1
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
2
|
Din SRU, Nisar MA, Ramzan MN, Saleem MZ, Ghayas H, Ahmad B, Batool S, Kifayat K, Guo X, Huang M, Zhong M. Latcripin-7A from Lentinula edodes C 91-3 induces apoptosis, autophagy, and cell cycle arrest at G1 phase in human gastric cancer cells via inhibiting PI3K/Akt/mTOR signaling. Eur J Pharmacol 2021; 907:174305. [PMID: 34224698 DOI: 10.1016/j.ejphar.2021.174305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022]
Abstract
Gastric cancer (G.C) is one of the most lethal cancer types worldwide. Current treatment requires surgery along with chemotherapy, which causes obstacles for speedy recovery. The discovery of novel drugs is needed for better treatment of G.C with minimum side effects. Latcripin-7A (LP-7A) is a newly discovered peptide extracted from Lentinula edodes. It is recently studied for its anti-cancer activity. In this study, LP-7A was modeled using a phyre2 server. Anti-proliferation effects of LP-7A on G.C cells were examined via CCK-8, colony formation, and morphology assay. Apoptosis of LP-7A treated G.C cells was evaluated via Hoechst Stain, western blot and flow cytometry. Autophagy was assessed via acridine orange staining and western blot. The cell cycle was assessed via flow cytometry assay and western blot. Pathway was studied via western blot and STRING database. Anti-migratory effects of LP-7A treated G.C cells were analyzed via wound healing, western blot, and migration and invasion assay. LP-7A effectively inhibited the growth of G.C cells by inhibiting the PI3K/Akt/mTOR pathway. G.C cells treated with LP-7A arrested the cell cycle at the G1 phase, contributing to the inhibition of migration and invasion. Furthermore, LP-7A induced apoptosis and autophagy in gastric cancer cells. These results indicated that LP-7A is a promising anti-cancer agent. It affected the proliferation and growth of G.C cells (SGC-7901 and BGC-823) by inducing apoptosis, autophagy, and inhibiting cell cycle at the G1 phase in G.C cells.
Collapse
Affiliation(s)
- Syed Riaz Ud Din
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China.
| | - Muhammad Azhar Nisar
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China.
| | - Muhammad Noman Ramzan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China.
| | - Muhammad Zubair Saleem
- Department of Pathology and Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China; School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122, PR China.
| | - Hassan Ghayas
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China.
| | - Bashir Ahmad
- Department of Pathology and Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China; Department of Biology, The University of Haripur, Pakistan.
| | - Samana Batool
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China; Department of Microbiology and Molecular Genetics, University of Okara, 56300, Pakistan.
| | - Kashif Kifayat
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China.
| | - Xiaorong Guo
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China.
| | - Min Huang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China.
| | - Mintao Zhong
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China.
| |
Collapse
|
3
|
Din SRU, Zhong M, Nisar MA, Saleem MZ, Hussain A, Khinsar KH, Alam S, Ayub G, Kanwal S, Li X, Zhang W, Wang X, Ning A, Cao J, Huang M. Latcripin-7A, derivative of Lentinula edodes C 91-3, reduces migration and induces apoptosis, autophagy, and cell cycle arrest at G 1 phase in breast cancer cells. Appl Microbiol Biotechnol 2020; 104:10165-10179. [PMID: 33044599 DOI: 10.1007/s00253-020-10918-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/12/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022]
Abstract
Due to the high mortality rate and an increase in breast cancer incidence, it has been challenging for researchers to come across an effective chemotherapeutic strategy with minimum side effects. Therefore, the need for the development of effective chemotherapeutic drugs is still on the verge. Consequently, we approached a new mechanism to address this issue. The naturally available peptide named latcripin-7A (LP-7A), extracted from a mushroom called Lentinula edodes, provided us promising results in terms of growth arrest, apoptosis, and autophagy in breast cancer cells (MCF-7 and MDA-MB-231). Expressions of protein markers for apoptosis, autophagy, and cell cycle were confirmed via Western blot analysis. Migration and invasion assays were performed to analyze the anti-migratory and anti-invasive properties of LP-7A, while cell cycle analysis was performed via flow cytometry to evaluate its affect over cell growth. Supportive assays were performed like acridine orange, Hoechst 33258 stain, DNA fragmentation, and mitochondrial membrane potential (MMP) to further confirm the anticancer effect of LP-7A on breast cancer cell lines. It is concluded that LP-7A effectively reduces migration and promotes apoptosis as well as autophagy in MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell growth arrest at G0/G1 phase and decreasing mitochondrial membrane potential without adverse effects on MCF-10A normal breast cells. KEY POINTS: • In this study, we have investigated the anti-cancer activity of novel latcripin-7A (LP-7A), a protein extracted as a result of de novo characterization of Lentinula edodes C91-3. • We conclude in our research work that LP-7A can initiate diverse cell death-related events, i.e., apoptosis and autophagy in both triple-positive and triple-negative breast cancer cell lines by interacting with different nodes of cellular signaling that can further be investigated in vivo to gain a better understanding.
