1
|
Wilson GN, Tonk VS. Clinical-Genomic Analysis of 1261 Patients with Ehlers-Danlos Syndrome Outlines an Articulo-Autonomic Gene Network (Entome). Curr Issues Mol Biol 2024; 46:2620-2643. [PMID: 38534782 DOI: 10.3390/cimb46030166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/08/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Systematic evaluation of 80 history and 40 history findings diagnosed 1261 patients with Ehlers-Danlos syndrome (EDS) by direct or online interaction, and 60 key findings were selected for their relation to clinical mechanisms and/or management. Genomic testing results in 566 of these patients supported EDS relevance by their differences from those in 82 developmental disability patients and by their association with general rather than type-specific EDS findings. The 437 nuclear and 79 mitochondrial DNA changes included 71 impacting joint matrix (49 COL5), 39 bone (30 COL1/2/9/11), 22 vessel (12 COL3/8VWF), 43 vessel-heart (17FBN1/11TGFB/BR), 59 muscle (28 COL6/12), 56 neural (16 SCN9A/10A/11A), and 74 autonomic (13 POLG/25porphyria related). These genes were distributed over all chromosomes but the Y, a network analogized to an 'entome' where DNA change disrupts truncal mechanisms (skin constraint, neuromuscular support, joint vessel flexibility) and produces a mirroring cascade of articular and autonomic symptoms. The implied sequences of genes from nodal proteins to hypermobility to branching tissue laxity or dysautonomia symptoms would be ideal for large language/artificial intelligence analyses.
Collapse
Affiliation(s)
- Golder N Wilson
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- KinderGenome Genetics Private Practice, 5347 W Mockingbird, Dallas, TX 75209, USA
| | - Vijay S Tonk
- Director of Medical Genetics and the Cytogenomic Laboratory, Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
2
|
The Genetics of Intellectual Disability. Brain Sci 2023; 13:brainsci13020231. [PMID: 36831774 PMCID: PMC9953898 DOI: 10.3390/brainsci13020231] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
Intellectual disability (ID) has a prevalence of ~2-3% in the general population, having a large societal impact. The underlying cause of ID is largely of genetic origin; however, identifying this genetic cause has in the past often led to long diagnostic Odysseys. Over the past decades, improvements in genetic diagnostic technologies and strategies have led to these causes being more and more detectable: from cytogenetic analysis in 1959, we moved in the first decade of the 21st century from genomic microarrays with a diagnostic yield of ~20% to next-generation sequencing platforms with a yield of up to 60%. In this review, we discuss these various developments, as well as their associated challenges and implications for the field of ID, which highlight the revolutionizing shift in clinical practice from a phenotype-first into genotype-first approach.
Collapse
|
3
|
Santegoeds E, van der Schoot E, Roording‐Ragetlie S, Klip H, Rommelse N. Neurocognitive functioning of children with mild to borderline intellectual disabilities and psychiatric disorders: profile characteristics and predictors of behavioural problems. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2022; 66:162-177. [PMID: 34378826 PMCID: PMC9290047 DOI: 10.1111/jir.12874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND The aim of the current study was twofold: first, to uncover a neurocognitive profile of normative and relative strengths and weaknesses that characterises an extremely vulnerable group of children with mild to borderline intellectual disabilities (MBID) and co-morbid psychiatric disorders, and second, to investigate the relevance of these neurocognitive functions explaining internalising and externalising symptoms. METHOD We recruited 45 children (Mage = 9.5, SDage = 1.7; range 6-13 years) with MBID (Full-Scale IQ 50-85) and at least one psychiatric disorder. Neurocognitive functioning was examined utilising the Wechsler Intelligence Scale for Children - Fifth Edition (WISC-V) indices and the Cognitive Task Application (COTAPP), a comprehensive computerised self-paced task designed in such a manner that 'g' (an overall tendency of children with MBID to execute tasks with a slower reaction time and a higher error rate) has been corrected for in the administration of the task (i.e. completely self-paced) and in the operationalisation