1
|
Richter Gorey CL, St Louis AP, Chorna T, Brill JA, Dason JS. Differential functions of phosphatidylinositol 4-kinases in neurotransmission and synaptic development. Eur J Neurosci 2024; 60:5966-5979. [PMID: 39267207 DOI: 10.1111/ejn.16526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/14/2024]
Abstract
Phosphoinositides, such as PI(4,5)P2, are known to function as structural components of membranes, signalling molecules, markers of membrane identity, mediators of protein recruitment and regulators of neurotransmission and synaptic development. Phosphatidylinositol 4-kinases (PI4Ks) synthesize PI4P, which are precursors for PI(4,5)P2, but may also have independent functions. The roles of PI4Ks in neurotransmission and synaptic development have not been studied in detail. Previous studies on PI4KII and PI4KIIIβ at the Drosophila larval neuromuscular junction have suggested that PI4KII and PI4KIIIβ enzymes may serve redundant roles, where single PI4K mutants yielded mild or no synaptic phenotypes. However, the precise synaptic functions (neurotransmission and synaptic growth) of these PI4Ks have not been thoroughly studied. Here, we used PI4KII and PI4KIIIβ null mutants and presynaptic-specific knockdowns of these PI4Ks to investigate their roles in neurotransmission and synaptic growth. We found that PI4KII and PI4KIIIβ appear to have non-overlapping functions. Specifically, glial PI4KII functions to restrain synaptic growth, whereas presynaptic PI4KIIIβ promotes synaptic growth. Furthermore, loss of PI4KIIIβ or presynaptic PI4KII impairs neurotransmission. The data presented in this study uncover new roles for PI4K enzymes in neurotransmission and synaptic growth.
Collapse
Affiliation(s)
| | | | - Tetyana Chorna
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey S Dason
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
2
|
Li G, Wu Y, Zhang Y, Wang H, Li M, He D, Guan W, Yao H. Research progress on phosphatidylinositol 4-kinase inhibitors. Biochem Pharmacol 2024; 220:115993. [PMID: 38151075 DOI: 10.1016/j.bcp.2023.115993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Phosphatidylinositol 4-kinases (PI4Ks) could phosphorylate phosphatidylinositol (PI) to produce phosphatidylinositol 4-phosphate (PI4P) and maintain its metabolic balance and location. PI4P, the most abundant monophosphate inositol in eukaryotic cells, is a precursor of higher phosphoinositols and an essential substrate for the PLC/PKC and PI3K/Akt signaling pathways. PI4Ks regulate vesicle transport, signal transduction, cytokinesis, and cell unity, and are involved in various physiological and pathological processes, including infection and growth of parasites such as Plasmodium and Cryptosporidium, replication and survival of RNA viruses, and the development of tumors and nervous system diseases. The development of novel drugs targeting PI4Ks and PI4P has been the focus of the research and clinical application of drugs, especially in recent years. In particular, PI4K inhibitors have made great progress in the treatment of malaria and cryptosporidiosis. We describe the biological characteristics of PI4Ks; summarize the physiological functions and effector proteins of PI4P; and analyze the structural basis of selective PI4K inhibitors for the treatment of human diseases in this review. Herein, this review mainly summarizes the developments in the structure and enzyme activity of PI4K inhibitors.
Collapse
Affiliation(s)
- Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Yanting Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Huamin Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Mengjie Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Dengqin He
- School of Biotechnology and Health Science, Wuyi University, 22 Dongchengcun, Jiangmen, Guangdong, 529020, China
| | - Wen Guan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China.
| |
Collapse
|
3
|
Blumrich EM, Nicholson-Fish JC, Pronot M, Davenport EC, Kurian D, Cole A, Smillie KJ, Cousin MA. Phosphatidylinositol 4-kinase IIα is a glycogen synthase kinase 3-regulated interaction hub for activity-dependent bulk endocytosis. Cell Rep 2023; 42:112633. [PMID: 37314927 DOI: 10.1016/j.celrep.2023.112633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/04/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023] Open
Abstract
Phosphatidylinositol 4-kinase IIα (PI4KIIα) generates essential phospholipids and is a cargo for endosomal adaptor proteins. Activity-dependent bulk endocytosis (ADBE) is the dominant synaptic vesicle endocytosis mode during high neuronal activity and is sustained by glycogen synthase kinase 3β (GSK3β) activity. We reveal the GSK3β substrate PI4KIIα is essential for ADBE via its depletion in primary neuronal cultures. Kinase-dead PI4KIIα rescues ADBE in these neurons but not a phosphomimetic form mutated at the GSK3β site, Ser-47. Ser-47 phosphomimetic peptides inhibit ADBE in a dominant-negative manner, confirming that Ser-47 phosphorylation is essential for ADBE. Phosphomimetic PI4KIIα interacts with a specific cohort of presynaptic molecules, two of which, AGAP2 and CAMKV, are also essential for ADBE when depleted in neurons. Thus, PI4KIIα is a GSK3β-dependent interaction hub that silos essential ADBE molecules for liberation during neuronal activity.