Collapse
Affiliation(s)
- Syed Riaz Ud Din
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Mintao Zhong
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Muhammad Azhar Nisar
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Muhammad Zubair Saleem
- Department of Pathology and Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Akbar Hussain
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Kavish H Khinsar
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Shahid Alam
- Department of Anatomy, Dalian Medical University, Dalian, People's Republic of China
| | - Gohar Ayub
- Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, People's Republic of China
| | - Sadia Kanwal
- Department of Biotechnology College of Basic Medical Sciences , Dalian Medical University , Dalian, People's Republic of China
| | - Xingyun Li
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Wei Zhang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Xiaoli Wang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Anhong Ning
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Jing Cao
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Min Huang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China.
| |
Collapse
|
4
|
Forouzanfar F, Mousavi SH. Targeting Autophagic Pathways by Plant Natural Compounds in Cancer Treatment. Curr Drug Targets 2020; 21:1237-1249. [PMID: 32364070 DOI: 10.2174/1389450121666200504072635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/26/2020] [Accepted: 03/19/2020] [Indexed: 12/29/2022]
Abstract
Nowadays, natural compounds of plant origin with anticancer effects have gained more attention because of their clinical safety and broad efficacy profiles. Autophagy is a multistep lysosomal degradation pathway that may have a unique potential for clinical benefit in the setting of cancer treatment. To retrieve articles related to the study, the databases of Google Scholar, Web of sciences, Medline and Scopus, using the following keywords: Autophagic pathways; herbal medicine, oncogenic autophagic pathways, tumor-suppressive autophagic pathways, and cancer were searched. Although natural plant compounds such as resveratrol, curcumin, oridonin, gossypol, and paclitaxel have proven anticancer potential via autophagic signaling pathways, there is still a great need to find new natural compounds and investigate the underlying mechanisms, to facilitate their clinical use as potential anticancer agents through autophagic induction.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Batool S, Joseph TP, Hussain M, Vuai MS, Khinsar KH, Din SRU, Padhiar AA, Zhong M, Ning A, Zhang W, Cao J, Huang M. LP1 from Lentinula edodes C 91-3 Induces Autophagy, Apoptosis and Reduces Metastasis in Human Gastric Cancer Cell Line SGC-7901. Int J Mol Sci 2018; 19:E2986. [PMID: 30274346 PMCID: PMC6213425 DOI: 10.3390/ijms19102986] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 12/30/2022] Open
Abstract
Present study aimed to elucidate the anticancer effect and the possible molecular mechanism underlying the action of Latcripin 1 (LP1), from the mushroom Lentinula edodes strain C91-3 against gastric cancer cell lines SGC-7901 and BGC-823. Cell viability was measured by Cell Counting Kit-8 (CCK-8); morphological changes were observed by phase contrast microscope; autophagy was determined by transmission electron microscope and fluorescence microscope. Apoptosis and cell cycle were assessed by flow cytometer; wound-healing, transwell migration and invasion assays were performed to investigate the effect of LP1 on gastric cancer cell's migration and invasion. Herein, we found that LP1 resulted in the induction of autophagy by the formation of autophagosomes and conversion of light chain 3 (LC3I into LC3II. LP1 up-regulated the expression level of autophagy-related gene (Atg7, Atg5, Atg12, Atg14) and Beclin1; increased and decreased the expression level of pro-apoptotic (Bax) and anti-apoptotic (Bcl-2) proteins respectively, along with the activation of Caspase-3. At lower-doses, LP1 have shown to arrest cells in the S phase of the cell cycle and decreased the expression level of matrix metalloproteinase MMP-2 and MMP-9. In addition, it has also been shown to regulate the phosphorylation of one of the most hampered gastric cancer pathway, that is, protein kinase B/mammalian target of rapamycin (Akt/mTOR) channel and resulted in cell death. These findings suggested LP1 as a potential natural anti-cancer agent, for exploring the gastric cancer therapies and as a contender for further in vitro and in vivo investigations.
Collapse
Affiliation(s)
- Samana Batool
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Thomson Patrick Joseph
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Mushraf Hussain
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, Dalian 116024, China.
| | - Miza S Vuai
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Kavish H Khinsar
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Syed Riaz Ud Din
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Arshad Ahmed Padhiar
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Mintao Zhong
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Anhong Ning
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Wei Zhang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Jing Cao
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Min Huang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|