1
|
Prinz J, Hartmann K, Migliorini F, Hamesch K, Walter P, Fuest M, Kuerten D. Efficacy of allogenous fascia lata grafts in the management of lower eyelid retraction. Int Ophthalmol 2023; 43:4729-4737. [PMID: 37721702 PMCID: PMC10724318 DOI: 10.1007/s10792-023-02873-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023]
Abstract
PURPOSE To report on the use of allogenous fascia lata (FL) grafts in patients with lower eyelid retraction (LER). METHODS In this retrospective study, a consecutive series of 27 patients (39 eyes) with LER who underwent lower eyelid elevation with FL was included. Examinations including measurement of the palpebral fissure vertical height (PFVH), the inferior scleral show distance, the margin reflex distance 2 (MRD 2), and the evaluation of conjunctival hyperemia were conducted at baseline and after a mean postoperative time of 25.9 ± 25.5 (5.0-81.0, median 13.0, last follow-up) months in all patients. RESULTS At the last follow-up, a significant reduction of the PFVH (11.3 ± 1.7 versus 12.8 ± 2.1 at baseline, p < 0.001), the inferior scleral show distance (0.7 ± 1.0 mm versus 2.1 ± 1.1 at baseline, p < 0.001), and the MRD 2 (6.4 ± 0.9 versus 7.8 ± 1.3 at baseline, p < 0.001) occurred. The conjunctival hyperemia grading score (McMonnies) was significantly reduced (1.8 ± 0.7) at the last follow-up compared to baseline (2.6 ± 0.6, p < 0.001). No case of ectropion or entropion was observed at the last follow-up visit. CONCLUSION In this case series, lower eyelid elevation with FL grafts as a spacer led to a significant reduction of the PFVH, MRD 2, inferior scleral show distance, and conjunctival hyperemia. No severe surgery-related complications occurred.
Collapse
Affiliation(s)
- Julia Prinz
- Department of Ophthalmology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Kathi Hartmann
- Department of Ophthalmology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | | | - Karim Hamesch
- Department of Gastroenterology and Hepatology, RWTH Aachen University, Aachen, Germany
| | - Peter Walter
- Department of Ophthalmology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Matthias Fuest
- Department of Ophthalmology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - David Kuerten
- Department of Ophthalmology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
2
|
Ahmed AM, Hussein MR. Telocytes in Cutaneous Biology: A Reappraisal. ACTAS DERMO-SIFILIOGRAFICAS 2023; 114:T229-T239. [PMID: 36690154 DOI: 10.1016/j.ad.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/30/2022] [Indexed: 01/22/2023] Open
Abstract
The telocytes (TCs) are novel interstitial cells that have been overlooked for a long time due to their histologic similarity to other stromal cells. TCs can be separated from the stromal cells based on their distinct immunohistochemical, ultrastructural, and molecular features. Functionally, TCs are involved in the tissue renewal, mechanical support, and immune modulation. These cells are also involved in the signal transduction either through their direct interactions with the neighboring cells or through the paracrine signaling via extracellular vesicles. TCs are damaged in several inflammatory and fibrotic conditions such as ulcerative colitis, Crohn's disease, hepatic fibrosis, psoriasis, and systemic sclerosis. The transplantation of TCs in the damaged tissue can promote tissue regeneration. Therefore, enhancing tissue TCs either by their transplantation or by promoting their survival and growth using novel medications represents novel therapeutic strategy in the future. In this review, we addressed several aspects of TCs including their origin, distribution, morphologic features, and functions. We also discussed their involvement of the cutaneous TCs in the development various pathologic conditions.
