1
|
Pachal S, Kumar H, Jain R, Goel B, Kesharwani S, Kesharwani SS, Jain V. A review of the current status of biological effects of plant-derived therapeutics in breast cancer. Mol Biol Rep 2025; 52:159. [PMID: 39853420 DOI: 10.1007/s11033-025-10261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
Phytochemicals are bioactive secondary plant metabolites found in high concentrations in fruits, grains, and vegetables. Recent studies provide evidence of usage of plant-based diets rich in phytochemicals and their corelation to reduction in cancer incidence. Several phytochemicals have demonstrated effectiveness as chemotherapeutic agents against various cancers, including breast cancer. Breast cancer (BC) is a major worldwide medical issue owing to its high incidence, especially in women. It is the most often detected malignancy and an important trigger of mortality in women. Various chemotherapeutics along with radiotherapy are being investigated as potential treatment options for breast cancer. However, multidrug resistance, toxicity to normal cells, and other adverse effects limit the usage of chemotherapeutics in breast cancer. Cancer treatment with dietary phytochemicals is a highly effective approach that is currently gaining widespread attention. This manuscript intends to describe the existing data on the anticancer effects of various phytochemicals, including their preclinical exploration against breast cancer. Phytochemicals are broadly categorized, with an explanation of their role in breast cancer prognosis through various signalling pathways, preclinical status, physicochemical property analysis using Data Warrior, and evidence on individual phototherapeutics.
Collapse
Affiliation(s)
- Shantanu Pachal
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Bhawna Goel
- Department of Pharmacy, School of Medical and Allied Sciences, G D Goenka University, Gurugram, 122103, India
| | - Sharyu Kesharwani
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
- Department of Chemistry & Biochemistry, Boise State University, 1910 University Dr Boise, Idaho, 83725, USA
| | | | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India.
| |
Collapse
|
2
|
Lesmana R, Tandean S, Christoper A, Suwantika AA, Wathoni N, Abdulah R, Fearnley J, Bankova V, Zulhendri F. Propolis as an autophagy modulator in relation to its roles in redox balance and inflammation regulation. Biomed Pharmacother 2024; 175:116745. [PMID: 38761422 DOI: 10.1016/j.biopha.2024.116745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024] Open
Abstract
Autophagy is a degradation process that is evolutionarily conserved and is essential in maintaining cellular and physiological homeostasis through lysosomal removal and elimination of damaged peptides, proteins and cellular organelles. The dysregulation of autophagy is implicated in various diseases and disorders, including cancers, infection-related, and metabolic syndrome-related diseases. Propolis has been demonstrated in various studies including many human clinical trials to have antimicrobial, antioxidant, anti-inflammatory, immune-modulator, neuro-protective, and anti-cancer. Nevertheless, the autophagy modulation properties of propolis have not been extensively studied and explored. The role of propolis and its bioactive compounds in modulating cellular autophagy is possibly due to their dual role in redox balance and inflammation. The present review attempts to discuss the activities of propolis as an autophagy modulator in biological models in relation to various diseases/disorders which has implications in the development of propolis-based nutraceuticals, functional foods, and complementary therapies.
Collapse
Affiliation(s)
- R Lesmana
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Indonesia; Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Indonesia.
| | - S Tandean
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara 20222, Indonesia.
| | - A Christoper
- Postgraduate Program of Medical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia.
| | - A A Suwantika
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia.
| | - N Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; Research Center of Biopolymers for Drug and Cosmetic Delivery, Bandung 45363, Indonesia.
| | - R Abdulah
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia.
| | - J Fearnley
- Apiceutical Research Centre, Unit 3b Enterprise Way, Whitby, North Yorkshire YO18 7NA, UK.
| | - V Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, Sofia 1113, Bulgaria.
| | - F Zulhendri
- Kebun Efi, Kabanjahe, North Sumatra 22171, Indonesia; Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Indonesia.
