palbociclib. A combination of nobiletin and palbociclib showed a synergistic tumor inhibition in vitro and in an in vivo model. Conclusions: Nobiletin downregulated the SKP2-p21/p27-CDK2 axis to inhibit tumor progression and showed synergistic tumor inhibition effects with the CDK4/6 inhibitor, palbociclib, on RCC, which indicates a potential new therapeutic strategy.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Urology, Xinqiao Hospital of Army Medical University, Chongqing 400037, China
| | - Liu Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430040, China
| | - Yonghong Zou
- Department of Reproductive Medicine, Ji'an Central People's Hospital, Ji'an 343100, China
| | - Xiaoyan Hu
- Department of Urology, Xinqiao Hospital of Army Medical University, Chongqing 400037, China
| | - Wenfeng Zhang
- Department of Infectious Disease, the First Affiliated Hospital, Nanchang University, Nanchang 330001, China
| | - Tao Zhou
- Department of Urology, Xinqiao Hospital of Army Medical University, Chongqing 400037, China
| | - Xi Luo
- Department of Oncology, Southwest Hospital of Army Medical University, Chongqing 400038, China
| | - Weihua Fu
- Department of Urology, Xinqiao Hospital of Army Medical University, Chongqing 400037, China
| | - Jie Xu
- Department of Urology, Xinqiao Hospital of Army Medical University, Chongqing 400037, China
| |
Collapse
|
8
|
Huang C, Li Z, Zhu J, Chen X, Hao Y, Yang R, Huang R, Zhou J, Wang Z, Xiao W, Zheng C, Wang Y. Systems pharmacology dissection of Epimedium targeting tumor microenvironment to enhance cytotoxic T lymphocyte responses in lung cancer. Aging (Albany NY) 2021; 13:2912-2940. [PMID: 33460401 PMCID: PMC7880341 DOI: 10.18632/aging.202410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
The clinical notably success of immunotherapy fosters an enthusiasm in developing drugs by enhancing antitumor immunity in the tumor microenvironment (TME). Epimedium, is a promising herbal medicine for tumor immunotherapy due to the pharmacological actions in immunological function modulation and antitumor. Here, we developed a novel systems pharmacology strategy to explore the polypharmacology mechanism of Epimedium involving in targeting TME of non-small cell lung cancer (NSCLC). This strategy integrates the active compounds screening, target predicting, network pharmacology analysis and onco-immune interacting to predict the potential active compounds that trigger the antitumor immunity. Icaritin (ICT), a major active ingredient of Epimedium, was predicted to have good drug-like properties and target immune microenvironment in NSCLC via regulating multiple targets and pathways. Then, we evidenced that the ICT effectively inhibited tumor growth in LLC tumor-bearing mice and increases the infiltration of CD8+ T cells in TME. In addition, we demonstrated that ICT promotes infiltration of CD8+ T cells in TME by downregulating the immunosuppressive cytokine (TNF-α, IL10, IL6) and upregulating chemotaxis (CXCL9 and CXCL10). Overall, the systems pharmacology strategy offers an important paradigm to understand the mechanism of polypharmacology of natural products targeting TME.
Collapse
Affiliation(s)
- Chao Huang
- Bioinformatics Center, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhihua Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jinglin Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xuetong Chen
- Bioinformatics Center, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanyuan Hao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ruijie Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ruifei Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jun Zhou
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical, Co., Ltd., Lianyungang 222001, China
| | - Zhenzhong Wang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical, Co., Ltd., Lianyungang 222001, China
| | - Wei Xiao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical, Co., Ltd., Lianyungang 222001, China
| | - Chunli Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yonghua Wang
- Bioinformatics Center, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
9
|
Wu H, Luo Y, Xu D, Ke X, Ci T. Low molecular weight heparin modified bone targeting liposomes for orthotopic osteosarcoma and breast cancer bone metastatic tumors. Int J Biol Macromol 2020; 164:2583-2597. [DOI: 10.1016/j.ijbiomac.2020.08.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
|
10
|
Li J, Wang XH, Hu J, Shi M, Zhang L, Chen H. Combined treatment with N-acetylcysteine and gefitinib overcomes drug resistance to gefitinib in NSCLC cell line. Cancer Med 2019; 9:1495-1502. [PMID: 31891230 PMCID: PMC7013061 DOI: 10.1002/cam4.2610] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 09/01/2019] [Accepted: 09/13/2019] [Indexed: 12/24/2022] Open
Abstract
We aimed to explore the molecular substrate underlying EGFR‐TKI resistance and investigate the effects of N‐acetylcysteine (NAC) on reversing EGFR‐TKI resistance. In the current research, the effects of NAC in combination with gefitinib on reversing gefitinib resistance were examined using CCK‐8 assay, combination index (CI) method, matrigel invasion assay, wound‐healing assay, flow cytometry, western blot, and quantitative real‐time PCR (qRT‐PCR). CCK8 assay showed that NAC plus gefitinib combination overcame EGFR‐TKI resistance in non‐small cell lung cancer (NSCLC) cells by lowering the value of half maximal inhibitory concentration (IC50). CI calculations demonstrated a synergistic effect between the two drugs (CI < 1). Matrigel invasion assay and wound healing assay demonstrated a decrease in migration and invasion ability of PC‐9/GR cells after NAC and gefitinib treatment. Flow cytometry displayed enhanced apoptosis in the combination group. Western blot and qRT‐PCR revealed that increased E‐cadherin and decreased vimentin in the combination group. When PP2 was administered with gefitinib, the same effects were seen. Our findings suggest that NAC could restore the sensitivity of gefitinib‐resistant NSCLC cells to gefitinib via suppressing Src activation and reversing epithelial‐mesenchymal transition.