Collapse
Affiliation(s)
- Eva-Maria Blumrich
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK
| | - Jessica C Nicholson-Fish
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK
| | - Marie Pronot
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK
| | - Dominic Kurian
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland EH25 9RG, UK
| | - Adam Cole
- Neurosignalling and Mood Disorders Group, The Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Karen J Smillie
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK.
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK.
| |
Collapse
|
4
|
Li YP, Mikrani R, Hu YF, Faran Ashraf Baig MM, Abbas M, Akhtar F, Xu M. Research progress of phosphatidylinositol 4-kinase and its inhibitors in inflammatory diseases. Eur J Pharmacol 2021; 907:174300. [PMID: 34217706 DOI: 10.1016/j.ejphar.2021.174300] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023]
Abstract
Phosphatidylinositol 4-kinase (PI4K) is a lipid kinase that can catalyze the transfer of phosphate group from ATP to the inositol ring of phosphatidylinositol (PtdIns) resulting in the phosphorylation of PtdIns at 4-OH sites, to generate phosphatidylinositol 4-phosphate (PI4P). Studies on biological functions reveal that PI4K is closely related to the occurrence and development of various inflammatory diseases such as obesity, cancer, viral infections, malaria, Alzheimer's disease, etc. PI4K-related inhibitors have been found to have the effects of inhibiting virus replication, anti-cancer, treating malaria and reducing rejection in organ transplants, among which MMV390048, an anti-malaria drug, has entered phase II clinical trial. This review discusses the classification, structure, distribution and related inhibitors of PI4K and their role in the progression of cancer, viral replication, and other inflammation induced diseases to explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Yan-Ping Li
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Reyaj Mikrani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Yi-Fan Hu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mirza Muhammad Faran Ashraf Baig
- Laboratory of Biomedical Engineering for Novel Bio-functional and Pharmaceutical Nano-materials, Prince Philip Dental Hospital, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Muhammad Abbas
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Fahad Akhtar
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
5
|
Dason JS, Sokolowski MB. A cGMP-dependent protein kinase, encoded by the Drosophila foraging gene, regulates neurotransmission through changes in synaptic structure and function. J Neurogenet 2021; 35:213-220. [PMID: 33998378 DOI: 10.1080/01677063.2021.1905639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A cGMP-dependent protein kinase (PKG) encoded by the Drosophila foraging (for) gene regulates both synaptic structure (nerve terminal growth) and function (neurotransmission) through independent mechanisms at the Drosophila larval neuromuscular junction (nmj). Glial for is known to restrict nerve terminal growth, whereas presynaptic for inhibits synaptic vesicle (SV) exocytosis during low frequency stimulation. Presynaptic for also facilitates SV endocytosis during high frequency stimulation. for's effects on neurotransmission can occur independent of any changes in nerve terminal growth. However, it remains unclear if for's effects on neurotransmission affect nerve terminal growth. Furthermore, it's possible that for's effects on synaptic structure contribute to changes in neurotransmission. In the present study, we examined these questions using RNA interference to selectively knockdown for in presynaptic neurons or glia at the Drosophila larval nmj. Consistent with our previous findings, presynaptic knockdown of for impaired SV endocytosis, whereas knockdown of glial for had no effect on SV endocytosis. Surprisingly, we found that knockdown of either presynaptic or glial for increased neurotransmitter release in response to low frequency stimulation. Knockdown of presynaptic for did not affect nerve terminal growth, demonstrating that for's effects on neurotransmission does not alter nerve terminal growth. In contrast, knockdown of glial for enhanced nerve terminal growth. This enhanced nerve terminal growth was likely the cause of the enhanced neurotransmitter release seen following knockdown of glial for. Overall, we show that for can affect neurotransmitter release by regulating both synaptic structure and function.