| |
Collapse
|
3
|
Bjørklund G, Storchylo O, Peana M, Hangan T, Lysiuk R, Lenchyk L, Koshovyi O, Antonyak H, Hudz N, Chirumbolo S. Caffeic Acid Phenethyl Ester: A Potential Therapeutic Cancer Agent? Curr Med Chem 2024; 31:6760-6774. [PMID: 37933215 DOI: 10.2174/0109298673252993230921073502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Propolis and its major phenolic compound, caffeic acid phenethyl ester (CAPE), have garnered considerable scientific interest due to their anti- inflammatory properties and potential therapeutic applications. OBJECTIVES This narrative review explores the potential utility of CAPE in cancer treatment. METHODS We comprehensively reviewed relevant studies from scientific databases (PubMed and Web of Science) from 2000 to 2022. Our search focused on keywords such as cancer, natural drugs, caffeic acid phenethyl ester, CAPE, cancer cell lines, antitumor effects, and propolis. RESULTS CAPE exhibits diverse biological benefits, including antimicrobial, antioxidant, antiviral, anti-inflammatory, cytotoxic, and potentially anti-carcinogenic properties. Numerous studies have demonstrated its wide-ranging antitumor effects on various cancer cell lines, including growth inhibition, apoptosis induction, tumor invasiveness prevention, malignancy suppression, and anti-angiogenic activity. CONCLUSION Following comprehensive preclinical toxicity assessments, further evaluation of CAPE's efficacy and safety through clinical trials is highly recommended to elucidate its potential health benefits in diverse forms of human cancer.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Olha Storchylo
- Medical Chemistry Department, Odessa National Medical University, Odessa, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- Department of Pharmacognosy and Botany, CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Larysa Lenchyk
- Department of Chemistry of Natural Compounds, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Oleh Koshovyi
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
- Department of Pharmacognosy, National University of Pharmacy, Kharkiv, Ukraine
| | - Halyna Antonyak
- Department of Ecology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Nataliia Hudz
- Department of Drug Technology and Biopharmaceutics, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- Faculty of Chemistry, University of Opole, Opole, Poland
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific Secretary, Verona, Italy
| |
Collapse
|
4
|
Pandey P, Khan F, Upadhyay TK, Giri PP. Therapeutic efficacy of caffeic acid phenethyl ester in cancer therapy: An updated review. Chem Biol Drug Des 2023; 102:201-216. [PMID: 36929632 DOI: 10.1111/cbdd.14233] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Nowadays, there is a lot of public and scientific interest in using phytochemicals to treat human ailments. Existing cancer medicines still run across obstacles, despite significant advancements in the field. For instance, chemotherapy may result in severe adverse effects, increased drug resistance, and treatment failure. Natural substances that are phytochemically derived provide innovative approaches as potent therapeutic molecules for the treatment of cancer. Bioactive natural compounds may enhance chemotherapy for cancer by increasing the sensitivity of cancer cells to medicines. Propolis has been found to interfere with the viability of cancer cells, among other phytochemicals. Of all the components that make up propolis, caffeic acid phenethyl ester (CAPE) (a flavonoid) has been the subject of the most research. It demonstrates a broad spectrum of therapeutic uses, including antitumor, antimicrobial, antiviral, anti-inflammatory, immunomodulatory, hepatoprotective, neuroprotective, and cardioprotective effects. Studies conducted in vitro and in vivo have demonstrated that CAPE specifically targets genes involved in cell death, cell cycle regulation, angiogenesis, and metastasis. By altering specific signaling cascades, such as the NF-κB signaling pathway, CAPE can limit the proliferation of human cancer cells. This review highlights the research findings demonstrating the anticancer potential of CAPE with a focus on multitargeted molecular and biological implications in various cancer models.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, India
| | - Pavan Prakash Giri
- Department of Chemistry, Noida Institute of Engineering & Technology, Greater Noida, India
| |
Collapse
|
5
|
Meirelles LEDF, de Souza MVF, Carobeli LR, Morelli F, Mari NL, Damke E, Shinobu Mesquita CS, Teixeira JJV, Consolaro MEL, da Silva VRS. Combination of Conventional Drugs with Biocompounds Derived from Cinnamic Acid: A Promising Option for Breast Cancer Therapy. Biomedicines 2023; 11:275. [PMID: 36830811 PMCID: PMC9952910 DOI: 10.3390/biomedicines11020275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Despite the options available for breast cancer (BC) therapy, several adverse effects and resistance limit the success of the treatment. Furthermore, the use of a single drug is associated with a high failure rate. We investigated through a systematic review the in vitro effects of the combination between conventional drugs and bioactive compounds derived from cinnamic acid in BC treatment. The information was acquired from the following databases: PubMed, Web of Science, Embase, Scopus, Lilacs and Cochrane library. We focused on "Cinnamates", "Drug Combinations" and "Breast neoplasms" for publications dating between January 2012 and December 2022, based on the PRISMA statement. The references of the articles were carefully reviewed. Finally, nine eligible studies were included. The majority of these studies were performed using MCF-7, MDA-MB-231, MDA-MB-468 and BT-20 cell lines and the combination between cisplatin, paclitaxel, doxorubicin, tamoxifen, dactolisib and veliparib, with caffeic acid phenethyl ester, eugenol, 3-caffeoylquinic acid, salvianolic acid A, ferulic acid, caffeic acid, rosmarinic acid and ursolic acid. The combination improved overall conventional drug effects, with increased cytotoxicity, antimigratory effect and reversing resistance. Combining conventional drugs with bioactive compounds derived from cinnamic acid could emerge as a privileged scaffold for establishing new treatment options for different BC types.