Collapse
Affiliation(s)
- A M Ahmed
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egipto
| | - M R Hussein
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egipto.
| |
Collapse
|
3
|
Telocytes in Cutaneous Biology: A Reappraisal. ACTAS DERMO-SIFILIOGRAFICAS 2023; 114:229-239. [PMID: 36332689 DOI: 10.1016/j.ad.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 12/13/2022] Open
Abstract
The telocytes (TCs) are novel interstitial cells that have been overlooked for a long time due to their histologic similarity to other stromal cells. TCs can be separated from the stromal cells based on their distinct immunohistochemical, ultrastructural, and molecular features. Functionally, TCs are involved in the tissue renewal, mechanical support, and immune modulation. These cells are also involved in the signal transduction either through their direct interactions with the neighboring cells or through the paracrine signaling via extracellular vesicles. TCs are damaged in several inflammatory and fibrotic conditions such as ulcerative colitis, Crohn's disease, hepatic fibrosis, psoriasis, and systemic sclerosis. The transplantation of TCs in the damaged tissue can promote tissue regeneration. Therefore, enhancing tissue TCs either by their transplantation or by promoting their survival and growth using novel medications represents novel therapeutic strategy in the future. In this review, we addressed several aspects of TCs including their origin, distribution, morphologic features, and functions. We also discussed their involvement of the cutaneous TCs in the development various pathologic conditions.
Collapse
|
4
|
Li HS, Zhou M, Huang P, Liu J, Tang H, Zhang CK, Wang YJ, Shi YX, Liao YT, Jin BY, Tang KL, Zhou B. Histologic and biomechanical evaluation of the thoracolumbar fascia graft for massive rotator cuff tears in a rat model. J Shoulder Elbow Surg 2022; 31:699-710. [PMID: 34775038 DOI: 10.1016/j.jse.2021.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Fascial autografts, which are easily available grafts, have provided a promising option in patients with massive rotator cuff tears. However, no fascial autografts other than the fascia lata have been reported, and the exact healing process of the fascia-to-bone interface is not well understood. The objective of this study is to histologically and biomechanically evaluate the effect of the thoracolumbar fascia (TLF) on fascia-to-bone healing. METHODS A total of 88 rats were used in this study. Eight rats were killed at the beginning to form an intact control group, and the other rats were divided randomly into 2 groups (40 rats per group): the TLF augmentation group (TLF group) and the repair group (R group). The right supraspinatus was detached, and a 3 × 5 mm defect of the supraspinatus was created. The TLF was used to augment the torn supraspinatus in the TLF group, whereas in the R group, the torn supraspinatus was repaired in only a transosseous manner. Histology and biomechanics were assessed at 1, 2, 4, 8, and 16 weeks postoperatively. RESULTS The modified tendon maturation score of the TLF group was higher than that of the R group at 8 weeks (23.00 ± 0.71 vs. 24.40 ± 0.89, P = .025) and 16 weeks (24.60 ± 0.55 vs. 26.40 ± 0.55, P ≤ .001). The TLF group showed a rapid vascular reaction, and the peak value appeared at 1 week. Later, the capillary density decreased, and almost no angiogenesis was observed at 8 weeks postoperatively. Immunohistochemistry results demonstrated a significantly higher percentage of collagen I in the TLF group at 4, 8, and 16 weeks (24.78% ± 2.76% vs. 20.67% ± 2.11% at 4 weeks, P = .046; 25.46% ± 1.77% vs. 21.49% ± 2.33% at 8 weeks, P = .026; 34.77% ± 2.25% vs. 30.01% ± 3.17% at 16 weeks, P = .040) postoperatively. Biomechanical tests revealed that the ultimate failure force in the TLF group was significantly higher than that in the R group at the final evaluation (29.13 ± 2.49 N vs. 23.10 ± 3.47 N, P = .022). CONCLUSIONS The TLF autograft can promote a faster biological healing process and a better fixation strength. It could be used as an alternative reinforcement or bridging patch when the fascia lata is not appropriate or available for superior capsule reconstruction (SCR).
