1
|
Zhang L, Yang Y, Aroor AR, Jia G, Sun Z, Parrish A, Litherland G, Bonnard B, Jaisser F, Sowers JR, Hill MA. Endothelial sodium channel activation mediates DOCA-salt-induced endothelial cell and arterial stiffening. Metabolism 2022; 130:155165. [PMID: 35183546 PMCID: PMC8977070 DOI: 10.1016/j.metabol.2022.155165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION High salt intake and aldosterone are both associated with vascular stiffening in humans. However, our preliminary work showed that high dietary salt alone did not increase endothelial cell (EC) or vascular stiffness or endothelial sodium channel (EnNaC) activation in mice, presumably because aldosterone production was significantly suppressed as a result of the high salt diet. We thus hypothesized that high salt consumption along with an exogenous mineralocorticoid would substantially increase EC and vascular stiffness via activation of the EnNaC. METHODS AND RESULTS Mice were implanted with slow-release DOCA pellets and given salt in their drinking water for 21 days. Mice with either specific deletion of the alpha subunit of EnNaC or treated with a pharmacological inhibitor of mTOR, a downstream signaling molecule involved in mineralocorticoid receptor activation of EnNaC, were studied. DOCA-salt treated control mice had increased blood pressure, EC Na+ transport activity, EC and arterial stiffness, which were attenuated in both the αEnNaC-/- and mTOR inhibitor treated groups. Further, depletion of αEnNaC prevented DOCA-salt-induced impairment in EC-dependent vascular relaxation. CONCLUSION While high salt consumption alone does not cause EC or vascular stiffening, the combination of EC MR activation and high salt causes activation of EnNaC which increases EC and arterial stiffness and impairs vascular relaxation. Underlying mechanisms appear to include mTOR signaling.
Collapse
Affiliation(s)
- Liping Zhang
- Dalton Cardiovascular Research Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Yan Yang
- Dalton Cardiovascular Research Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Annayya R Aroor
- Diabetes and Cardiovascular Research Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Guanghong Jia
- Diabetes and Cardiovascular Research Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Zhe Sun
- Dalton Cardiovascular Research Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Alan Parrish
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Garrett Litherland
- Dalton Cardiovascular Research Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Benjamin Bonnard
- INSERM, UMRS 1138, Cordeliers Research Center, Sorbonne Université, Université de Paris, F-75006 Paris, France
| | - Frederic Jaisser
- INSERM, UMRS 1138, Cordeliers Research Center, Sorbonne Université, Université de Paris, F-75006 Paris, France
| | - James R Sowers
- Dalton Cardiovascular Research Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65211, USA; Diabetes and Cardiovascular Research Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Michael A Hill
- Dalton Cardiovascular Research Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
2
|
Kota P. Sustained inhibition of ENaC in CF: Potential RNA-based therapies for mutation-agnostic treatment. Curr Opin Pharmacol 2022; 64:102209. [PMID: 35483215 DOI: 10.1016/j.coph.2022.102209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022]
Abstract
Disruption of the equilibrium between ion secretion and absorption processes by the airway epithelium is central to many muco-obstructive lung diseases including cystic fibrosis (CF). Besides correction of defective folding and function of CFTR, inhibition of amiloride-sensitive epithelia sodium channels (ENaC) has emerged as a bona fide therapeutic strategy to improve mucociliary clearance in patients with CF. The short half-life of amiloride-based ENaC blockers and hyperosmotic therapies have led to the development of novel RNA-based interventions for targeted and sustained reduction of ENaC expression and function in preclinical models of CF. This review summarizes the recent advances in RNA therapeutics targeting ENaC for mutation-agnostic treatment of CF.
