1
|
Neykhonji M, Asgharzadeh F, Farazestanian M, Al-Asady AM, Kaffashbashi M, Parizadeh SA, Attarian M, Nazari SE, Rahmani F, Eskandari M, Avan A, Hasanzadeh M, Ryzhikov M, Khazaei M, Hassanian SM. Oenothera biennis improves pregnancy outcomes by suppressing inflammation and fibrosis in an intra-uterine adhesion rat model. Sci Rep 2024; 14:22376. [PMID: 39333188 PMCID: PMC11437134 DOI: 10.1038/s41598-024-69488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/05/2024] [Indexed: 09/29/2024] Open
Abstract
Intrauterine adhesion (IUA), also referred to as Asherman's syndrome, is characterized by fibrosis, inflammation, and can cause amenorrhea and infertility due to abnormal endometrial healing. Histological and Molecular methods were used to evaluate the efficacy of EPO, which is traditionally known for its anti-inflammatory and fibrinolytic properties, in preventing the formation of IUA. Oral administration of EPO reduced the formation of adhesion bands and promoted endometrial regeneration. EPO administration decreased extracellular matrix accumulation, evidenced by the down-regulation of tissue COL1A1 and COL3A1 expression. The anti-inflammatory effect of EPO was confirmed by a reduction in oxidants and down-regulation of pro-inflammatory cytokines including TNF-α, IL-6, IFN-γ, and IL-1β. Furthermore, EPO improved embryonic development parameters, including size and weight of embryo, as well as increased embryo count and live embryo percentage in the rat IUA model. EPO also positively enhanced implantation markers, particularly enlargement and mass gain in the placenta of the treated group, consequently improving pregnancy outcomes such as the number of babies, percent of live babies, baby weight and gestation time. Histopathological investigation provides evidence that oral administration of EPO showed no toxicity on the main three organs including liver, kidney and heart. These results showed that EPO can be considered as a safe and natural product with potent anti-inflammatory and fibrinolytic properties without any observed side effects for the treatment of IUA.
Collapse
Affiliation(s)
- Marzieh Neykhonji
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Asgharzadeh
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marjaneh Farazestanian
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdulridha Mohammed Al-Asady
- Department of Medical Sciences, Faculty of Nursing, University of Warith Al-Anbiyaa, Karbala, Iraq
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Sciences, Faculty of Dentistry, University of Kerbala, Karbala, Iraq
| | - Maziar Kaffashbashi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahsa Attarian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Elnaz Nazari
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Kashmar School of Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moein Eskandari
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Human Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Hasanzadeh
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- School of Medicine, Saint Louis University, Saint Louis, MO, USA
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Gad El-Hak HN, Kishk SM, Abdelrazek HMA. Evening primrose oil enriched with gamma linolenic acid and D/L-alpha tocopherol acetate attenuated carbon tetrachloride-induced hepatic injury model in male rats via TNF-α, IL-1β, and IL-6 pathway. Toxicol Mech Methods 2024; 34:469-483. [PMID: 38166523 DOI: 10.1080/15376516.2023.2301357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/28/2023] [Indexed: 01/04/2024]
Abstract
The modulatory role of primrose oil (PO) supplementation enriched with γ-linolenic acid and D/L-alpha tocopherol acetate against a carbon tetrachloride (CCl4)-induced liver damage model was assessed in this study. Twenty male Albino rats were divided into four groups. The control group received corn oil orally. The PO group received 10 mg/kg P O orally. The CCl4 group received 2 mL/kg CCl4 orally and PO/CCl4 group; received PO and 2 mL/kg CCl4 orally. The relative liver weight was recorded. Serum liver enzymes, hepatic malondialdehyde (MDA), hepatic reduced glutathione (GSH) and the expression of hepatic tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6) were assessed. The binding affinities of γ-linolenic acid and D/L-alpha tocopherol constituents with IL-1β, IL-6 and TNF-α were investigated using molecular docking simulations. Histopathological and electron microscopic examinations of the liver were performed. The results indicated that CCl4 elevated serum liver enzyme and hepatic MDA levels, whereas GSH levels were diminished. The upregulation of IL-1β, IL-6, and TNF-α gene expressions were induced by CCl4 treatment. The PO/CCl4-treated group showed amelioration of hepatic injury biomarkers and oxidative stress. Restoration of histopathological and ultrastructural alterations while downregulations the gene expressions of TNF-α, IL1-β and IL-6 were observed. In conclusion, evening primrose oil enriched with γ-linolenic acid and D/L-alpha tocopherol acetate elicited a potential amelioration of CCl4-induced hepatic toxicity.