Collapse
|
6
|
Hermansyah D, Zulhendri F, Perera CO, Firsty NN, Chandrasekaran K, Abdulah R, Herman H, Lesmana R. The Potential Use of Propolis as an Adjunctive Therapy in Breast Cancers. Integr Cancer Ther 2022; 21:15347354221096868. [PMID: 35593403 PMCID: PMC9127854 DOI: 10.1177/15347354221096868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 04/10/2022] [Indexed: 11/24/2022] Open
Abstract
Propolis is a resinous beehive product that has a wide range of biological activities, namely antimicrobial, antioxidant, and anti-inflammatory properties. Propolis is collected by the bees from plant resin and exudates to protect hives and maintain hive homeostasis. The aim of the present systematic scoping review is to explore the potential and suitability of propolis as an adjunctive treatment in breast cancers, based on the latest available experimental evidence (2012-2021). After applying the exclusion criteria, a total of 83 research publications were identified and retrieved from Scopus, Web of Science, and Pubmed. Several relevant key themes identified from the included studies were cytotoxicity, synergistic/combination treatment, improvement in bioavailability, human clinical trials, and others. A majority of the studies identified were still in the in vitro and in vivo stages. Nonetheless, we managed to identify 4 human clinical trials that demonstrated the successful use of propolis in alleviating side effects of chemotherapy and radiotherapy while increasing the quality of life of breast cancer patients, with minimal adverse effects. In conclusion, propolis, as an adjunctive treatment, may have therapeutic benefits in alleviating symptoms related to breast cancers. However, further clinical trials, preferably with higher number of participants/subjects/patients, are urgently needed.
Collapse
Affiliation(s)
| | - Felix Zulhendri
- Universitas Padjadjaran, Bandung, Indonesia
- Kebun Efi, Kabanjahe, Indonesia
| | | | | | | | | | | | | |
Collapse
|
7
|
Lipovka Y, Alday E, Hernandez J, Velazquez C. Molecular Mechanisms of Biologically Active Compounds from Propolis in Breast Cancer: State of the Art and Future Directions. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2003380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Yulia Lipovka
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | - Efrain Alday
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | - Javier Hernandez
- Unidad de Servicios de Apoyo en Resolución Analítica, Universidad Veracruzana, Xalapa, Mexico
| | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| |
Collapse
|
8
|
Radhakrishnan N, Dhanjal JK, Sari AN, Ishida Y, Terao K, Kaul SC, Sundar D, Wadhwa R. Caffeic acid phenethyl ester (CAPE) confers wild type p53 function in p53 Y220C mutant: bioinformatics and experimental evidence. Discov Oncol 2021; 12:64. [PMID: 35201513 PMCID: PMC8777538 DOI: 10.1007/s12672-021-00461-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/07/2021] [Indexed: 12/26/2022] Open
Abstract
Mutations in the tumor suppressor protein p53 is a prevalent feature in majority of cancers resulting in inactivation of its activities related to control of cell cycle progression and proliferation. p53Y220C is one of the common hotspot mutations that causes decrease in its thermodynamic stability. Some small molecules have been shown to bind to the mutated site and restore its wild type thermodynamics and tumor suppressor function. In this study, we have explored the potential of caffeic acid phenethyl ester (CAPE-a bioactive compound from propolis) to interact with p53Y220C and restore its wild type p53 (p53wt) transcription activation and tumor suppressor activities. We recruited computational methods, viz. molecular docking, molecular dynamics simulations and free energy calculations to study the interaction of CAPE at the mutation crevice and found that it has potential to restore p53wt function of the p53Y220C mutant similar to a previously described restoration molecule PK7242. We provide cell-based experimental evidence to these predictions and suggest CAPE as a potential natural drug for treatment of p53Y220C mutant harboring cancers.
