1
|
Ravichandran S, Manickam N, Kandasamy M. Liposome encapsulated clodronate mediated elimination of pathogenic macrophages and microglia: A promising pharmacological regime to defuse cytokine storm in COVID-19. MEDICINE IN DRUG DISCOVERY 2022; 15:100136. [PMID: 35721801 PMCID: PMC9190184 DOI: 10.1016/j.medidd.2022.100136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022] Open
Abstract
The emergence of new SARS-CoV-2 variants continues to pose an enormous public health concern. The SARS-CoV-2 infection disrupted host immune response accounting for cytokine storm has been linked to multiorgan failure and mortality in a significant portion of positive cases. Abruptly activated macrophages have been identified as the key pathogenic determinant of cytokine storm in COVID-19. Besides, reactive microglia have been known to discharge a surplus amount of proinflammatory factors leading to neuropathogenic events in the brains of SARS-CoV-2 infected individuals. Considering the fact, depletion of activated macrophages and microglia could be proposed to eradicate the life-threatening cytokine storm in COVID-19. Clodronate, a non-nitrogenous bisphosphonate drug has been identified as a potent macrophage and microglial depleting agent. While recent advancement in the field of liposome encapsulation technology offers the most promising biological tool for drug delivery, liposome encapsulated clodronate has been reported to effectively target and induce prominent phagocytic cell death in activated macrophages and microglia compared to free clodronate molecules. Thus, in this review article, we emphasize that depletion of activated macrophages and microglial cells by administration of liposome encapsulated clodronate can be a potential therapeutic strategy to diminish the pathogenic cytokine storm and alleviate multiorgan failure in COVID-19. Moreover, recently developed COVID-19 vaccines appear to render the chronic activation of macrophages accounting for immunological dysregulation in some cases. Therefore, the use of liposome encapsulated clodronate can also be extended to the clinical management of unforeseen immunogenic reactions resulting from activated macrophages associated adverse effects of COVID-19 vaccines.
Collapse
Affiliation(s)
- Sowbarnika Ravichandran
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Nivethitha Manickam
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
- University Grants Commission, Faculty Recharge Programme (UGC-FRP), New Delhi 110002, India
| |
Collapse
|
2
|
Wang L, Zhang H, Sun L, Gao W, Xiong Y, Ma A, Liu X, Shen L, Li Q, Yang H. Manipulation of macrophage polarization by peptide-coated gold nanoparticles and its protective effects on acute lung injury. J Nanobiotechnology 2020; 18:38. [PMID: 32101146 PMCID: PMC7045427 DOI: 10.1186/s12951-020-00593-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
Abstract
Background Macrophage polarization and reprogramming in the lung play a critical role in the initiation, development and progression of acute lung injury (ALI). Regulating the activation and differentiation of pulmonary macrophages may provide a potential therapeutic strategy to treat ALI. We previously developed a novel class of anti-inflammatory nanoparticles (P12) that can potently inhibit Toll-like receptor (TLR) signaling in macrophages. These bioactive nanodevices were made of gold nanoparticles (GNPs) coated with hexapeptides to not only ensure their physiological stability but also enable GNPs with TLR inhibitory activity. Results In this study, using a lipopolysaccharide (LPS) induced ALI mouse model, we showed that P12 was able to alleviate lung inflammation and damage through reducing the infiltration of inflammatory cells and increasing the anti-inflammatory cytokine (IL-10) in the lung. These results prompted us to investigate possible macrophage polarization by P12. We first confirmed that P12 primarily targeted macrophages in the lung to exert anti-inflammatory activity. We then showed that P12 could drive the polarization of mouse bone marrow-derived macrophages (BMDMs) toward anti-inflammatory M2 phenotype. Interestingly, in the ALI mouse model, P12 was able to increase the alveolar M2 macrophages and reduce both the alveolar and interstitial M1 macrophages in the bronchoalveolar lavage fluid (BALF) and lung tissues. Conclusion This study demonstrated that peptide-coated GNPs could induce M2 macrophage polarization in vitro and in vivo to effectively regulate lung inflammation, protect lung from injuries and promote inflammation resolution. The ability of regulating macrophage polarization together with TLR inhibition made such a bioactive nanodevice a new generation of potent therapeutics to treat ALI.![]()
Collapse
Affiliation(s)
- Lu Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Huasheng Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liya Sun
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070, China
| | - Wei Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Ye Xiong
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Aying Ma
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Xiali Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Lei Shen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China. .,Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.