Collapse
Affiliation(s)
- Jun Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Hui Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Hu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Meng Shi
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Sun YS, Thakur K, Hu F, Zhang JG, Wei ZJ. Icariside II inhibits tumorigenesis via inhibiting AKT/Cyclin E/ CDK 2 pathway and activating mitochondria-dependent pathway. Pharmacol Res 2019; 152:104616. [PMID: 31883767 DOI: 10.1016/j.phrs.2019.104616] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/02/2019] [Accepted: 12/20/2019] [Indexed: 12/29/2022]
Abstract
Cervical cancer contributes largely in women cancer-related mortality. Herein, Icariside II, a flavonoid extracted from edible and pharmaceutical plant Epimedium brevicornum Maxim, exhibited significant anticancer activity on cervical cancer. At first, it was observed that Icariside II inhibited Hela cell proliferation at IC50 (9.2 μM) and the growth of Hela-originated xenografts in BALB/c nude mice. Next, we studied the underlying mechanisms of Icariside II from the aspects of cell growth and cell death. As for cell growth, Icariside II arrested cell cycle at G0/G1 phase through AKT/Cyclin E/CDK 2 from transcriptional and translational levels. As for cell death, Flow Cytometry and Immunofluorescence showed that Icariside II promoted cell death in a dose-dependet manner. And, Icariside II turned to activate the mitochondria-dependent pathway Caspase 9/Caspase 3 much more significantly than death receptor pathway Caspase 8/Caspase 3. Taken together, Icariside II presented anticancer effect on cervical cancer both in vitro and in vivo. Our study provides the evidence that Icariside II can be used as a suitable novel agent in cervical cancer treatment.
Collapse
Affiliation(s)
- Ya-Sai Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
12
|
Jung JY, Park SM, Ko HL, Lee JR, Park CA, Byun SH, Ku SK, Cho IJ, Kim SC. Epimedium koreanum Ameliorates Oxidative Stress-Mediated Liver Injury by Activating Nuclear Factor Erythroid 2-Related Factor 2. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:469-488. [PMID: 29433393 DOI: 10.1142/s0192415x18500246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oxidative stress induced by reactive oxygen species is the main cause of various liver diseases. This study investigated the hepatoprotective effect of Epimedium koreanum Nakai water extract (EKE) against arachidonic acid (AA)[Formula: see text][Formula: see text][Formula: see text]iron-mediated cytotoxicity in HepG2 cells and carbon tetrachloride (CCl4-)-mediated acute liver injury in mice. Pretreatment with EKE (30 and 100[Formula: see text][Formula: see text]g/mL) significantly inhibited AA[Formula: see text][Formula: see text][Formula: see text]iron-mediated cytotoxicity in HepG2 cells by preventing changes in the expression of cleaved caspase-3 and poly(ADP-ribose) polymerase. EKE attenuated hydrogen peroxide production, glutathione depletion, and mitochondrial membrane dysfunction. EKE also increased the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), transactivated anti-oxidant response element harboring luciferase activity, and induced the expression of anti-oxidant genes. Furthermore, the cytoprotective effect of EKE against AA[Formula: see text][Formula: see text][Formula: see text]iron was blocked in Nrf2 knockout cells. Ultra-performance liquid chromatography analysis showed that EKE contained icariin, icaritin, and quercetin; icaritin and quercetin were both found to protect HepG2 cells from AA[Formula: see text][Formula: see text][Formula: see text]iron via Nrf2 activation. In a CCl4-induced mouse model of liver injury, pretreatment with EKE (300[Formula: see text]mg/kg) for four consecutive days ameliorated CCl4-mediated increases in serum aspartate aminotransferase activity, histological activity index, hepatic parenchyma degeneration, and inflammatory cell infiltration. EKE also decreased the number of nitrotyrosine-, 4-hydroxynonenal-, cleaved caspase-3-, and cleaved poly(ADP-ribose) polymerase-positive cells in hepatic tissues. These results suggest EKE is a promising candidate for the prevention or treatment of oxidative stress-related liver diseases via Nrf2 activation.