Collapse
Affiliation(s)
- Navaneethan Radhakrishnan
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016 India
| | - Jaspreet Kaur Dhanjal
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305 8565 Japan
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, Okhla Industrial Estate, Phase III, New Delhi, 110 020 India
| | - Anissa Nofita Sari
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305 8565 Japan
| | - Yoshiyuki Ishida
- Cyclochem Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, 650 0047 Japan
| | - Keiji Terao
- Cyclochem Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, 650 0047 Japan
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305 8565 Japan
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016 India
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305 8565 Japan
| |
Collapse
|
9
|
Yetkin D, Balli E, Ayaz F. Antiproliferative activity of Tamoxifen, Vitamin D3 and their concomitant treatment. EXCLI JOURNAL 2021; 20:1394-1406. [PMID: 34737683 PMCID: PMC8564918 DOI: 10.17179/excli2021-3989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/24/2021] [Indexed: 11/10/2022]
Abstract
Breast cancer stands out as the most common cancer type among women throughout the world. Especially for the estrogen receptor alpha (ER α +) positive breast cancer cells Tamoxifen has been widely used as an anti-cancer agent. Tamoxifen's mechanism of action is through ER. It binds to the receptor and leads to a conformational change which eventually prevents cancer cells proliferation and survival. In our current study, we aimed to investigate the combination of Tamoxifen with Vitamin D3 to test whether this combination will enhance the anti-cancer effect of Tamoxifen on breast cancer cells in vitro. Vitamin D3 has sterol structure and this property enables it to act similar to hormones. Vitamin D Receptor (VDR) has been commonly found in different types of cancer cells including but not limited to breast and prostate cancer cells. Through this receptor Vitamin D3 acts as an anti-proliferative agent. We examined the proliferation rate, apoptosis and necrosis levels as well as cell cycle progression in MCF-7 breast cancer cell line in the presence of Vitamin D3 and Tamoxifen to compare the changes with the Tamoxifen treated group. Our results suggest that Tamoxifen was a more potent anti-cancer agent than Vitamin D3 or its combination with Vitamin D3 based on cell cycle arrest, apoptosis and cell proliferation levels. This effect in the apoptosis rate and cell cycle stage of the MCF-7 cells were in line with the changes in gene expression profile of P53, BAX and BCL-2. Our results suggest that Tamoxifen by itself is adequate enough and more potent than Vitamin D3 or its combination with Vitamin D3 as anti-cancer agent for the breast cancer cells in vitro.
Collapse
Affiliation(s)
- Derya Yetkin
- Mersin University, Advanced Technology Education Research and Application Center, 33110, Mersin, Turkey
| | - Ebru Balli
- Mersin University, Department of Histology and Embryology, 33110 Mersin, Turkey
| | - Furkan Ayaz
- Mersin University, Department of Biotechnology, Faculty of Arts and Science, 33110, Mersin, Turkey
| |
Collapse
|
10
|
Olgierd B, Kamila Ż, Anna B, Emilia M. The Pluripotent Activities of Caffeic Acid Phenethyl Ester. Molecules 2021; 26:molecules26051335. [PMID: 33801469 PMCID: PMC7958844 DOI: 10.3390/molecules26051335] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
Caffeic acid phenethyl ester (CAPE) is a strong antioxidant extracted from honey bee-hive propolis. The mentioned compound, a well-known NF-κB inhibitor, has been used in traditional medicine as a potent anti-inflammatory agent. CAPE has a broad spectrum of biological properties including anti-viral, anti-bacterial, anti-cancer, immunomodulatory, and wound-healing activities. This review characterizes published data about CAPE biological properties and potential therapeutic applications, that can be used in various diseases.