| | - Hong Yang
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China. .,School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
3
|
Van der Meeren A, Moureau A, Griffiths NM. Macrophages as key elements of Mixed-oxide [U-Pu(O2)] distribution and pulmonary damage after inhalation? Int J Radiat Biol 2014; 90:1095-103. [PMID: 25029673 DOI: 10.3109/09553002.2014.943848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
UNLABELLED Abstract Purpose: To investigate the consequences of alveolar macrophage (AM) depletion on Mixed OXide fuel (MOX: U, Pu oxide) distribution and clearance, as well as lung damage following MOX inhalation. MATERIALS AND METHODS Rats were exposed to MOX by nose only inhalation. AM were depleted with intratracheal administration of liposomal clodronate at 6 weeks. Lung changes, macrophage activation, as well as local and systemic actinide distribution were studied up to 3 months post-inhalation. RESULTS Clodronate administration modified excretion/retention patterns of α activity. At 3 months post-inhalation lung retention was higher in clodronate-treated rats compared to Phosphate Buffered Saline (PBS)-treated rats, and AM-associated α activity was also increased. Retention in liver was higher in clodronate-treated rats and fecal and urinary excretions were lower. Three months after inhalation, rats exhibited lung fibrotic lesions and alveolitis, with no marked differences between the two groups. Foamy macrophages of M2 subtype [inducible Nitric Oxide Synthase (iNOS) negative but galectin-3 positive] were frequently observed, in correlation with the accumulation of MOX particles. AM from all MOX-exposed rats showed increased chemokine levels as compared to sham controls. CONCLUSION Despite the transient reduced AM numbers in clodronate-treated animals no major differences on lung damage were observed as compared to non-treated rats after MOX inhalation. The higher lung activity retention in rats receiving clodronate seems to be part of a general inflammatory response and needs further investigation.
Collapse
Affiliation(s)
- Anne Van der Meeren
- Laboratoire de RadioToxicologie, CEA/DSV/iRCM, Bruyères le Châtel , Arpajon , France
| | | | | |
Collapse
|
4
|
Bang BR, Chun E, Shim EJ, Lee HS, Lee SY, Cho SH, Min KU, Kim YY, Park HW. Alveolar macrophages modulate allergic inflammation in a murine model of asthma. Exp Mol Med 2011; 43:275-80. [PMID: 21415590 DOI: 10.3858/emm.2011.43.5.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The role of alveolar macrophages (AMs) in the pathogenesis of asthma is still unknown. The aim of the present study was to investigate the effects of AM in the murine model of asthma. AMs were selectively depleted by liposomes containing clodronate just before allergen challenges, and changes in inflammatory cells and cytokine concentrations in bronchoalveolar lavage (BAL) fluid were measured. AMs were then adoptively transferred to AM-depleted sensitized mice and changes were measured. Phenotypic changes in AMs were evaluated after in vitro allergen stimulation. AM-depletion after sensitization significantly increased the number of eosinophils and lymphocytes and the concentrations of IL-4, IL-5 and GM-CSF in BAL fluid. These changes were significantly ameliorated only by adoptive transfer of unsensitized AMs, not by sensitized AMs. In addition, in vitro allergen stimulation of AMs resulted in their gaining the ability to produce inflammatory cytokines, such as IL-1β, IL-6 and TNF-α, and losing the ability to suppress GM-CSF concentrations in BAL fluid. These findings suggested that AMs worked probably through GM-CSF-dependent mechanisms, although further confirmatory experiments are needed. Our results indicate that the role of AMs in the context of airway inflammation should be re-examined.