Collapse
Affiliation(s)
- Ji Yun Jung
- * College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Sang Mi Park
- * College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Hae Li Ko
- * College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Jong Rok Lee
- † Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Chung A Park
- * College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Sung Hui Byun
- * College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Sae Kwang Ku
- * College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Il Je Cho
- * College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Sang Chan Kim
- * College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| |
Collapse
|
13
|
Prenyl-flavonoids from Epimedium koreanum Nakai and their soluble epoxide hydrolase and tyrosinase inhibitory activities. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1975-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Wu H, Zhong Q, Zhong R, Huang H, Xia Z, Ke Z, Zhang Z, Song J, Jia X. Preparation and antitumor evaluation of self-assembling oleanolic acid-loaded Pluronic P105/d-α-tocopheryl polyethylene glycol succinate mixed micelles for non-small-cell lung cancer treatment. Int J Nanomedicine 2016; 11:6337-6352. [PMID: 27932881 PMCID: PMC5135287 DOI: 10.2147/ijn.s119839] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Oleanolic acid (OA) is a triterpenoid found in various fruits and vegetables and used in traditional Chinese medicine. OA plays a crucial role in the treatment of several cancers, but poor water solubility, low permeability, and significant efflux have limited its widespread clinical use. Vitamin E-d-α-tocopheryl polyethylene glycol succinate (vitamin E-TPGS) and Pluronic P105 were used to improve the solubility and permeability and to decrease the efflux of OA. OA-loaded mixed micelles were prepared by ethanol thin-film hydration. The physicochemical properties of the micelles, including zeta potential, morphology, particle size, solubility, drug loading, and drug entrapment efficiency were characterized. OA release from micelles was slower than that from the free drug system. OA uptake by A549 non-small-cell lung cancer (NSCLC) cells was enhanced by the micelles. A tumor model was established by injecting A549 cells into nude mice. In vivo imaging showed that OA-micelles could accumulate in the tumors of nude mice. Additionally, smaller tumor size and increased expression of pro-apoptotic proteins were observed in OA-micelle-treated mice, indicating that OA-micelles are more effective than free OA in treating cancer. In vitro experiments were performed using two NSCLC cell lines (A549 and PC-9). Cytotoxicity evaluations showed that the half-maximal inhibitory concentrations of free OA and OA-micelles were 36.8±4.8 and 20.9±3.7 μM, respectively, in A549 cells and 82.7±7.8 and 56.7±4.7 μM, respectively, in PC-9 cells. Apoptosis assays revealed that the apoptotic rate of OA-micelle-treated A549 and PC-9 cells was higher than that of cells treated with the same concentration of free OA. Wound healing and transwell assays showed that migration and invasion were significantly suppressed in OA-micelle-treated cells. Immunofluorescence and Western blot analyses confirmed that the epithelial–mesenchymal transition was reversed in OA-micelle-treated cells. Mixed micelles are a promising nano-drug delivery system for lung cancer treatment.