Collapse
Affiliation(s)
- Batoryna Olgierd
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
- Correspondence: or ; Tel.: +48-602-689-347
| | - Żyła Kamila
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Banyś Anna
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Morawiec Emilia
- Department of Microbiology, Faculty of Medicine in Zabrze, University of Technology in Katowice, 40-555 Katowice, Poland;
- GynCentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland
- Department of Histology, Cytophysiology and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, 40-555 Katowice, Poland
| |
Collapse
|
11
|
Caffeic acid phenethyl ester potentiates gastric cancer cell sensitivity to doxorubicin and cisplatin by decreasing proteasome function. Anticancer Drugs 2020; 30:251-259. [PMID: 30489290 DOI: 10.1097/cad.0000000000000715] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Caffeic acid phenethyl ester (CAPE) is a major propolis component that possesses a variety of pharmacological properties such as antioxidant and anticancer effects. Herein, we investigated the effectiveness of CAPE on cytotoxicity of clinically used anticancer drugs, doxorubicin (DXR) and cisplatin (CDDP), in parental and the drug-resistant cells of stomach (MKN45) and colon (LoVo) cancers. Concomitant treatment with CAPE potentiated apoptotic effects of DXR and CDDP against the parental cells. The treatment significantly reduced the production of reactive oxygen species elicited by DXR but did not affect the DXR-mediated accumulation of 4-hydroxy-2-nonenal, a lipid peroxidation-derived aldehyde. Intriguingly, treatment of parental MKN45 cells with CAPE alone reduced 26S proteasome-based proteolytic activities, in which a chymotrypsin-like activity was most affected. This effect of CAPE was the most prominent among those of eight flavonoids and nine cinnamic acid derivatives and was also observed in parental LoVo cells. In the DXR-resistant or CDDP-resistant cells, the chymotrypsin-like activity was highly up-regulated and significantly decreased by CAPE treatment, which sensitized the resistant cells to DXR and CDDP. Reverse transcription-PCR analysis showed that CAPE treatment led to downregulation of five proteasome subunits (PSMB1-PSMB5) and three immunoproteasome subunits (PSMB8-PSMB10) in DXR-resistant MKN45 cells. The results suggest that CAPE enhances sensitivity of these cancer cells and their chemoresistant cells to DXR and CDDP, most notably through decreasing proteasome function. Thus, CAPE may be valuable as an adjuvant for DXR or CDDP chemotherapy in gastric cancer.
Collapse
|
12
|
Sari AN, Bhargava P, Dhanjal JK, Putri JF, Radhakrishnan N, Shefrin S, Ishida Y, Terao K, Sundar D, Kaul SC, Wadhwa R. Combination of Withaferin-A and CAPE Provides Superior Anticancer Potency: Bioinformatics and Experimental Evidence to Their Molecular Targets and Mechanism of Action. Cancers (Basel) 2020; 12:E1160. [PMID: 32380701 PMCID: PMC7281427 DOI: 10.3390/cancers12051160] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
We have earlier reported anticancer activity in Withaferin A (Wi-A), a withanolide derived from Ashwagandha (Withania somnifera) and caffeic acid phenethyl ester (CAPE), an active compound from New Zealand honeybee propolis. Whereas Wi-A was cytotoxic to both cancer and normal cells, CAPE has been shown to cause selective death of cancer cells. In the present study, we investigated the efficacy of Wi-A, CAPE, and their combination to ovarian and cervical cancer cells. Both Wi-A and CAPE were seen to activate tumor suppressor protein p53 by downregulation of mortalin and abrogation of its interactions with p53. Downregulation of mortalin translated to compromised mitochondria integrity and function that affected poly ADP-ribose polymerase1 (PARP1); a key regulator of DNA repair and protein-target for Olaparib, drugs clinically used for treatment of breast, ovarian and cervical cancers)-mediated DNA repair yielding growth arrest or apoptosis. Furthermore, we also compared the docking capability of Wi-A and CAPE to PARP1 and found that both of these could bind to the catalytic domain of PARP1, similar to Olaparib. We provide experimental evidences that (i) Wi-A and CAPE cause inactivation of PARP1-mediated DNA repair leading to accumulation of DNA damage and activation of apoptosis signaling by multiple ways, and (ii) a combination of Wi-A and CAPE offers selective toxicity and better potency to cancer cells.
Collapse
Affiliation(s)
- Anissa Nofita Sari
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (A.N.S.); (P.B.); (J.K.D.); (J.F.P.)
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Priyanshu Bhargava
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (A.N.S.); (P.B.); (J.K.D.); (J.F.P.)
| | - Jaspreet Kaur Dhanjal
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (A.N.S.); (P.B.); (J.K.D.); (J.F.P.)
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016, India; (N.R.); (S.S.); (D.S.)
| | - Jayarani F. Putri
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (A.N.S.); (P.B.); (J.K.D.); (J.F.P.)
| | - Navaneethan Radhakrishnan
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016, India; (N.R.); (S.S.); (D.S.)
| | - Seyad Shefrin
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016, India; (N.R.); (S.S.); (D.S.)
| | - Yoshiyuki Ishida
- CycloChem Co. Ltd., 7-4-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan; (Y.I.); (K.T.)
| | - Keiji Terao
- CycloChem Co. Ltd., 7-4-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan; (Y.I.); (K.T.)