Collapse
Affiliation(s)
- Huai-Sheng Li
- Department of Orthopedic Surgery, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Mei Zhou
- Department of Orthopedic Surgery, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Pan Huang
- Department of Orthopedic Surgery, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Juan Liu
- Department of Orthopedic Surgery, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Hong Tang
- Department of Orthopedic Surgery, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Chen-Ke Zhang
- Department of Orthopedic Surgery, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Yun-Jiao Wang
- Department of Orthopedic Surgery, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - You-Xing Shi
- Department of Orthopedic Surgery, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Ya-Tao Liao
- Department of Orthopedic Surgery, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Bao-Yong Jin
- Department of Orthopedic Surgery, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Kang-Lai Tang
- Department of Orthopedic Surgery, Southwest Hospital, Army Military Medical University, Chongqing, China.
| | - Binghua Zhou
- Department of Orthopedic Surgery, Southwest Hospital, Army Military Medical University, Chongqing, China.
| |
Collapse
|
5
|
Besomi M, Salomoni SE, Cruz-Montecinos C, Stecco C, Vicenzino B, Hodges PW. Distinct displacement of the superficial and deep fascial layers of the iliotibial band during a weight shift task in runners: An exploratory study. J Anat 2022; 240:579-588. [PMID: 34697798 PMCID: PMC8819045 DOI: 10.1111/joa.13575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 01/19/2023] Open
Abstract
Motion of the fascial layers of the iliotibial band (ITB), as a reinforcement of the deep fascia lata, is likely to be relevant for its function and mechanical behaviour. This exploratory study aimed to evaluate the ITB fascial layers displacement during a weight shift task. Thirteen pain-free runners performed a 6-second standing weight shift task. B-mode ultrasound imaging using an automated fascicle tracking algorithm was used to measure proximal and distal displacement of superficial and deep ITB layers at the middle region. To study the potential contributors to individual variation of fascial motion, we recorded the activity of five hip/thigh muscles with electromyography (EMG), thigh/pelvis/trunk position with accelerometers, and centre of pressure with a force plate. Linear regressions estimated the relationship between displacement of fascial layers and hip/trunk angles. Independent t-tests or Fisher's exact tests compared EMG and movement-related parameters between participants who demonstrated motion of the fascia in the proximal and distal directions. Thickness of the ITB and the loose connective tissue between its layers were calculated. Proximal displacement was observed in six (-4.1 ± 1.9 mm [superficial]) and two (-6.2 ± 2.0 mm [deep]) participants. Distal displacement was observed for seven participants for each layer (3.1 ± 1.1 mm [superficial]; 3.6 ± 1.3 mm [deep]). Four participants did not show displacement of the deep layer. Trunk lateral flexion and gluteus medius muscle activity were determinants of proximal motion of the superficial layer. Loose connective tissue was thinner in participants without displacement of the deep layer. Displacement of the ITB fascial layers varies between individuals. Variation related to differences in joint movements and muscle activity. This study highlights the complex interaction between fascia and movement.
Collapse
Affiliation(s)
- Manuela Besomi
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sauro E Salomoni
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Carlos Cruz-Montecinos
- Clinical Biomechanics Laboratory, Department of Physical Therapy, University of Chile, Santiago, Chile
- Biomechanics and Kinesiology Laboratory, Hospital San José, Santiago, Chile
| | - Carla Stecco
- Human Anatomy and Movement Science, University of Padua, Padua, Italy
| | - Bill Vicenzino
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul W Hodges
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Pirri C, Fede C, Petrelli L, Guidolin D, Fan C, De Caro R, Stecco C. Elastic Fibres in the subcutaneous tissue: Is there a difference between superficial and muscular fascia? A cadaver study. Skin Res Technol 2021; 28:21-27. [PMID: 34420234 PMCID: PMC9907621 DOI: 10.1111/srt.13084] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/31/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND In last years the role of fascia in proprioception and pain has been confirmed in numerous papers, but the real structure of fasciae is not still entirely known. To date, many studies have evaluated the elastic fibres in arteries, ligaments, lungs, epidermis and dermis, but only two studies exist about the elastic fibres in the fasciae, and they did not distinguish between superficial (in the subcutaneous tissue) and deep/muscular fasciae. The aim of the study was to assess the percentage of elastic fibres between superficial and deep fascia. MATERIALS AND METHODS Three full thickness specimens (proximal, middle and distal respectively) were taken from each of four regions of the thigh of three non-embalmed cadavers: the anterior (Ant), the lateral (Lat), the posterior (Post) and the medial (Med) aspect. Thus, a total of 12 specimens were collected from each analysed thigh and histological Weigert Van Gieson stains was performed. Three sections per specimen were considered for the morphometric analysis. RESULTS In all the specimens the superficial and deep fasciae were clearly recognizable. The difference in percentage of elastic fibres between superficial and deep fasciae in same region for all four was highly significant (p < 0.001). They are abundant in the superficial fascia than deep fascia. CONCLUSIONS In the light of these findings is evident that the superficial (in the subcutaneous tissue) and deep fasciae have different elasticity. This difference may improve grading of fascial dysfunction in dermatological diseases as burns, scars and lymphedema to better plan treatments.