Collapse
Affiliation(s)
- Pradeep Kota
- Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Shan S, Wang SN, Song X, Khashaveh A, Lu ZY, Dhiloo KH, Li RJ, Gao XW, Zhang YJ. Characterization and target gene analysis of microRNAs in the antennae of the parasitoid wasp Microplitis mediator. INSECT SCIENCE 2021; 28:1033-1048. [PMID: 32496619 DOI: 10.1111/1744-7917.12832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs), a class of non-coding single-strand RNA molecules encoded by endogenous genes, are about 21-24 nucleotides long and are involved in the post-transcriptional regulation of gene expression in plants and animals. Generally, the types and quantities of miRNAs in the different tissues of an organism are diverse, and these divergences may be related to their specific functions. Here we have identified 296 known miRNAs and 46 novel miRNAs in the antennae of the parasitoid wasp Microplitis mediator by high-throughput sequencing. Thirty-three miRNAs were predicted to target olfactory-associated genes, including odorant binding proteins (OBPs), chemosensory proteins, odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors. Among these, 17 miRNAs were significantly highly expressed in the antennae, four miRNAs were highly expressed both in the antennae and head or wings, while the remaining 12 miRNAs were mainly expressed in the head, thorax, abdomen, legs and wings. Notably, miR-9a-5p and miR-2525-3p were highly expressed in male antennae, whereas miR-1000-5p and novel-miR-13 were enriched in female antennae. The 17 miRNAs highly expressed in antennae are likely to be associated with olfaction, and were predicted to target one OBP (targeted by miR-3751-3p), one IR (targeted by miR-7-5p) and 14 ORs (targeted by 15 miRNAs including miR-6-3p, miR-9a-5p, miR-9b-5p, miR-29-5p, miR-71-5p, miR-275-3p, miR-1000-5p, miR-1000-3p, miR-2525-3p, miR-6012-3p, miR-9719-3p, novel-miR-10, novel-miR-13, novel-miR-14 and novel-miR-28). These candidate olfactory-associated miRNAs are all likely to be involved in chemoreception through the regulation of chemosensory gene expression in the antennae of M. mediator.
Collapse
Affiliation(s)
- Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shan-Ning Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Xuan Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zi-Yun Lu
- IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, Hebei, China
| | - Khalid Hussain Dhiloo
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam, Pakistan
| | - Rui-Jun Li
- College of Plant Protection, Agricultural University of Hebei, Baoding, Hebei, China
| | - Xi-Wu Gao
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Zhou Z, Hua Y, Ding Y, Hou Y, Yu T, Cui Y, Nie H. Conditioned Medium of Bone Marrow Mesenchymal Stem Cells Involved in Acute Lung Injury by Regulating Epithelial Sodium Channels via miR-34c. Front Bioeng Biotechnol 2021; 9:640116. [PMID: 34368091 PMCID: PMC8336867 DOI: 10.3389/fbioe.2021.640116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/17/2021] [Indexed: 01/01/2023] Open
Abstract
Background One of the characteristics of acute lung injury (ALI) is severe pulmonary edema, which is closely related to alveolar fluid clearance (AFC). Mesenchymal stem cells (MSCs) secrete a wide range of cytokines, growth factors, and microRNA (miRNAs) through paracrine action to participate in the mechanism of pulmonary inflammatory response, which increase the clearance of edema fluid and promote the repair process of ALI. The epithelial sodium channel (ENaC) is the rate-limiting step in the sodium–water transport and edema clearance in the alveolar cavity; the role of bone marrow-derived MSC-conditioned medium (BMSC-CM) in edema clearance and how miRNAs affect ENaC are still seldom known. Methods CCK-8 cell proliferation assay was used to detect the effect of BMSC-CM on the survival of alveolar type 2 epithelial (AT2) cells. Real-time polymerase chain reaction (RT-PCR) and western blot were used to detect the expression of ENaC in AT2 cells. The effects of miR-34c on lung fluid absorption were observed in LPS-treated mice in vivo, and the transepithelial short-circuit currents in the monolayer of H441 cells were examined by the Ussing chamber setup. Dual luciferase reporter gene assay was used to detect the target gene of miR-34c. Results BMSC-CM could increase the viability of mouse AT2 cells. RT-PCR and western blot results showed that BMSC-CM significantly increased the expression of the γ-ENaC subunit in mouse AT2 cells. MiR-34c could restore the AFC and lung wet/dry weight ratio in the ALI animal model, and Ussing chamber assay revealed that miR-34c enhanced the amiloride-sensitive currents associated with ENaC activity in intact H441 cell monolayers. In addition, we observed a higher expression of miR-34c in mouse AT2 cells administrated with BMSC-CM, and the overexpression or inhibition of miR-34c could regulate the expression of ENaC protein and alter the function of ENaC. Finally, we detected that myristoylated alanine-rich C kinase substrate (MARCKS) may be one of the target genes of miR-34c. Conclusion Our results indicate that BMSC-CM may alleviate LPS-induced ALI through miR-34c targeting MARCKS and regulate ENaC indirectly, which further explores the benefit of paracrine effects of bone marrow-derived MSCs on edematous ALI.