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016, India; (N.R.); (S.S.); (D.S.)
| | - Sunil C. Kaul
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (A.N.S.); (P.B.); (J.K.D.); (J.F.P.)
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Renu Wadhwa
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (A.N.S.); (P.B.); (J.K.D.); (J.F.P.)
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
13
|
Ibrahim AB, Zaki HF, Wadie W, Omran MM, Shouman SA. Simvastatin Evokes An Unpredicted Antagonism For Tamoxifen In MCF-7 Breast Cancer Cells. Cancer Manag Res 2019; 11:10011-10028. [PMID: 31819634 PMCID: PMC6886548 DOI: 10.2147/cmar.s218668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/16/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose Tamoxifen (TAM) is a non-steroidal antiestrogen drug, used in the prevention and treatment of all stages of hormone-responsive breast cancer. Simvastatin (SIM) is a lipid-lowering agent and has been shown to inhibit cancer cell growth. The study aimed to investigate the effect of the combination of TAM and SIM in the treatment of estrogen receptor positive (ER+) breast cancer cell line, MCF-7, and in mice-bearing Ehrlich solid tumors. Methods MCF-7 cells were treated with different concentrations of TAM or/and SIM for 72 hours and the effects of the combination treatment on cytotoxicity, oxidative stress markers, apoptosis, angiogenesis, and metastasis were investigated using different techniques. In addition, tumor volume, oxidative markers, and inflammatory markers of the combined therapy were explored in mice bearing solid EAC tumors. Results The results showed that treatment of MCF-7 cells with the combination of 10 µM TAM, and 2 µM SIM significantly inhibited the increase in oxidative stress markers, LDH, and NF-kB induced by TAM. In addition, there was a significant decrease in the total apoptotic ratio, caspase-3 activity, and glucose uptake, while there was a non-significant change in Bax/bcl-2 ratio compared to the TAM-treated group. Using the isobologram equation, the drug interaction was antagonistic with combination index, CI=1.18. On the other hand, the combination regimen decreased VEGF, and matrix metalloproteinases, MMP 2&9 compared to TAM-treated cells. Additionally, in vivo, the combination regimen resulted in a non-significant decrease in the tumor volume, decreased oxidative markers, and the protein expression of TNF-α, and NF-κB compared to the TAM treated group. Conclusion Although the combination regimen of TAM and SIM showed an antagonistic drug interaction in MCF-7 breast cancer, it displayed favorable antiangiogenic, anti-metastatic, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Amel B Ibrahim
- Department of Pharmacology, Faculty of Medicine, Zawia University, Zawiya, Libya
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mervat M Omran
- Department of Cancer Biology, Pharmacology Unit, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Samia A Shouman
- Department of Cancer Biology, Pharmacology Unit, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| |
Collapse
|
14
|
Ibrahim AB, Zaki HF, Ibrahim WW, Omran MM, Shouman SA. Evaluation of tamoxifen and simvastatin as the combination therapy for the treatment of hormonal dependent breast cancer cells. Toxicol Rep 2019; 6:1114-1126. [PMID: 31788433 PMCID: PMC6880098 DOI: 10.1016/j.toxrep.2019.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/27/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022] Open
Abstract
Tamoxifen (TAM) is a nonsteroidal antiestrogen drug, used in the prevention and treatment of all stages of hormone-responsive breast cancer. Simvastatin (SIM), a lipid-lowering agent, has been shown to inhibit cancer cell growth. The study aimed at investigating the impact of using SIM with TAM in estrogen receptor-positive (ER+) breast cancer cell line, T47D, as well as in mice-bearing Ehrlich solid tumor. The cell line was treated with different concentrations of TAM or/and SIM for 72 h. The effects of treatment on cytotoxicity, oxidative stress markers, apoptosis, angiogenesis, and metastasis were investigated. Our results showed that the combination treatment decreased the oxidative stress markers, glucose uptake, VEGF, and MMP 2 &9 in the cell line compared to TAM- treated cells. Drug interaction of TAM and SIM was synergistic in T47D by increasing the apoptotic makers Bax/BCL-2 ratio and caspase 3 activity. Additionally, in vivo, the combination regimen resulted in a non-significant decrease in the tumor volume compared to TAM treated group. Moreover, the combined treatment decreased the protein expression of TNF-α, NF-kB compared to control. In conclusion, our results suggest that SIM may serve as a promising treatment with TAM for improving the efficacy against estrogen receptor-positive (ER+) breast cancer.