Collapse
Affiliation(s)
- Carmelo Pirri
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padova, Italy
| | - Caterina Fede
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padova, Italy
| | - Lucia Petrelli
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padova, Italy
| | - Diego Guidolin
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padova, Italy
| | - Chenglei Fan
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padova, Italy
| | - Raffaele De Caro
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padova, Italy
| | - Carla Stecco
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padova, Italy
| |
Collapse
|
7
|
Comparison of donor site complications of supra- versus subfascially harvested anterolateral thigh perforator free flaps: A meta-analysis. J Craniomaxillofac Surg 2020; 48:56-66. [DOI: 10.1016/j.jcms.2019.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/27/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022] Open
|
8
|
Migrating Myofibroblastic Iliotibial Band-Derived Fibroblasts Represent a Promising Cell Source for Ligament Reconstruction. Int J Mol Sci 2019; 20:ijms20081972. [PMID: 31013670 PMCID: PMC6514966 DOI: 10.3390/ijms20081972] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 12/24/2022] Open
Abstract
The iliotibial band (ITB) is a suitable scaffold for anterior cruciate ligament (ACL) reconstruction, providing a sufficient mechanical resistance to loading. Hence, ITB-derived fibroblasts attract interest for ligament tissue engineering but have so far not been characterized. This present study aimed at characterizing ITB fibroblasts before, during, and after emigration from cadaveric ITB explants to decipher the emigration behavior and to utilize their migratory capacity for seeding biomaterials. ITB and, for comparison, ACL tissues were assessed for the content of alpha smooth muscle actin (αSMA) expressing fibroblasts and degeneration. The cell survival and αSMA expression were monitored in explants used for cell isolation, monolayer, self-assembled ITB spheroids, and spheroids seeded in polyglycolic acid (PGA) scaffolds. The protein expression profile of targets typically expressed by ligamentocytes (collagen types I-III, elastin, lubricin, decorin, aggrecan, fibronectin, tenascin C, CD44, β1-integrins, vimentin, F-actin, αSMA, and vascular endothelial growth factor A [VEGFA]) was compared between ITB and ACL fibroblasts. A donor- and age-dependent differing percentage of αSMA positive cells could be detected, which was similar in ITB and ACL tissues despite the grade of degeneration being significantly higher in the ACL due to harvesting them from OA knees. ITB fibroblasts survived for several months in an explant culture, continuously forming monolayers with VEGFA and an increased αSMA expression. They shared their expression profile with ACL fibroblasts. αSMA decreased during the monolayer to spheroid/scaffold transition. Using self-assembled spheroids, the migratory capacity of reversible myofibroblastic ITB cells can be utilized for colonizing biomaterials for ACL tissue engineering and to support ligament healing.