Collapse
Affiliation(s)
- Zhiyu Zhou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yu Hua
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Fei X, Ziqian Y, Bingwu Y, Min L, Xinmiao X, Zhen M, Lirong G, Song W. Aldosterone alleviates lipopolysaccharide-induced acute lung injury by regulating epithelial sodium channel through PI3K/Akt/SGK1 signaling pathway. Mol Cell Probes 2021; 57:101709. [PMID: 33713776 DOI: 10.1016/j.mcp.2021.101709] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
Reduced alveolar fluid clearance (AFC) is a major pathological feature of acute lung injury (ALI). Epithelial sodium channel (ENaC) plays a key role in regulating the transport of Na+ and clearing alveolar edema fluid effectively. ENaC has been reported to be regulated by aldosterone in the distal collecting tube of the kidney. We hypothesized whether aldosterone regulated ENaC in alveolar epithelium and correspondingly played a role in ALI. In this study we found that the expression of aldosterone synthesis encoding gene, CYP11B2, and ENaC were decreased in the lung tissue of LPS-induced ALI mice. Furthermore, aldosterone alleviated ALI by increasing the expression of ENaC-α and relieving pulmonary edema. Besides, we found that aldosterone upregulated ENaC-α through PI3K/Akt/SGK1 pathway. In conclusion, our study demonstrated that aldosterone attenuated pulmonary edema by upregulating ENaC-α through the PI3K/Akt/SGK1 pathway in LPS-induced ALI, indicating that aldosterone might be a promising adjuvant drug for ALI treatment.
Collapse
Affiliation(s)
- Xiu Fei
- Department of Blood Transfusion, Liaocheng People's Hospital, #67 Dongchangxi Road, Liaocheng, 252000, China
| | - Yu Ziqian
- Department of Clinical Laboratory, Liaocheng Veterans Hospital, #2 Gaodong Street, Liaocheng, 252000, China
| | - Yang Bingwu
- Procesion Biomedical Lab, Liaocheng People's Hospital, Medical College of Liaocheng University, #67 Dongchangxi Road, Liaocheng, 252000, China
| | - Li Min
- Procesion Biomedical Lab, Liaocheng People's Hospital, Medical College of Liaocheng University, #67 Dongchangxi Road, Liaocheng, 252000, China
| | - Xian Xinmiao
- Procesion Biomedical Lab, Liaocheng People's Hospital, Medical College of Liaocheng University, #67 Dongchangxi Road, Liaocheng, 252000, China
| | - Meng Zhen
- Procesion Biomedical Lab, Liaocheng People's Hospital, Medical College of Liaocheng University, #67 Dongchangxi Road, Liaocheng, 252000, China
| | - Guo Lirong
- Nursing School of Jilin University, Changchun, Jilin, 130021, China.
| | - Wang Song
- Procesion Biomedical Lab, Liaocheng People's Hospital, Medical College of Liaocheng University, #67 Dongchangxi Road, Liaocheng, 252000, China.
| |
Collapse
|
6
|
Chen X, Deng S, Lei Q, He Q, Ren Y, Zhang Y, Nie J, Lu W. miR-7-5p Affects Brain Edema After Intracerebral Hemorrhage and Its Possible Mechanism. Front Cell Dev Biol 2020; 8:598020. [PMID: 33392188 PMCID: PMC7772315 DOI: 10.3389/fcell.2020.598020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: To explore the relationship between miR-7-5p and brain edema after intracerebral hemorrhage and the role of butylphthalide (NBP) in brain edema after intracerebral hemorrhage. Method: Routine blood testing, C-reactive protein results, and computed tomography data were collected 1, 7, and 14 days after intracerebral hemorrhage in six patients. Levels of MMP-9, ZO-1, occludin, IL-6, TNF-α, and miR-7-5p were detected in each patient's serum. Sixty male Sprague-Dawley rats were randomly divided into sham operation, intracerebral hemorrhage, and NBP treatment groups. Dry-wet weight was used to assess brain edema, and Evans blue staining was used to assess the permeability of the blood-brain barrier. Expression levels of IL-6, TNF-α, ZO-1 and occludin, PI3K, AKT, p-AKT, AQP4, and miR-7-5p were analyzed in the rat brains. Result: The blood neutrophil-lymphocyte ratio (NLR) on day 1 was associated with the area of brain edema on day 7. The expression of miR-7-5p decreased after intracerebral hemorrhage, and as a result, the inhibition of the PI3K/AKT pathway was weakened. The decreased inhibition of the PI3K/AKT pathway resulted in an increase in AQP4 expression, which further aggravated brain edema. NBP can upregulate the expression of miR-7-5p, affecting these pathways to reduce brain edema. Conclusion: After intracerebral hemorrhage, miR-7-5p expression in brain tissue is reduced, which may increase the expression of AQP4 by activating the PI3K/AKT pathway. NBP can inhibit this process and reduce brain edema.