Collapse
Affiliation(s)
- Hao Wu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese Medicine, Nanjing, Jiangsu; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui
| | - Qingxiang Zhong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese Medicine, Nanjing, Jiangsu
| | - Rongling Zhong
- Laboratory Animal Center, Jiangsu Province Academy of Chinese Medicine, Nanjing, Jiangsu
| | - Houcai Huang
- Laboratory Animal Center, Jiangsu Province Academy of Chinese Medicine, Nanjing, Jiangsu
| | - Zhi Xia
- Laboratory Animal Center, Jiangsu Province Academy of Chinese Medicine, Nanjing, Jiangsu
| | - Zhongcheng Ke
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine; College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, People's Republic of China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine
| | - Jie Song
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese Medicine, Nanjing, Jiangsu
| | - Xiaobin Jia
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese Medicine, Nanjing, Jiangsu; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui
| |
Collapse
|
15
|
Tan HL, Chan KG, Pusparajah P, Saokaew S, Duangjai A, Lee LH, Goh BH. Anti-Cancer Properties of the Naturally Occurring Aphrodisiacs: Icariin and Its Derivatives. Front Pharmacol 2016; 7:191. [PMID: 27445824 PMCID: PMC4925704 DOI: 10.3389/fphar.2016.00191] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/16/2016] [Indexed: 12/12/2022] Open
Abstract
Epimedium (family Berberidaceae), commonly known as Horny Goat Weed or Yin Yang Huo, is commonly used as a tonic, aphrodisiac, anti-rheumatic and anti-cancer agent in traditional herbal formulations in Asian countries such as China, Japan, and Korea. The major bioactive compounds present within this plant include icariin, icaritin and icariside II. Although it is best known for its aphrodisiac properties, scientific and pharmacological studies suggest it possesses broad therapeutic capabilities, especially for enhancing reproductive function and osteoprotective, neuroprotective, cardioprotective, anti-inflammatory and immunoprotective effects. In recent years, there has been great interest in scientific investigation of the purported anti-cancer properties of icariin and its derivatives. Data from in vitro and in vivo studies suggests these compounds demonstrate anti-cancer activity against a wide range of cancer cells which occurs through various mechanisms such as apoptosis, cell cycle modulation, anti-angiogenesis, anti-metastasis and immunomodulation. Of note, they are efficient at targeting cancer stem cells and drug-resistant cancer cells. These are highly desirable properties to be emulated in the development of novel anti-cancer drugs in combatting the emergence of drug resistance and overcoming the limited efficacy of current standard treatment. This review aims to summarize the anti-cancer mechanisms of icariin and its derivatives with reference to the published literature. The currently utilized applications of icariin and its derivatives in cancer treatment are explored with reference to existing patents. Based on the data compiled, icariin and its derivatives are shown to be compounds with tremendous potential for the development of new anti-cancer drugs.
Collapse
Affiliation(s)
- Hui-Li Tan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetic and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Priyia Pusparajah
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Surasak Saokaew
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand; Pharmaceutical Outcomes Research Center, Faculty of Pharmaceutical Sciences, Naresuan UniversityPhitsanulok, Thailand
| | - Acharaporn Duangjai
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand; Division of Physiology, School of Medical Sciences, University of PhayaoPhayao, Thailand
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| |
Collapse
|
16
|
Zhang Z, Wu H, Huang H. Epicatechin Plus Treadmill Exercise are Neuroprotective Against Moderate-stage Amyloid Precursor Protein/Presenilin 1 Mice. Pharmacogn Mag 2016; 12:S139-46. [PMID: 27279698 PMCID: PMC4883070 DOI: 10.4103/0973-1296.182174] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/17/2015] [Indexed: 11/18/2022] Open
Abstract
Background: Epidemiological evidence suggests that exercise and dietary polyphenols are beneficial in reducing Alzheimer's disease (AD) risk. Materials and Methods: In the present study, 8 months old amyloid precursor protein/presenilin 1 (APP/PS1) mice (a moderate pathology phase) were given the green tea catechin (-)-epicatechin delivered orally in the drinking water (50 mg/kg daily), along with treadmill exercise for 4 months, in order to investigate whether the combination can ameliorate the cognitive loss and delay the progression of AD in APP/PS1 transgenic (Tg) mice. Results: At termination, untreated-Tg mice showed elevated soluble amyloid-β (Aβ1–40) and Aβ1–42 levels and deficits in spatial learning and memory, compared with their wild-type littermates. The combined intervention protected against cognitive deficits in the Morris water maze, lowered soluble Aβ1–40 and Aβ1–42 levels in the hippocampus as well as reducing brain oxidative stress. In addition, brain-derived neurotrophic factor proteins wee elevated and Akt/GSK-3/cAMP response element-binding protein signaling was activated in the combination group. Conclusions: Dietary polyphenol plus exercise may exert beneficial effects on brain health and slow the progression of moderate- or mid-stages of AD. SUMMARY Amyloid precursor protein/presenilin 1 transgenic mice showed elevated soluble amyloid-β (Aβ1–40) and Aβ1–42 levels and deficits in spatial learning and memory, compared with their wild-type littermates Oral administration of epicatechin, combined with treadmill exercise for 4 months, could protect against cognitive deficits, and lowered soluble Aβ1–40 and Aβ1–42 levels as well as reducing brain oxidative stress Brain-derived neurotrophic factor proteins were elevated, and Akt/GSK-3/cAMP response element binding protein signaling was activated in the combination group Dietary polyphenol plus exercise might exert beneficial effects on brain health and slow the progression of moderate- or mid-stages of Alzheimer's disease.