Collapse
Affiliation(s)
| | - Safaa M Kishk
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
3
|
Lee EJ, Kim YS, Kim JH, Woo KW, Park YH, Ha JH, Li W, Kim TI, An BK, Cho HW, Han JH, Choi JG, Chung HS. Uncovering the colorectal cancer immunotherapeutic potential: Evening primrose (Oenothera biennis) root extract and its active compound oenothein B targeting the PD-1/PD-L1 blockade. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155370. [PMID: 38266440 DOI: 10.1016/j.phymed.2024.155370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND The emergence of immune checkpoint inhibitors, a novel class of immunotherapy drugs, represents a major breakthrough in cancer immunotherapy, substantially improving patient survival post-treatment. Blocking programmed death-ligand 1 (PD-L1) and programmed death protein-1 (PD-1) has demonstrated promising clinical results in various human cancer types. The US FDA has recently permitted only monoclonal antibody (mAb)-based PD-L1 or PD-1 blockers. Although these antibodies exhibit high antitumor efficacy, their size- and affinity-induced side effects limit their applicability. PURPOSE As small-molecule-based PD-1/PD-L1 blockers capable of reducing the side effects of antibody therapies are needed, this study focuses on exploring natural ingredient-based small molecules that can target hPD-L1/PD-1 using herbal medicines and their components. METHODS The antitumor potential of evening primrose (Oenothera biennis) root extract (EPRE), a globally utilized traditional herbal medicine, folk remedy, and functional food, was explored. A coculture system was established using human PD-L1-expressed murine MC38 cells (hPD-L1-MC38s) and CD8+ tumor-infiltrating T lymphocytes (CD8+ TILs) expressing humanized PD-1. The in vivo experiments utilized a colorectal cancer (CRC) C57BL/6 J mouse model bearing MC38 cells expressing humanized PD-L1 and PD-1 proteins. RESULTS EPRE and its active compound oenothein B effectively hindered the molecular interaction between hPD-L1 and hPD-1. EPRE stimulated tumor-specific T lymphocytes of a hPD-L1/PD-1 CRC mice. This action resulted in the elevated infiltration of cytotoxic CD8+T lymphocytes and subsequent tumor growth reduction. Moreover, the combined therapy of oenothein B, a PD-1/PD-L1 blocker, and FOLFOX (5-fluorouracil plus oxaliplatin) cooperatively suppressed hPD-L1-MC38s growth in the ex vivo model through activated CD8+ TIL antitumor immune response. Oenothein B exhibited a high binding affinity for hPD-L1 and hPD-1. We believe that this study is the first to uncover the inhibitory effects of EPRE and its component, oenothein B, on PD-1/PD-L1 interactions. CONCLUSION This study identified a promising small-molecule candidate from natural products that blocks the hPD-L1/PD-1 signaling pathway. These findings emphasize the potential of EPRE and oenothein B as effective anticancer drugs.
Collapse
Affiliation(s)
- Eun-Ji Lee
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Young Soo Kim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Ji Hye Kim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Kyeong Wan Woo
- National Development Institute of Korea Medicine, 27, Wondogwandeok-gil, Jangheung-eup, Jangheung-gun, Jeollanam-do 59319, Republic of Korea
| | - Young-Hoon Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80, Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Jung-Hye Ha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80, Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Wei Li
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Tae In Kim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Byeong Kwan An
- National Development Institute of Korea Medicine, 94, Hwarang-ro, Gyeongsan-si, Gyeongsangbuk-do 38540, Republic of Korea
| | - Hyun Woo Cho
- National Development Institute of Korea Medicine, 27, Wondogwandeok-gil, Jangheung-eup, Jangheung-gun, Jeollanam-do 59319, Republic of Korea
| | - Jung Ho Han
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Jang-Gi Choi
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea.
| | - Hwan-Suck Chung
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; Korean Convergence Medical Science Major, KIOM Campus, University of Science and Technology (UST), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea.
| |
Collapse
|
4
|
Rezzani R, Gianò M, Pinto D, Rinaldi F, van Noorden CJF, Favero G. Hepatic Alterations in a BTBR T + Itpr3tf/J Mouse Model of Autism and Improvement Using Melatonin via Mitigation Oxidative Stress, Inflammation and Ferroptosis. Int J Mol Sci 2024; 25:1086. [PMID: 38256159 PMCID: PMC10816818 DOI: 10.3390/ijms25021086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complicated neurodevelopmental disorder, and its etiology is not well understood. It is known that genetic and nongenetic factors determine alterations in several organs, such as the liver, in individuals with this disorder. The aims of the present study were to analyze morphological and biological alterations in the liver of an autistic mouse model, BTBR T + Itpr3tf/J (BTBR) mice, and to identify therapeutic strategies for alleviating hepatic impairments using melatonin administration. We studied hepatic cytoarchitecture, oxidative stress, inflammation and ferroptosis in BTBR mice and used C57BL6/J mice as healthy control subjects. The mice were divided into four groups and then treated and not treated with melatonin, respectively. BTBR mice showed (a) a retarded development of livers and (b) iron accumulation and elevated oxidative stress and inflammation. We demonstrated that the expression of ferroptosis markers, the transcription factor nuclear factor erythroid-related factor 2 (NFR2), was upregulated, and the Kelch-like ECH-associated protein 1 (KEAP1) was downregulated in BTBR mice. Then, we evaluated the effects of melatonin on the hepatic alterations of BTBR mice; melatonin has a positive effect on liver cytoarchitecture and metabolic functions.
Collapse
Affiliation(s)
- Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.G.); (G.F.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale-SISDO), 25123 Brescia, Italy
| | - Marzia Gianò
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.G.); (G.F.)
| | - Daniela Pinto
- Human Microbiome Advanced Project Institute, 20129 Milan, Italy; (D.P.); (F.R.)
| | - Fabio Rinaldi
- Human Microbiome Advanced Project Institute, 20129 Milan, Italy; (D.P.); (F.R.)
| | - Cornelis J. F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia;
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.G.); (G.F.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|