of outcome measures. Behavioural problems were measured using the CBCL and TRF. One-sample t-tests and binomial tests were carried out to compare performance with normative data. Regression analyses were used to examine the relationship between neurocognitive parameters and mental health. RESULTS Compared with normative data, very small to very large effect sizes were found, indicating clear heterogeneity amongst neurocognitive domains relevant for children with MBID. Two prominent neurocognitive weaknesses emerged: processing speed - characterised by slowness and unstableness combined with a high drift rate and delayed processing of the previous trial, particularly under higher cognitive demands - and working memory - in terms of a weaker central executive and 'slave' systems to temporarily store information. Both domains were not clearly predictive of internalising or externalising problems. CONCLUSION Children with MBID and psychiatric disorders are hampered by a strongly diminished processing speed and working memory capacity, together resulting in an overall limited processing capacity that may underlie the general developmental delays on domains that depend on fast and parallel processing of information (i.e. language, reading, mathematics and more complex forms of social cognition). Neurocognitive vulnerabilities are neither necessary nor sufficient to explain internalising and externalising problems; rather, a mismatch between the support needs and adaptations these children need, arising from their diminished processing capacity, and the inadequacy of the environment to compensate for this vulnerability may be of relevance.
Collapse
Affiliation(s)
- E. Santegoeds
- Department of Mild Intellectual DisabilitiesKarakter Child and Adolescent PsychiatryEdeThe Netherlands
| | - E. van der Schoot
- Department of Mild Intellectual DisabilitiesKarakter Child and Adolescent PsychiatryEdeThe Netherlands
| | - S. Roording‐Ragetlie
- Department of Mild Intellectual DisabilitiesKarakter Child and Adolescent PsychiatryEdeThe Netherlands
| | - H. Klip
- Karakter Child and Adolescent PsychiatryNijmegenThe Netherlands
| | - N. Rommelse
- Department of Mild Intellectual DisabilitiesKarakter Child and Adolescent PsychiatryEdeThe Netherlands
- Karakter Child and Adolescent PsychiatryNijmegenThe Netherlands
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
4
|
Duman JG, Blanco FA, Cronkite CA, Ru Q, Erikson KC, Mulherkar S, Saifullah AB, Firozi K, Tolias KF. Rac-maninoff and Rho-vel: The symphony of Rho-GTPase signaling at excitatory synapses. Small GTPases 2022; 13:14-47. [PMID: 33955328 PMCID: PMC9707551 DOI: 10.1080/21541248.2021.1885264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/15/2023] Open
Abstract
Synaptic connections between neurons are essential for every facet of human cognition and are thus regulated with extreme precision. Rho-family GTPases, molecular switches that cycle between an active GTP-bound state and an inactive GDP-bound state, comprise a critical feature of synaptic regulation. Rho-GTPases are exquisitely controlled by an extensive suite of activators (GEFs) and inhibitors (GAPs and GDIs) and interact with many different signalling pathways to fulfill their roles in orchestrating the development, maintenance, and plasticity of excitatory synapses of the central nervous system. Among the mechanisms that control Rho-GTPase activity and signalling are cell surface receptors, GEF/GAP complexes that tightly regulate single Rho-GTPase dynamics, GEF/GAP and GEF/GEF functional complexes that coordinate multiple Rho-family GTPase activities, effector positive feedback loops, and mutual antagonism of opposing Rho-GTPase pathways. These complex regulatory mechanisms are employed by the cells of the nervous system in almost every step of development, and prominently figure into the processes of synaptic plasticity that underlie learning and memory. Finally, misregulation of Rho-GTPases plays critical roles in responses to neuronal injury, such as traumatic brain injury and neuropathic pain, and in neurodevelopmental and neurodegenerative disorders, including intellectual disability, autism spectrum disorder, schizophrenia, and Alzheimer's Disease. Thus, decoding the mechanisms of Rho-GTPase regulation and function at excitatory synapses has great potential for combatting many of the biggest current challenges in mental health.