Collapse
Key Words
- Apoptosis
- Bax/Bcl-2, ratio Bcl-2-AssociatedXprotein/B-cell lymphoma 2 ratio
- Cytotoxicity
- EAC, ehrlich ascites carcinoma
- ER+, estrogen receptor-positive
- GSH, glutathione
- MDA, malondialdehyde
- MMP, 2&9 metalloproteinases-2and9
- NF-KB, nuclear factor kappa-B
- NOx, nitric oxide
- Oxidative stress
- SIM, simvastatin
- SOD, superoxide dismutase
- Simvastatin
- TAM, tamoxifen
- TNF-α, tumor necrosis factor α
- Tamoxifen
- VEGF, vascular endothelial growth factor
- Vascular endothelial growth factor
Collapse
Affiliation(s)
- Amel B. Ibrahim
- Department of Pharmacology, Faculty of Medicine, Zawia University, Libya
| | - Hala F. Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Walaa W. Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Mervat M. Omran
- Department of Cancer Biology Department, Pharmacology Unit, National Cancer Institute, Cairo University, Egypt
- Corresponding author.
| | - Samia A. Shouman
- Department of Cancer Biology Department, Pharmacology Unit, National Cancer Institute, Cairo University, Egypt
| |
Collapse
|
15
|
Salem AM, Ragheb AS, Hegazy MGA, Matboli M, Eissa S. Caffeic Acid Modulates miR-636 Expression in Diabetic Nephropathy Rats. Indian J Clin Biochem 2019; 34:296-303. [PMID: 31391719 PMCID: PMC6660537 DOI: 10.1007/s12291-018-0743-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/21/2018] [Indexed: 01/25/2023]
Abstract
We investigated the action of caffeic acid in regulating miR-636 expression level in kidney of streptozotocin-induced diabetic rats. Streptozotocin-induced diabetic rats were orally treated with caffeic acid at 40 mg/kg/day for 8 weeks. At the end of the treatment, body and kidney weight and blood glucose levels were determined, blood, urine, and kidneys were collected for biochemical and histological examination. Expression levels of miR-636 were determined in liver by qRT-PCR. Induction of diabetic nephropathy by streptozotocin was evidenced by displayed elevated levels of serum creatinine, blood urea nitrogen, microalbuminuria and urinary albumin/creatinine ratio in addition to renal hypotrophy. Caffeic acid (CA) can ameliorate renal damage and significantly decreased the fasting blood glucose, cholesterol and triglyceride in diabetic rats. CA treatment improved histological architecture in the diabetic kidney. CA significantly down regulate miR-636 expression level in the kidney of diabetic rats in comparison to healthy group. Overall, caffeic acid down regulates miR-636 expression level which is involved in development of diabetic nephropathy and might therefore be potential attractive therapeutic agent to pursue in DN.
Collapse
Affiliation(s)
- Ahmed M. Salem
- Biochemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Aya S. Ragheb
- Biochemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Marwa G. A. Hegazy
- Biochemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, P.O. box 1138, Abbassia, Cairo, Egypt
| | - Sanaa Eissa
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, P.O. box 1138, Abbassia, Cairo, Egypt
| |
Collapse
|
16
|
Kim SH, Park HS, Hong MJ, Hur HJ, Kwon DY, Kim MS. Caffeic Acid Phenethyl Ester Improves Metabolic Syndrome by Activating PPAR-γ and Inducing Adipose Tissue Remodeling in Diet-Induced Obese Mice. Mol Nutr Food Res 2018; 62:e1700701. [DOI: 10.1002/mnfr.201700701] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/09/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Soon-Hee Kim
- Division of Nutrition and Metabolism; Korea Food Research Institute; Seongnam Republic of Korea
| | - Hee-Sook Park
- Division of Nutrition and Metabolism; Korea Food Research Institute; Seongnam Republic of Korea
| | - Moon Ju Hong
- Division of Nutrition and Metabolism; Korea Food Research Institute; Seongnam Republic of Korea
- Department of Food Biotechnology; University of Science and Technology; Seongnam Republic of Korea
| | - Haeng Jeon Hur
- Division of Nutrition and Metabolism; Korea Food Research Institute; Seongnam Republic of Korea
| | - Dae Young Kwon
- Division of Nutrition and Metabolism; Korea Food Research Institute; Seongnam Republic of Korea
| | - Myung-Sunny Kim
- Division of Nutrition and Metabolism; Korea Food Research Institute; Seongnam Republic of Korea