Collapse
Affiliation(s)
- Bo Ram Bang
- Department of Internal Medicine, College of Medicine, Seoul National University, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Laskin DL, Sunil VR, Gardner CR, Laskin JD. Macrophages and tissue injury: agents of defense or destruction? Annu Rev Pharmacol Toxicol 2011; 51:267-88. [PMID: 20887196 DOI: 10.1146/annurev.pharmtox.010909.105812] [Citation(s) in RCA: 462] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The past several years have seen the accumulation of evidence demonstrating that tissue injury induced by diverse toxicants is due not only to their direct effects on target tissues but also indirectly to the actions of resident and infiltrating macrophages. These cells release an array of mediators with cytotoxic, pro- and anti-inflammatory, angiogenic, fibrogenic, and mitogenic activity, which function to fight infections, limit tissue injury, and promote wound healing. However, following exposure to toxicants, macrophages can become hyperresponsive, resulting in uncontrolled or dysregulated release of mediators that exacerbate acute tissue injury and/or promote the development of chronic diseases such as fibrosis and cancer. Evidence suggests that the diverse activity of macrophages is mediated by distinct subpopulations that develop in response to signals within their microenvironment. Understanding the precise roles of these different macrophage populations in the pathogenic response to toxicants is key to designing effective treatments for minimizing tissue damage and chronic disease and for facilitating wound repair.
Collapse
Affiliation(s)
- Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | | | | | |
Collapse
|
6
|
Lo Re S, Dumoutier L, Couillin I, Van Vyve C, Yakoub Y, Uwambayinema F, Marien B, van den Brûle S, Van Snick J, Uyttenhove C, Ryffel B, Renauld JC, Lison D, Huaux F. IL-17A-producing gammadelta T and Th17 lymphocytes mediate lung inflammation but not fibrosis in experimental silicosis. THE JOURNAL OF IMMUNOLOGY 2010; 184:6367-77. [PMID: 20421647 DOI: 10.4049/jimmunol.0900459] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IL-17-producing T lymphocytes play a crucial role in inflammation, but their possible implication in fibrosis remains to be explored. In this study, we examined the involvement of these cells in a mouse model of lung inflammation and fibrosis induced by silica particles. Upregulation of IL-17A was associated with the development of experimental silicosis, but this response was markedly reduced in athymic, gammadelta T cell-deficient or CD4(+) T cell-depleted mice. In addition, gammadelta T lymphocytes and CD4(+) T cells, but not macrophages, neutrophils, NK cells or CD8 T cells, purified from the lungs of silicotic mice markedly expressed IL-17A. Depletion of alveolar macrophages or neutralization of IL-23 reduced upregulation of IL-17A in the lung of silicotic mice. IL-17R-deficient animals (IL-17R(-/-)) or IL-17A Ab neutralization, but not IL-22(-/-) mice, developed reduced neutrophil influx and injury during the early lung response to silica. However, chronic inflammation, fibrosis, and TGF-beta expression induced by silica were not attenuated in the absence of IL-17R or -22 or after IL-17A Ab blockade. In conclusion, a rapid lung recruitment of IL-17A-producing T cells, mediated by macrophage-derived IL-23, is associated with experimental silicosis in mice. Although the acute alveolitis induced by silica is IL-17A dependent, this cytokine appears dispensable for the development of the late inflammatory and fibrotic lung responses to silica.
Collapse
Affiliation(s)
- Sandra Lo Re
- Louvain Centre for Toxicology and Applied Pharmacology, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
This article discusses the use of nanotechnology in drug delivery approaches. Magnetic nanotechnology is finding wide applications in medicine, most notably in MRI and magnetic separation. The impedance biosensor is expected to find applications in monitoring cytokines in cancer, bone turnover markers in osteoporosis, and understanding neural-degenerative diseases.
Collapse
Affiliation(s)
- Chiming Wei
- Department of Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe Street/Harvey 606, Baltimore, MD 21205, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Li P, Tan Z, Zhu Y, Chen S, Ding S, Zhuang H. Targeting study of gelatin adsorbed clodronate in reticuloendothelial system and its potential application in immune thrombocytopenic purpura of rat model. J Control Release 2006; 114:202-8. [PMID: 16857286 DOI: 10.1016/j.jconrel.2006.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 05/13/2006] [Accepted: 05/17/2006] [Indexed: 11/20/2022]
Abstract
Depletion of splenic and hepatic macrophages has potentials to alleviate hemorrhage in patients who suffered from immune thrombocytopenic purpura (ITP). This investigation was aimed to assess whether nanotechnology can play a role in this clinical setting by absorbing bisphosphonate clodronate (CLOD) to type A gelatin nanospheres (GNS) to form CLOD-GNS. First, the stability of CLOD-GNS was assessed in vitro and up to 6 mg CLOD can be adsorbed in 1 mg GNS. The ability of CLOD-GNS to target the spleen and the liver was then evaluated by biodistribution assay and 99mTc-CLOD-GNS scintigraphy in rats. It showed that up to 70.6% of CLOD-GNS could be accumulated in the liver and spleen. The survival of the macrophages in vitro and the phagocytic ability of hepatic and splenic macrophage in vivo were reduced and later demonstrated by 99mTc-phytic colloid scintigraphy. In rats with induced ITP, administration of CLOD-GNS successfully prevented peripheral platelet levels from decreasing. Our preliminary data demonstrate that CLOD-GNS can effectively target reticuloendothelial system and its potentials in the treatment of ITP warrants further study.