Collapse
Affiliation(s)
- Joseph G. Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Francisco A. Blanco
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Integrative Molecular and Biomedical Science Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Christopher A. Cronkite
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Qin Ru
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kelly C. Erikson
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ali Bin Saifullah
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Karen Firozi
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kimberley F. Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Identification of a novel nonsense homozygous mutation of LINS1 gene in two sisters with intellectual disability, schizophrenia, and anxiety. Biomed J 2021; 44:748-751. [PMID: 34450347 PMCID: PMC8847845 DOI: 10.1016/j.bj.2021.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 11/23/2022] Open
Abstract
Background LINS1 encodes the lines homolog 1 protein that contains the Drosophila lines homologous domain. LINS1 mutations cause a rare recessive form of intellectual disability. So far, eight LINS1 mutations were reported in the literature. Methods We conducted a whole-genome sequencing analysis for a family with two sisters diagnosed with moderate intellectual disability, schizophrenia, and anxiety. Results We identified a novel homozygous nonsense mutation in the LINS1 in these two sisters. The mutation was a C-to-T substitution at the cDNA nucleotide position 274 that changed the amino acid glutamine at the codon 92 to stop codon (Gln92X). The mutation was transmitted from their unrelated parents, who were heterozygous carriers. Conclusions We identified the first case of LINS1-associated neurodevelopmental disorder in Taiwan. Our findings suggest that besides intellectual disability, psychiatric diagnoses such as schizophrenia and anxiety disorder may also be part of clinical phenotypes of LINS1 mutations.
Collapse
|
6
|
Piergiorge RM, de Vasconcelos ATR, Gonçalves Pimentel MM, Santos-Rebouças CB. Strict network analysis of evolutionary conserved and brain-expressed genes reveals new putative candidates implicated in Intellectual Disability and in Global Development Delay. World J Biol Psychiatry 2021; 22:435-445. [PMID: 32914658 DOI: 10.1080/15622975.2020.1821916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Intellectual Disability (ID) and Global Development Delay (GDD) are frequent reasons for referral to genetic services and although they present overlapping phenotypes concerning cognitive, motor, language, or social skills, they are not exactly synonymous. Aiming to better understand independent or shared mechanisms related to these conditions and to identify new candidate genes, we performed a highly stringent protein-protein interaction network based on genes previously related to ID/GDD in the Human Phenotype Ontology portal. METHODS ID/GDD genes were searched for reliable interactions through STRING and clustering analysis was applied to detect biological complexes through the MCL algorithm. Six coding hub genes (TP53, CDC42, RAC1, GNB1, APP, and EP300) were recognised by the Cytoscape NetworkAnalyzer plugin, interacting with 1625 proteins not yet associated with ID or GDD. Genes encoding these proteins were explored by gene ontology, associated diseases, evolutionary conservation, and brain expression. RESULTS One hundred and seventy-two new putative genes playing a role in enriched processes/pathways previously related to ID and GDD were revealed, some of which were already postulated to be linked to ID/GDD in additional databases. CONCLUSIONS Our findings expanded the aetiological genetic landscape of ID/GDD and showed evidence that both conditions are closely related at the molecular and functional levels.