Collapse
|
9
|
Varga I, Polák Š, Kyselovič J, Kachlík D, Danišovič Ľ, Klein M. Recently Discovered Interstitial Cell Population of Telocytes: Distinguishing Facts from Fiction Regarding Their Role in the Pathogenesis of Diverse Diseases Called "Telocytopathies". MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E56. [PMID: 30781716 PMCID: PMC6410178 DOI: 10.3390/medicina55020056] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/14/2019] [Accepted: 02/11/2019] [Indexed: 12/19/2022]
Abstract
In recent years, the interstitial cells telocytes, formerly known as interstitial Cajal-like cells, have been described in almost all organs of the human body. Although telocytes were previously thought to be localized predominantly in the organs of the digestive system, as of 2018 they have also been described in the lymphoid tissue, skin, respiratory system, urinary system, meninges and the organs of the male and female genital tracts. Since the time of eminent German pathologist Rudolf Virchow, we have known that many pathological processes originate directly from cellular changes. Even though telocytes are not widely accepted by all scientists as an individual and morphologically and functionally distinct cell population, several articles regarding telocytes have already been published in such prestigious journals as Nature and Annals of the New York Academy of Sciences. The telocyte diversity extends beyond their morphology and functions, as they have a potential role in the etiopathogenesis of different diseases. The most commonly described telocyte-associated diseases (which may be best termed "telocytopathies" in the future) are summarized in this critical review. It is difficult to imagine that a single cell population could be involved in the pathogenesis of such a wide spectrum of pathological conditions as extragastrointestinal stromal tumors ("telocytomas"), liver fibrosis, preeclampsia during pregnancy, tubal infertility, heart failure and psoriasis. In any case, future functional studies of telocytes in vivo will help to understand the mechanism by which telocytes contribute to tissue homeostasis in health and disease.
Collapse
Affiliation(s)
- Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia.
| | - Štefan Polák
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia.
| | - Ján Kyselovič
- Fifth Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia.
| | - David Kachlík
- Institute of Anatomy, Second Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic.
| | - Ľuboš Danišovič
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia.
| | - Martin Klein
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia.
| |
Collapse
|
10
|
Leśniewicz A, Furtak M, Żyrnicki W, Dawidowicz J, Maksymowicz K, Szotek S. Investigations of Human Fascia Lata Elemental Composition-the Effect of Different Preservation and Mineralisation Methods. Biol Trace Elem Res 2019; 187:357-366. [PMID: 29948909 DOI: 10.1007/s12011-018-1389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/16/2018] [Indexed: 11/28/2022]
Abstract
Influence of fixation medium and storage conditions as well as impact of sample mineralisation procedure on determination of minerals in human fascia lata was examined and discussed. Freezing and storage in 10% neutral buffered formalin solution and in 2.5% glutaraldehyde were used as the preservation methods of the samples. The concentrations of, both essential and toxic, elements were measured by ICP-OES method in fascia lata samples mineralised with concentrated nitric acid in a closed microwave system and in open vessels heated on a hot plate. Freezing was found as the best preserving method of fascia lata samples because of the number of elements determined and determination precision. The trace element (Cd, Cr, Cu, Fe, Ni, Sr, Zn) concentrations obtained in samples decomposed using the conventional hot plate were different from analogous measurements in solutions obtained after application of closed vessels and microwave energy assistance. Differences between the mineral compositions of fascia samples variously preserved and mineralised were statistically evaluated and discussed. Interelement correlations were analysed taking into account an impact of various methods of sample conservation. Strong, positive association between element content was discovered for Cr-Ba, Mn-Ba, P-Ba, Sr-Ba, Sr-Ca, Zn-Ca, Mn-Cr, Pb-Cr, Sr-Cr, Mg-Fe, P-Fe, Pb-Ni, Ti-Ni and Sr-P pairs of elements.