Collapse
Affiliation(s)
- Peiyong Li
- Department of Nuclear Medicine, Rui Jin Hospital affiliated to Shanghai Second Medical University, RuiJin 2nd Road 197#, Shanghai 200025, PR China.
| | | | | | | | | | | |
Collapse
|
9
|
Zhao M, Fernandez LG, Doctor A, Sharma AK, Zarbock A, Tribble CG, Kron IL, Laubach VE. Alveolar macrophage activation is a key initiation signal for acute lung ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol 2006; 291:L1018-26. [PMID: 16861385 DOI: 10.1152/ajplung.00086.2006] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lung ischemia-reperfusion (I/R) injury is a biphasic inflammatory process. Previous studies indicate that the later phase is neutrophil-dependent and that alveolar macrophages (AMs) likely contribute to the acute phase of lung I/R injury. However, the mechanism is unclear. AMs become activated and produce various cytokines and chemokines in many inflammatory responses, including transplantation. We hypothesize that AMs respond to I/R by producing key cytokines and chemokines and that depletion of AMs would reduce cytokine/chemokine expression and lung injury after I/R. To test this, using a buffer-perfused, isolated mouse lung model, we studied the impact of AM depletion by liposome-clodronate on I/R-induced lung dysfunction/injury and expression of cytokines/chemokines. I/R caused a significant increase in pulmonary artery pressure, wet-to-dry weight ratio, vascular permeability, tumor necrosis factor (TNF)-alpha, monocyte chemoattractant protein (MCP)-1, and macrophage inflammatory protein (MIP)-2 expression, as well as decreased pulmonary compliance, when compared with sham lungs. After AM depletion, the changes in each of these parameters between I/R and sham groups were significantly attenuated. Thus AM depletion protects the lungs from I/R-induced dysfunction and injury and significantly reduces cytokine/chemokine production. Protein expression of TNF-alpha and MCP-1 are positively correlated to I/R-induced lung injury, and AMs are a major producer/initiator of TNF-alpha, MCP-1, and MIP-2. We conclude that AMs are an essential player in the initiation of acute lung I/R injury.
Collapse
Affiliation(s)
- Minqing Zhao
- Department of Surgery, University of Virginia Health System, P.O. Box 801359, Charlottesville, 22908, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Elder A, Johnston C, Gelein R, Finkelstein J, Wang Z, Notter R, Oberdörster G. Lung inflammation induced by endotoxin is enhanced in rats depleted of alveolar macrophages with aerosolized clodronate. Exp Lung Res 2005; 31:527-46. [PMID: 16019986 DOI: 10.1080/019021490944223] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Clodronate liposomes were given to rats via intratracheal inhalation to investigate the importance of alveolar macrophages (AMs) in inhaled endotoxin-induced lung injury. When AM depletion was maximal (87% to 90%), rats were exposed to lipopolysaccharide (LPS) or saline. Neither clodronate nor saline liposomes induced an influx of neutrophils (PMNs) into the lungs. However, depleted LPS-exposed rats had 5- to 8-fold higher numbers of lavage PMNs and greater lavage cell reactive oxygen species release compared to undepleted rats. Although AM depletion by itself did not significantly increase inflammatory cytokine expression in lung tissue, LPS-induced message levels for interleukin (IL)-1alpha, IL-1beta, IL-6, and tumor necrosis factor (TNF)-alpha were approximately 2-fold higher in AM-depleted rats compared to undepleted rats. These results indicate that cells other than AMs can recruit inflammatory cells into the lungs during acute LPS-induced injury and that AMs play an important suppressive role in the innate pulmonary inflammatory response.
Collapse
Affiliation(s)
- A Elder
- Department of Environmental Medicine, University of Rochester, New York 14642, USA.
| | | | | | | | | | | | | |
Collapse
|