Collapse
Affiliation(s)
- Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Márcia Mattos Gonçalves Pimentel
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Barros II, Leão V, Santis JO, Rosa RCA, Brotto DB, Storti CB, Siena ÁDD, Molfetta GA, Silva WA. Non-Syndromic Intellectual Disability and Its Pathways: A Long Noncoding RNA Perspective. Noncoding RNA 2021; 7:ncrna7010022. [PMID: 33799572 PMCID: PMC8005948 DOI: 10.3390/ncrna7010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Non-syndromic intellectual disability (NS-ID or idiopathic) is a complex neurodevelopmental disorder that represents a global health issue. Although many efforts have been made to characterize it and distinguish it from syndromic intellectual disability (S-ID), the highly heterogeneous aspect of this disorder makes it difficult to understand its etiology. Long noncoding RNAs (lncRNAs) comprise a large group of transcripts that can act through various mechanisms and be involved in important neurodevelopmental processes. In this sense, comprehending the roles they play in this intricate context is a valuable way of getting new insights about how NS-ID can arise and develop. In this review, we attempt to bring together knowledge available in the literature about lncRNAs involved with molecular and cellular pathways already described in intellectual disability and neural function, to better understand their relevance in NS-ID and the regulatory complexity of this disorder.
Collapse
Affiliation(s)
- Isabela I. Barros
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Vitor Leão
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Jessica O. Santis
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Reginaldo C. A. Rosa
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Danielle B. Brotto
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Camila B. Storti
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Ádamo D. D. Siena
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Greice A. Molfetta
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Wilson A. Silva
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
- National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell Based Therapy, Ribeirão Preto Medical School, University of São Paulo, Rua Tenente Catão Roxo, 2501, Monte Alegre, Ribeirão Preto 14051-140, Brazil
- Center for Integrative Systems Biology-CISBi, NAP/USP, Ribeirão Preto Medical School, University of São Paulo, Rua Catão Roxo, 2501, Monte Alegre, Ribeirão Preto 14051-140, Brazil
- Department of Medicine at the Midwest State University of Paraná-UNICENTRO, and Guarapuava Institute for Cancer Research, Rua Fortim Atalaia, 1900, Cidade dos Lagos, Guarapuava 85100-000, Brazil
- Correspondence: ; Tel.: +55-16-3315-3293
| |
Collapse
|
8
|
Matelski L, Morgan RK, Grodzki AC, Van de Water J, Lein PJ. Effects of cytokines on nuclear factor-kappa B, cell viability, and synaptic connectivity in a human neuronal cell line. Mol Psychiatry 2021; 26:875-887. [PMID: 31965031 PMCID: PMC7371517 DOI: 10.1038/s41380-020-0647-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/12/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
Abstract
Maternal infection during pregnancy is associated with increased risk of psychiatric and neurodevelopmental disorders (NDDs). Experimental animal models demonstrate that maternal immune activation (MIA) elevates inflammatory cytokine levels in the maternal and fetal compartments and causes behavioral changes in offspring. Individual cytokines have been shown to modulate neurite outgrowth and synaptic connectivity in cultured rodent neurons, but whether clinically relevant cytokine mixtures similarly modulate neurodevelopment in human neurons is not known. To address this, we quantified apoptosis, neurite outgrowth, and synapse number in the LUHMES human neuronal cell line exposed to varying concentrations of: (1) a mixture of 12 cytokines and chemokines (EMA) elevated in mid-gestational serum samples from mothers of children with autism and intellectual disability; (2) an inflammatory cytokine mixture (ICM) comprised of five cytokines elevated in experimental MIA models; or (3) individual cytokines in ICM. At concentrations that activated nuclear factor-kappa B (NF-κB) in LUHMES cells, EMA and ICM induced caspase-3/7 activity. ICM altered neurite outgrowth, but only at concentrations that also reduced cell viability, whereas ICM reduced synapse number independent of changes in cell viability. Individual cytokines in ICM phenocopied the effects of ICM on NF-κB activation and synaptic connectivity, but did not completely mimic the effects of ICM on apoptosis. These results demonstrate that clinically relevant cytokine mixtures modulate apoptosis and synaptic density in developing human neurons. Given the relevance of these neurodevelopmental processes in NDDs, our findings support the hypothesis that cytokines contribute to the adverse effects of MIA on children.