Collapse
Affiliation(s)
- Anna Leśniewicz
- Analytical Chemistry and Chemical Metallurgy Division, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże St. Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Milena Furtak
- Analytical Chemistry and Chemical Metallurgy Division, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże St. Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Wiesław Żyrnicki
- Analytical Chemistry and Chemical Metallurgy Division, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże St. Wyspiańskiego 27, 50-370, Wrocław, Poland
| | | | - Krzysztof Maksymowicz
- Faculty of Medicine, Department of Forensic Medicine, Wrocław Medical University, J. Mikulicza-Radeckiego 4, 50-368, Wrocław, Poland
| | - Sylwia Szotek
- Department of Biomedical Engineering, Mechatronics and Theory of Mechanisms, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Łukasiewicza 7/9, 50-371, Wrocław, Poland
| |
Collapse
|
11
|
The denticulate ligament - Tensile characterisation and finite element micro-scale model of the structure stabilising spinal cord. J Mech Behav Biomed Mater 2018; 91:10-17. [PMID: 30529981 DOI: 10.1016/j.jmbbm.2018.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 11/12/2018] [Accepted: 11/18/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Damage to the spinal cord is one of the most debilitating pathologies with considerable health, economic and social impact. Improved prevention, treatment and rehabilitation after spinal cord injury (SCI) requires the complex biomechanics of the spinal cord with all its structural elements and the injury mechanism to be understood. This comprehensive understanding will also allow development of models and tools enabling better diagnosis, surgical treatment with increased safety and efficacy and possible development of regenerative therapies. The denticulate ligaments play an important role in stabilising spinal cord within the spinal canal. They participate in spinal cord movements and play a role in determining the stress distribution during physiological but also traumatic loading. We present detailed tensile characterisation of the denticulate ligaments and a Finite Element micro-scale model of the ligament relating its structure with the distribution of stress under physiological loading. METHOD Denticulate ligaments were dissected from cervical spinal levels from 6 porcine cervical specimens with fragments of the pia and dura mater and characterised in terms of their geometry and response to uniaxial tensile loading. The stress-strain characteristics were recorded until rupture of the ligament, ultimate parameters and Young's moduli were determined. The parametric micro-structural Finite Element model was constructed based on literature microscope and histological images of a denticulate ligament as a phenomenological representation of the complex microstructure of a soft tissue. The model was validated against the experimental data. RESULTS Stress-strain characteristics obtained in tensile test were typical for a soft tissue behaviour. No statistically relevant differences in ultimate strength, strain and Young's moduli were observed between the ligaments harvested from different vertebral levels. Average ultimate tensile stress was 1.26 ± 0.20 MPa at strain 0.51 ± 0.00, rupturing force (1.01 ± 0.21 N) was in agreement with results obtained previously. The Finite Element model accurately predicted the extension-load behaviour of the denticulate ligament in elastic regime. The micro-scale structural representation enabled capturing deformation modes representative of the experimentally observed behaviour. CONCLUSIONS The presented stress-strain characteristics of the denticulate ligaments add valuable data to the understanding of the biomechanics of the spinal cord and enable development of more accurate models. The developed micro-scale model was capable of capturing biomechanical response of collagenous tissue under tensile loading, it can be applied for the prediction of other soft tissues behaviours. The denticulate ligament model should be included into future spinal cord models to fully represent the complex system's biomechanics and enable development of surgical aid tools to improve patient outcomes and future regenerative therapies.
Collapse
|
12
|
Avila Gonzalez CA, Driscoll M, Schleip R, Wearing S, Jacobson E, Findley T, Klingler W. Frontiers in fascia research. J Bodyw Mov Ther 2018; 22:873-880. [PMID: 30368329 DOI: 10.1016/j.jbmt.2018.09.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 01/07/2023]
Abstract
Basic sciences are the backbone of every clear understanding of how the body is composed and how different structures and functions are connected with each other. It is obvious that there is a huge variability in human beings - not only in terms of the outer appearance such as measurements of height, weight, muscle mass and other physical properties, but also with respect to metabolic and functional parameters. This article highlights recent developments of research activities in the field of fascia sciences with a special emphasis on assessment strategies as the basis of further studies. Anatomical and histological studies show that fascial tissue is highly variable in terms of density, stiffness, and other parameters such as metabolic and humoral activity. Moreover, it encompasses nerves and harbours a system of micro-channels, also known as the primo vascular system. As ultrasound is a widely available method, its use is appealing not only for imaging of fascial structures, but also for thorough scientific analysis. Unlike most other imaging technologies, US has the advantage of real-time analysis of active or passive movements. In addition, other assessment methods for fascial tissue are discussed. In conclusion, fascial tissue plays an important role not only in functional anatomy, but also in evolutionary and molecular biology, sport, and exercise science as well as in numerous therapeutic approaches. A high density of nerves is found in fascial tissue. Knowledge of individual characteristics, especially by visualizing with ultrasound, leads to personalized therapeutic approaches, such as in pain therapy.