- Department of Food Biotechnology; University of Science and Technology; Seongnam Republic of Korea
| |
Collapse
|
17
|
Tyszka-Czochara M, Bukowska-Strakova K, Majka M. Metformin and caffeic acid regulate metabolic reprogramming in human cervical carcinoma SiHa/HTB-35 cells and augment anticancer activity of Cisplatin via cell cycle regulation. Food Chem Toxicol 2017; 106:260-272. [PMID: 28576465 DOI: 10.1016/j.fct.2017.05.065] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/25/2017] [Accepted: 05/28/2017] [Indexed: 12/25/2022]
Abstract
Metformin shows benefits in anticancer prevention in humans. In this study, normal human fibroblasts (FB) and metastatic cervical cancer cells (SiHa) were exposed to 10 mM Metformin (Met), 100 μM Caffeic Acid (trans-3,4-dihydroxycinnamic acid, CA) or combination of the compounds. Both drugs were selectively toxic towards cancer cells, but neither Met nor CA treatment suppressed growth of normal cells. Met and CA regulated metabolic reprogramming in SiHa tumor cells through different mechanisms: Met suppressed regulatory enzymes Glurtaminase (GLS) and Malic Enzyme 1 (ME1) and enhanced pyruvate oxidation via tricarboxylic acids (TCA) cycle, while CA acted as glycolytic inhibitor. Met/CA treatment impaired expression of Sterol Regulatory Element-Binding Protein 1 (SREBP1c) which resulted in alleviation of de novo synthesis of unsaturated fatty acid. The toxic action of CisPt was supported by Met and CA not only in tumor cells, but also during co-culture of SiHa GFP+ cells with fibroblasts. Furthermore, Met and CA augmented Cisplatin (CisPt) action against quiescent tumor cells involving reprogramming of cell cycle. Our findings provide new insights into specific targeting of mitochondrial metabolism in neoplastic cells and into designing new cisplatin-based selective strategies for treating cervical cancer in humans with regard to the role of tumor microenvironment.
Collapse
Affiliation(s)
- Malgorzata Tyszka-Czochara
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| | - Karolina Bukowska-Strakova
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland.
| | - Marcin Majka
- Department of Transplantation, Faculty of Medicine, Jagiellonian University Medical College, Wielicka 258, 30-688 Krakow, Poland.
| |
Collapse
|
18
|
Torki S, Soltani A, Shirzad H, Esmaeil N, Ghatrehsamani M. Synergistic antitumor effect of NVP-BEZ235 and CAPE on MDA-MB-231 breast cancer cells. Biomed Pharmacother 2017; 92:39-45. [PMID: 28528184 DOI: 10.1016/j.biopha.2017.05.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 12/11/2022] Open
Abstract
Triple negative breast cancer (TNBC) is the most lethal and aggressive kind of breast cancer. Studies with TNBC cells suggest that tumor environmental cytokines such as Transforming Growth Factor β1 (TGF-β1) have important roles in tumors fate. In the present study, we aimed to investigate, the effect of phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway dual inhibitor, NVP-BEZ235 and Caffeic acid phenyl ester (CAPE) on TNBC cell line (MDA-MB-231), stimulated with TGF-β1 for 14days in vitro. We found that TGF-β1 as a local tumor environmental cytokine plays important role in the progression and invasiveness of TNBC cells. NVP-BEZ235 inhibited the enhanced cell viability and CXCR4 expression induced by TGF-β1. In addition, the combined treatment of TNBC cell lines with CAPE and NVP-BEZ235 synergistically inhibited cell growth and reduced CXCR4 expression. Also, treatment of MDA-MB-231 cells with CAPE and NVP-BEZ235 led to decreasing the expression levels of p-FOXO3a in a time-dependent manner. Overall, these results suggest that tumor metastasis and progression in TNBC cells can be effectively reduced through the concurrent use of NVP-BEZ235 and CAPE. This could be of particular interest in assessing the effects of this therapy in the reduction of tumor metastasis and progression in other tumor types.
Collapse
Affiliation(s)
- Samira Torki
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hedayatollah Shirzad
- Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdi Ghatrehsamani
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|