Collapse
Affiliation(s)
- Lauren Matelski
- Department of Internal Medicine, University of California, Davis,Department of Molecular Biosciences, University of California, Davis
| | - Rhianna K. Morgan
- Department of Molecular Biosciences, University of California, Davis
| | | | | | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis
| |
Collapse
|
9
|
Farajollahi Z, Razmara E, Heidari E, Jafarinia E, Garshasbi M. A novel variant of ST3GAL3 causes non-syndromic autosomal recessive intellectual disability in Iranian patients. J Gene Med 2020; 22:e3253. [PMID: 32666583 DOI: 10.1002/jgm.3253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/01/2020] [Accepted: 07/09/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The number of reported genes causing non-syndromic autosomal recessive intellectual disability (NS-ARID) is increasing. For example, mutations in the ST3GAL3 gene have been reported to be associated with NS-ARID. In the present study, we aimed to determine the genetic cause of the NS-ARID in a five-generation consanguineous Iranian family. METHODS We subjected four patients with an initial diagnosis of NS-ID in an Iranian family. To identify the possible genetic cause(s), whole-exome sequencing was performed on the proband and Sanger sequencing was applied to investigate co-segregation analysis. Using in silico predictive tools, the possible impacts of the variant on the structure and function of ST3Gal-III were predicted. RESULTS The common clinical features were detected in all affected members who were suffering from a severe ID. Using whole-exome sequencing, a novel variant, c.704C>T or p.(Thr235Met), in exon 9 of the ST3GAL3 gene (NM_001270461.2, OMIM# 606494) was identified and verified by Sanger sequencing. This variant is located next to the VS motif of ST3Gal-III, which is a vital part of the catalytical domains. CONCLUSIONS In the present study, we identified a novel missense variant, c.704C>T or p.(Thr235Met), in the ST3GAL3. To our knowledge, is the third variant in this gene to be associated with NS-ARID. Our findings highlight the need for further investigations into the mechanisms by which variants in ST3GAL3 contribute to neurological dysfunction.
Collapse
Affiliation(s)
- Zahra Farajollahi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Erfan Heidari
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Jafarinia
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Muthusamy B, Bellad A, Prasad P, Bandari AK, Bhuvanalakshmi G, Kiragasur RM, Girimaj SC, Pandey A. A Novel LINS1 Truncating Mutation in Autosomal Recessive Nonsyndromic Intellectual Disability. Front Psychiatry 2020; 11:354. [PMID: 32499722 PMCID: PMC7247441 DOI: 10.3389/fpsyt.2020.00354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The large majority of cases with intellectual disability are syndromic (i.e. occur with other well-defined clinical phenotypes) and have been studied extensively. Autosomal recessive nonsyndromic intellectual disability is a group of genetically heterogeneous disorders for which a number of potentially causative genes have been identified although the molecular basis of most of them remains unexplored. Here, we report the clinical characteristics and genetic findings of a family with two male siblings affected with autosomal recessive nonsyndromic intellectual disability. Whole exome sequencing was carried out on two affected male siblings and unaffected parents. A potentially pathogenic variant identified in this study was confirmed by Sanger sequencing to be inherited in an autosomal recessive fashion. We identified a novel nonsense mutation (p.Gln368Ter) in the LINS1 gene which leads to loss of 389 amino acids in the C-terminus of the encoded protein. The truncation mutation causes a complete loss of LINES_C domain along with loss of three known phosphorylation sites and a known ubiquitylation site in addition to other evolutionarily conserved regions of LINS1. LINS1 has been reported to cause MRT27 (mental retardation, autosomal recessive 27), a rare autosomal recessive nonsyndromic intellectual disability, with limited characterization of the phenotype. Identification of a potentially pathogenic truncating mutation in LINS1 in two profoundly intellectually impaired patients also confirms its role in cognition.