Abbreviations used: AD: Alzheimer's disease, Tg: APP/PS1 transgenic, BDNF: Brain-derived neurotrophic factor, Aβ: Amyloid-β, APP: Amyloid precursor protein, PS1: Presenilin 1, nTg: Wild-type littermates, IACUC: Institutional Animal Care and Use Committee, GSSG: Glutathione oxidized form, GSH: Glutathione reductase, SOD: Superoxide dismutase, CAT: Catalase, LPO: Lipoperoxidation, CREB: cAMP response element binding protein.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- School of Pharmacy, Hainan Medical College, Haikou, China
| | - Hao Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Houcai Huang
- Key Laboratory of Delivery Systems of Chinese Meteria Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
Song J, Feng L, Zhong R, Xia Z, Zhang L, Cui L, Yan H, Jia X, Zhang Z. Icariside II inhibits the EMT of NSCLC cells in inflammatory microenvironment via down-regulation of Akt/NF-κB signaling pathway. Mol Carcinog 2016; 56:36-48. [DOI: 10.1002/mc.22471] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Jie Song
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine; Nanjing University of Chinese Medicine; Jiangsu Nanjing China
- Key Laboratory of Delivery Systems of Chinese Meteria Medica; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| | - Liang Feng
- Key Laboratory of Delivery Systems of Chinese Meteria Medica; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| | - Rongling Zhong
- Key Laboratory of Delivery Systems of Chinese Meteria Medica; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| | - Zhi Xia
- Key Laboratory of Delivery Systems of Chinese Meteria Medica; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| | - Li Zhang
- Clinical Laboratory; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| | - Li Cui
- Key Laboratory of Delivery Systems of Chinese Meteria Medica; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| | - Hongmei Yan
- Key Laboratory of Delivery Systems of Chinese Meteria Medica; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| | - Xiaobin Jia
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine; Nanjing University of Chinese Medicine; Jiangsu Nanjing China
- Key Laboratory of Delivery Systems of Chinese Meteria Medica; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| | - Zhenhai Zhang
- Key Laboratory of Delivery Systems of Chinese Meteria Medica; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| |
Collapse
|
18
|
Lin SY, Chang HH, Lai YH, Lin CH, Chen MH, Chang GC, Tsai MF, Chen JJW. Digoxin Suppresses Tumor Malignancy through Inhibiting Multiple Src-Related Signaling Pathways in Non-Small Cell Lung Cancer. PLoS One 2015; 10:e0123305. [PMID: 25955608 PMCID: PMC4425490 DOI: 10.1371/journal.pone.0123305] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/03/2015] [Indexed: 11/19/2022] Open
Abstract
Non-small cell lung cancer is the predominant type of lung cancer, resulting in high mortality worldwide. Digoxin, a cardiac glycoside, has recently been suggested to be a novel chemotherapeutic agent. Src is an oncogene that plays an important role in cancer progression and is therefore a potential target for cancer therapy. Here, we investigated whether digoxin could suppress lung cancer progression through the inhibition of Src activity. The effects of digoxin on lung cancer cell functions were investigated using colony formation, migration and invasion assays. Western blotting and qPCR assays were used to analyze the mRNA and protein expression levels of Src and its downstream proteins, and a cell viability assay was used to measure cellular cytotoxicity effects. The results of the cell function assays revealed that digoxin inhibited the proliferation, invasion, migration, and colony formation of A549 lung cancer cells. Similar effects of digoxin were also observed in other lung cancer cell lines. Furthermore, we found that digoxin significantly suppressed Src activity and its protein expression in a dose- and time-dependent manner as well as reduced EGFR and STAT3 activity. Our data suggest that digoxin is a potential anticancer agent that may suppress lung cancer progression through inhibiting Src and the activity of related proteins.
Collapse
Affiliation(s)
- Sheng-Yi Lin
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Hsiu-Hui Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Hua Lai
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ching-Hsiung Lin
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Min-Hsuan Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Gee-Chen Chang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Meng-Feng Tsai
- Department of Molecular Biotechnology, Dayeh University, Changhua, Taiwan
- * E-mail: (MFT); (JJWC)
| | - Jeremy J. W. Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (MFT); (JJWC)
| |
Collapse
|