Collapse
Affiliation(s)
- Jeffrey S Dason
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada.,Department of Biomedical Sciences, University of Windsor, Windsor, Canada
| | - Marla B Sokolowski
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada.,Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Canada.,Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Canada
| |
Collapse
|
6
|
The Great Escape: how phosphatidylinositol 4-kinases and PI4P promote vesicle exit from the Golgi (and drive cancer). Biochem J 2019; 476:2321-2346. [DOI: 10.1042/bcj20180622] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is a membrane glycerophospholipid and a major regulator of the characteristic appearance of the Golgi complex as well as its vesicular trafficking, signalling and metabolic functions. Phosphatidylinositol 4-kinases, and in particular the PI4KIIIβ isoform, act in concert with PI4P to recruit macromolecular complexes to initiate the biogenesis of trafficking vesicles for several Golgi exit routes. Dysregulation of Golgi PI4P metabolism and the PI4P protein interactome features in many cancers and is often associated with tumour progression and a poor prognosis. Increased expression of PI4P-binding proteins, such as GOLPH3 or PITPNC1, induces a malignant secretory phenotype and the release of proteins that can remodel the extracellular matrix, promote angiogenesis and enhance cell motility. Aberrant Golgi PI4P metabolism can also result in the impaired post-translational modification of proteins required for focal adhesion formation and cell–matrix interactions, thereby potentiating the development of aggressive metastatic and invasive tumours. Altered expression of the Golgi-targeted PI 4-kinases, PI4KIIIβ, PI4KIIα and PI4KIIβ, or the PI4P phosphate Sac1, can also modulate oncogenic signalling through effects on TGN-endosomal trafficking. A Golgi trafficking role for a PIP 5-kinase has been recently described, which indicates that PI4P is not the only functionally important phosphoinositide at this subcellular location. This review charts new developments in our understanding of phosphatidylinositol 4-kinase function at the Golgi and how PI4P-dependent trafficking can be deregulated in malignant disease.
Collapse
|
7
|
Dason JS, Allen AM, Vasquez OE, Sokolowski MB. Distinct functions of a cGMP-dependent protein kinase in nerve terminal growth and synaptic vesicle cycling. J Cell Sci 2019; 132:jcs.227165. [DOI: 10.1242/jcs.227165] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/26/2019] [Indexed: 01/20/2023] Open
Abstract
Sustained neurotransmission requires the tight coupling of synaptic vesicle (SV) exocytosis and endocytosis. The mechanisms underlying this coupling are poorly understood. We tested the hypothesis that a cGMP-dependent protein kinase (PKG), encoded by the foraging (for) gene in Drosophila melanogaster, is critical for this process using a for null mutant, genomic rescues, and tissue specific rescues. We uncoupled FOR's exocytic and endocytic functions in neurotransmission using a temperature-sensitive shibire mutant in conjunction with fluorescein-assisted light inactivation of FOR. We discovered a dual role for presynaptic FOR, where FOR inhibits SV exocytosis during low frequency stimulation by negatively regulating presynaptic Ca2+ levels and maintains neurotransmission during high frequency stimulation by facilitating SV endocytosis. Additionally, glial FOR negatively regulated nerve terminal growth through TGF-β signaling and this developmental effect was independent from FOR's effects on neurotransmission. Overall, FOR plays a critical role in coupling SV exocytosis and endocytosis, thereby balancing these two components to maintain sustained neurotransmission.
Collapse
Affiliation(s)
- Jeffrey S. Dason
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Aaron M. Allen
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
- Present Address: Centre for Neural Circuits and Behaviour, University of Oxford, OX1 3SR Oxford, UK
| | - Oscar E. Vasquez
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | - Marla B. Sokolowski
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
8
|
Dason JS, Sokolowski MB, Wu CF. A reductionist approach to understanding the nervous system: the Harold Atwood legacy. J Neurogenet 2018; 32:127-130. [PMID: 30484389 DOI: 10.1080/01677063.2018.1504044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jeffrey S Dason
- a Department of Biological Sciences , University of Windsor , Windsor , Canada
| | - Marla B Sokolowski
- b Department of Cell & Systems Biology , University of Toronto , Toronto , Canada.,c Department of Ecology & Evolutionary Biology , University of Toronto , Toronto , Canada.,d Child and Brain Development Program , Canadian Institute for Advanced Research (CIFAR) , Toronto , Canada
| | - Chun-Fang Wu
- e Department of Biology , University of Iowa , Iowa City , IA , USA
| |
Collapse
|