Collapse
Affiliation(s)
- Babylakshmi Muthusamy
- Institute of Bioinformatics, Bangalore, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Anikha Bellad
- Institute of Bioinformatics, Bangalore, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Pramada Prasad
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Aravind K Bandari
- Institute of Bioinformatics, Bangalore, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | | | - R M Kiragasur
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Satish Chandra Girimaj
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Akhilesh Pandey
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
11
|
Bonkowsky JL, Son JH. Hypoxia and connectivity in the developing vertebrate nervous system. Dis Model Mech 2018; 11:11/12/dmm037127. [PMID: 30541748 PMCID: PMC6307895 DOI: 10.1242/dmm.037127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The developing nervous system depends upon precise regulation of oxygen levels. Hypoxia, the condition of low oxygen concentration, can interrupt developmental sequences and cause a range of molecular, cellular and neuronal changes and injuries. The roles and effects of hypoxia on the central nervous system (CNS) are poorly characterized, even though hypoxia is simultaneously a normal component of development, a potentially abnormal environmental stressor in some settings, and a clinically important complication, for example of prematurity. Work over the past decade has revealed that hypoxia causes specific disruptions in the development of CNS connectivity, altering axon pathfinding and synapse development. The goals of this article are to review hypoxia's effects on the development of CNS connectivity, including its genetic and molecular mediators, and the changes it causes in CNS circuitry and function due to regulated as well as unintended mechanisms. The transcription factor HIF1α is the central mediator of the CNS response to hypoxia (as it is elsewhere in the body), but hypoxia also causes a dysregulation of gene expression. Animals appear to have evolved genetic and molecular responses to hypoxia that result in functional behavioral alterations to adapt to the changes in oxygen concentration during CNS development. Understanding the molecular pathways underlying both the normal and abnormal effects of hypoxia on CNS connectivity may reveal novel insights into common neurodevelopmental disorders. In addition, this Review explores the current gaps in knowledge, and suggests important areas for future studies. Summary: The nervous system's exposure to hypoxia has developmental and clinical relevance. In this Review, the authors discuss the effects of hypoxia on the development of the CNS, and its long-term behavioral and neurodevelopmental consequences.
Collapse
Affiliation(s)
- Joshua L Bonkowsky
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA
| | - Jong-Hyun Son
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA.,Department of Biology, University of Scranton, Scranton, PA 18510, USA
| |
Collapse
|
12
|
Rho GTPases in Intellectual Disability: From Genetics to Therapeutic Opportunities. Int J Mol Sci 2018; 19:ijms19061821. [PMID: 29925821 PMCID: PMC6032284 DOI: 10.3390/ijms19061821] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 12/22/2022] Open
Abstract
Rho-class small GTPases are implicated in basic cellular processes at nearly all brain developmental steps, from neurogenesis and migration to axon guidance and synaptic plasticity. GTPases are key signal transducing enzymes that link extracellular cues to the neuronal responses required for the construction of neuronal networks, as well as for synaptic function and plasticity. Rho GTPases are highly regulated by a complex set of activating (GEFs) and inactivating (GAPs) partners, via protein:protein interactions (PPI). Misregulated RhoA, Rac1/Rac3 and cdc42 activity has been linked with intellectual disability (ID) and other neurodevelopmental conditions that comprise ID. All genetic evidences indicate that in these disorders the RhoA pathway is hyperactive while the Rac1 and cdc42 pathways are consistently hypoactive. Adopting cultured neurons for in vitro testing and specific animal models of ID for in vivo examination, the endophenotypes associated with these conditions are emerging and include altered neuronal networking, unbalanced excitation/inhibition and altered synaptic activity and plasticity. As we approach a clearer definition of these phenotype(s) and the role of hyper- and hypo-active GTPases in the construction of neuronal networks, there is an increasing possibility that selective inhibitors and activators might be designed via PPI, or identified by screening, that counteract the misregulation of small GTPases and result in alleviation of the cognitive condition. Here we review all knowledge in support of this possibility.
Collapse
|