Collapse
Affiliation(s)
- Carla Alessandra Avila Gonzalez
- Department of Anaesthesiology, Intensive Care, Palliative Care, and Pain Medicine, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany; Department of Anaesthesiology and Intensive Care Medicine, Hessing Foundation, Augsburg, Germany.
| | - Mark Driscoll
- Department of Mechanical Engineering, McGill University, Canada
| | - Robert Schleip
- Fascia Research Group, Department of Experimental Anaesthesiology, Ulm University, Germany
| | - Scott Wearing
- Faculty of Health School - Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Eric Jacobson
- Department of Global Health & Social Medicine, Harvard Medical School, Boston, USA; Motion Analysis Laboratory, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, USA
| | - Tom Findley
- Rutgers New Jersey Medical School, State University of New Jersey, USA
| | - Werner Klingler
- Fascia Research Group, Department of Experimental Anaesthesiology, Ulm University, Germany; Faculty of Health School - Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
13
|
The Waterfall Fascia Lata Interposition Arthroplasty "Grika Technique" as Treatment of Posttraumatic Osteoarthritis of the Elbow in a High-Demand Adult Patient: Validity and Reliability. Case Rep Orthop 2018; 2018:8253732. [PMID: 29850330 PMCID: PMC5937584 DOI: 10.1155/2018/8253732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 12/21/2022] Open
Abstract
Introduction The elbow interposition arthroplasty is a very common procedure performed mainly on active young patients who need great functionality and for whom total joint replacement is contraindicated and arthrodesis is noncompliant. We are going to demonstrate a case of a 34-year-old male suffering from malunion of the distal humerus, elbow stiffness, and manifest signs of arthrosis of the dominant limb, treated with the IA Grika technique at a 5-year follow-up. Patients and Methods The chosen criteria to evaluate the injured side and the uninjured side during the clinical and radiological follow-up were the objective function and related quality of life, measured by the Mayo Elbow Performance Score (MEPS), and postoperative complications. To assess flexion and supination forces and elbow muscular strength, a hydraulic dynamometer was used. Results At a 5-year follow-up, the results were excellent as during the first year. Conclusions The Grika technique is a valid and feasible option in the treatment of elbow injuries.
Collapse
|
14
|
Bordoni B, Marelli F, Morabito B, Castagna R, Sacconi B, Mazzucco P. New Proposal to Define the Fascial System. Complement Med Res 2018; 25:257-262. [PMID: 29550826 DOI: 10.1159/000486238] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
At the beginning of the third millennium, we still do not have a definition of 'fascia' recognized as valid by every researcher. This article attempts to give a new definition of the fascial system, including the epidermis, by comparing the mechanical-metabolic characteristics of the connective tissue and the skin. In fact, according to the latest classification deriving from the Fascia Nomenclature Committee, the outer skin layer is not considered as part of the fascial continuum. This article highlights the reasons for taking the functional characteristics of the tissue into consideration, rather than its mere structure. A brief discussion will address the questions as to what is considered as fascial tissue and from which embryonic germ layer the epidermis is formed. The notion that all the layers intersect will be highlighted, demonstrating that quoting precise definitions of tissue stratification in the living organism probably does not correspond to what happens in vivo. What we propose as a definition is not to be regarded as a point of arrival but as another departure.
Collapse
|