Collapse
Affiliation(s)
- Xiqian Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiang Lei
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiang He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yijun Ren
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiliu Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Nie
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
The Role of MicroRNA in the Airway Surface Liquid Homeostasis. Int J Mol Sci 2020; 21:ijms21113848. [PMID: 32481719 PMCID: PMC7312818 DOI: 10.3390/ijms21113848] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
Mucociliary clearance, mediated by a coordinated function of cilia bathing in the airway surface liquid (ASL) on the surface of airway epithelium, protects the host from inhaled pathogens and is an essential component of the innate immunity. ASL is composed of the superficial mucus layer and the deeper periciliary liquid. Ion channels, transporters, and pumps coordinate the transcellular and paracellular movement of ions and water to maintain the ASL volume and mucus hydration. microRNA (miRNA) is a class of non-coding, short single-stranded RNA regulating gene expression by post-transcriptional mechanisms. miRNAs have been increasingly recognized as essential regulators of ion channels and transporters responsible for ASL homeostasis. miRNAs also influence the airway host defense. We summarize the most up-to-date information on the role of miRNAs in ASL homeostasis and host-pathogen interactions in the airway and discuss concepts for miRNA-directed therapy.
Collapse
|
8
|
Ilatovskaya DV, Levchenko V, Pavlov TS, Isaeva E, Klemens CA, Johnson J, Liu P, Kriegel AJ, Staruschenko A. Salt-deficient diet exacerbates cystogenesis in ARPKD via epithelial sodium channel (ENaC). EBioMedicine 2019; 40:663-674. [PMID: 30745171 PMCID: PMC6413684 DOI: 10.1016/j.ebiom.2019.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 12/14/2022] Open
Abstract
Background Autosomal Recessive Polycystic Kidney Disease (ARPKD) is marked by cyst formation in the renal tubules, primarily in the collecting duct (CD) system, ultimately leading to end-stage renal disease. Patients with PKD are generally advised to restrict their dietary sodium intake. This study was aimed at testing the outcomes of dietary salt manipulation in ARPKD. Methods PCK/CrljCrlPkhd1pck/CRL (PCK) rats, a model of ARPKD, were fed a normal (0.4% NaCl; NS), high salt (4% NaCl; HS), and sodium-deficient (0.01% NaCl; SD) diets for 8 weeks. Immunohistochemistry, GFR measurements, balance studies, and molecular biology approaches were applied to evaluate the outcomes of the protocol. Renin-angiotensin-aldosterone system (RAAS) levels were assessed using LC-MS/MS, and renal miRNA profiles were studied. Findings Both HS and SD diets resulted in an increase in cystogenesis. However, SD diet caused extensive growth of cysts in the renal cortical area, and hypertrophy of the tissue; RAAS components were enhanced in the SD group. We observed a reduction in epithelial Na+ channel (ENaC) expression in the SD group, accompanied with mRNA level increase. miRNA assay revealed that renal miR-9a-5p level was augmented in the SD group; we showed that this miRNA decreases ENaC channel number in CD cells. Interpretation Our data demonstrate a mechanism of ARPKD progression during salt restriction that involves activity of ENaC. We further show that miR-9a-5p potentially implicated in this mechanism and that miR-9a-5p downregulates ENaC in cultured CD cells. Our findings open new therapeutic possibilities and highlight the importance of understanding salt reabsorption in ARPKD.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Tengis S Pavlov
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Elena Isaeva
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Christine A Klemens
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Jessica Johnson
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Clement J. Zablocki VA Medical Center, 5000 West National Avenue, Milwaukee, WI, 53295, USA.
| |
Collapse
|
9
|
Ding Y, Zhao R, Zhao X, Matthay MA, Nie HG, Ji HL. ENaCs as Both Effectors and Regulators of MiRNAs in Lung Epithelial Development and Regeneration. Cell Physiol Biochem 2017; 44:1120-1132. [PMID: 29179210 PMCID: PMC5884700 DOI: 10.1159/000485417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 10/14/2017] [Indexed: 12/14/2022] Open
Abstract
Epithelial sodium channels (ENaC) play an important role in re-absorbing excessive luminal fluid by building up an osmotic Na+ gradient across the tight epithelium in the airway, the lung, the kidney, and the colon. The ENaC is a major pathway for retention of salt in kidney too. MicroRNAs (miRs), a group of non-coding RNAs that regulate gene expression at the post-transcriptional level, have emerged as a novel class of regulators for ENaC. Given the ENaC pathway is crucial for maintaining fluid homeostasis in the lung and the kidney and other cavities, we summarized the cross-talk between ENaC and miRs and recapitulated the underlying regulatory factors, including aldosterone, transforming growth factor-β1, and vascular endothelial growth factor-A in the lung and other epithelial tissues/organs. We have compared the profiling of miRs between normal and injured mice and human lungs, which showed a significant alteration in numerous miRs in mouse models of LPS and ventilator induced ARDS. In addition, we reiterated the potential regulation of the ENaC by miRs in stem/ progenitor cell-based re-epithelialization, and identified a promising pharmaceutic target of ENaC for removing edema fluid in ARDS by mesenchymal stem cells-released paracrine. In conclusion, it seems that the interactions between miRs and scnn1s/ENaCs are critical for lung development, epithelial cell turnover in adult lungs, and re-epithelialization for repair.
Collapse
Affiliation(s)
- Yan Ding
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Runzhen Zhao
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler Texas
- Texas Lung Injury Institute, University of Texas Health Northeast, Tyler Texas, USA
| | - Xiaoli Zhao
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Michael A. Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Hong-Guang Nie
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Hong-Long Ji
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler Texas
- Texas Lung Injury Institute, University of Texas Health Northeast, Tyler Texas, USA
| |
Collapse
|
10
|
Liu X, Edinger RS, Klemens CA, Phua YL, Bodnar AJ, LaFramboise WA, Ho J, Butterworth MB. A MicroRNA Cluster miR-23-24-27 Is Upregulated by Aldosterone in the Distal Kidney Nephron Where it Alters Sodium Transport. J Cell Physiol 2017; 232:1306-1317. [PMID: 27636893 DOI: 10.1002/jcp.25599] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/14/2016] [Indexed: 01/09/2023]
Abstract
The epithelial sodium channel (ENaC) is expressed in the epithelial cells of the distal convoluted tubules, connecting tubules, and cortical collecting duct (CCD) in the kidney nephron. Under the regulation of the steroid hormone aldosterone, ENaC is a major determinant of sodium (Na+ ) and water balance. The ability of aldosterone to regulate microRNAs (miRs) in the kidney has recently been realized, but the role of miRs in Na+ regulation has not been well established. Here we demonstrate that expression of a miR cluster mmu-miR-23-24-27, is upregulated in the CCD by aldosterone stimulation both in vitro and in vivo. Increasing the expression of these miRs increased Na+ transport in the absence of aldosterone stimulation. Potential miR targets were evaluated and miR-27a/b was verified to bind to the 3'-untranslated region of intersectin-2, a multi-domain protein expressed in the distal kidney nephron and involved in the regulation of membrane trafficking. Expression of Itsn2 mRNA and protein was decreased after aldosterone stimulation. Depletion of Itsn2 expression, mimicking aldosterone regulation, increased ENaC-mediated Na+ transport, while Itsn2 overexpression reduced ENaC's function. These findings reinforce a role for miRs in aldosterone regulation of Na+ transport, and implicate miR-27 in aldosterone's action via a novel target. J. Cell. Physiol. 232: 1306-1317, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoning Liu
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Robert S Edinger
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Christine A Klemens
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yu L Phua
- Division of Nephrology in the Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Andrew J Bodnar
- Division of Nephrology in the Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - William A LaFramboise
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jacqueline Ho
- Division of Nephrology in the Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Michael B Butterworth
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|