1
|
Berg K, Wright JL. The Pathology of Chronic Obstructive Pulmonary Disease: Progress in the 20th and 21st Centuries. Arch Pathol Lab Med 2017; 140:1423-1428. [PMID: 27922768 DOI: 10.5858/arpa.2015-0455-rs] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and is the fourth leading cause of death worldwide. There has been significant progress in the pathologic description and pathophysiologic analysis of COPD in the 20th and 21st centuries. We review the history, progression, and significance of pathologic alterations in COPD, including emphysematous changes, airway alterations, and vascular alterations. We also indicate what pathologic features of COPD the practicing pathologist should be describing in standard surgical and autopsy specimens.
Collapse
Affiliation(s)
- Kyra Berg
- From the Department of Pathology at St Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
2
|
Gupta I, Ganguly S, Rozanas CR, Stuehr DJ, Panda K. Ascorbate attenuates pulmonary emphysema by inhibiting tobacco smoke and Rtp801-triggered lung protein modification and proteolysis. Proc Natl Acad Sci U S A 2016; 113:E4208-17. [PMID: 27382160 PMCID: PMC4961122 DOI: 10.1073/pnas.1600056113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cigarette smoking causes emphysema, a fatal disease involving extensive structural and functional damage of the lung. Using a guinea pig model and human lung cells, we show that oxidant(s) present in tobacco smoke not only cause direct oxidative damage of lung proteins, contributing to the major share of lung injury, but also activate Rtp801, a key proinflammatory cellular factor involved in tobacco smoke-induced lung damage. Rtp801 triggers nuclear factor κB and consequent inducible NOS (iNOS)-mediated overproduction of NO, which in combination with excess superoxide produced during Rtp801 activation, contribute to increased oxido-nitrosative stress and lung protein nitration. However, lung-specific inhibition of iNOS with a iNOS-specific inhibitor, N6-(1-iminoethyl)-L-lysine, dihydrochloride (L-NIL) solely restricts lung protein nitration but fails to prevent or reverse the major tobacco smoke-induced oxidative lung injury. In comparison, the dietary antioxidant, ascorbate or vitamin C, can substantially prevent such damage by inhibiting both tobacco smoke-induced lung protein oxidation as well as activation of pulmonary Rtp801 and consequent iNOS/NO-induced nitration of lung proteins, that otherwise lead to increased proteolysis of such oxidized or nitrated proteins by endogenous lung proteases, resulting in emphysematous lung damage. Vitamin C also restricts the up-regulation of matrix-metalloproteinase-9, the major lung protease involved in the proteolysis of such modified lung proteins during tobacco smoke-induced emphysema. Overall, our findings implicate tobacco-smoke oxidant(s) as the primary etiopathogenic factor behind both the noncellular and cellular damage mechanisms governing emphysematous lung injury and demonstrate the potential of vitamin C to accomplish holistic prevention of such damage.
Collapse
Affiliation(s)
- Indranil Gupta
- Department of Biotechnology and Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata 700019, India
| | - Souradipta Ganguly
- Department of Biotechnology and Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata 700019, India
| | - Christine R Rozanas
- Proteomics Applications Laboratory, GE Healthcare Life Sciences, Piscataway, NJ 08854
| | - Dennis J Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Koustubh Panda
- Department of Biotechnology and Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata 700019, India;
| |
Collapse
|
3
|
Mattila JT, Maiello P, Sun T, Via LE, Flynn JL. Granzyme B-expressing neutrophils correlate with bacterial load in granulomas from Mycobacterium tuberculosis-infected cynomolgus macaques. Cell Microbiol 2015; 17:1085-97. [PMID: 25653138 DOI: 10.1111/cmi.12428] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/04/2015] [Accepted: 02/02/2015] [Indexed: 01/21/2023]
Abstract
The role of neutrophils in tuberculosis (TB), and whether neutrophils express granzyme B (grzB), a pro-apoptotic enzyme associated with cytotoxic T cells, is controversial. We examined neutrophils in peripheral blood (PB) and lung granulomas of Mycobacterium tuberculosis-infected cynomolgus macaques and humans to determine whether mycobacterial products or pro-inflammatory factors induce neutrophil grzB expression. We found large numbers of grzB-expressing neutrophils in macaque and human granulomas and these cells contained more grzB+ granules than T cells. Higher neutrophil, but not T cell, grzB expression correlated with increased bacterial load. Although unstimulated PB neutrophils lacked grzB expression, grzB expression increased upon exposure to M.tuberculosis bacilli, M.tuberculosis culture filtrate protein or lipopolysaccharide from Escherichia coli. Perforin is required for granzyme-mediated cytotoxicity by T cells, but was not observed in PB or granuloma neutrophils. Nonetheless, stimulated PB neutrophils secreted grzB as determined by enzyme-linked immunospot assays. Purified grzB was not bactericidal or bacteriostatic, suggesting secreted neutrophil grzB acts on extracellular targets, potentially enhancing neutrophil migration through extracellular matrix and regulating apoptosis or activation in other cell types. These data indicate mycobacterial products and the pro-inflammatory environment of granulomas up-regulates neutrophil grzB expression and suggests a previously unappreciated aspect of neutrophil biology in TB.
Collapse
Affiliation(s)
- Joshua T Mattila
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tao Sun
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Gingo MR, He J, Wittman C, Fuhrman C, Leader JK, Kessinger C, Lucht L, Slivka WA, Zhang Y, McMahon DK, Sciurba FC, Morris A. Contributors to diffusion impairment in HIV-infected persons. Eur Respir J 2014; 43:195-203. [PMID: 23429919 PMCID: PMC4023348 DOI: 10.1183/09031936.00157712] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abnormal diffusing capacity is common in HIV-infected individuals, including never smokers. Aetiologies for diffusing capacity impairment in HIV are not understood, particularly in those without a history of cigarette smoking. Our study was a cross-sectional analysis of 158 HIV-infected individuals without acute respiratory symptoms or infection with the aim to determine associations between a diffusing capacity of the lung for carbon monoxide (D(LCO)) % predicted and participant demographics, pulmonary spirometric measures (forced expiratory volume in 1 s (FEV1) and FEV1/forced vital capacity), radiographic emphysema (fraction of lung voxels < -950 Hounsfield units), pulmonary vascular/cardiovascular disease (echocardiographic tricuspid regurgitant jet velocity, N-terminal pro-brain natriuretic peptide) and airway inflammation (induced sputum cell counts), stratified by history of smoking. The mean D(LCO) was 65.9% predicted, and 55 (34.8%) participants had a significantly reduced D(LCO) (<60% predicted). Lower D(LCO) % predicted in ever-smokers was associated with lower post-bronchodilator FEV1 % predicted (p<0.001) and greater radiographic emphysema (p=0.001). In never-smokers, mean±SD D(LCO) was 72.7±13.4% predicted, and D(LCO) correlated with post-bronchodilator FEV1 (p=0.02), sputum neutrophils (p=0.03) and sputum lymphocytes (p=0.009), but not radiographic emphysema. Airway obstruction, emphysema and inflammation influence D(LCO) in HIV. Never-smokers may have a unique phenotype of diffusing capacity impairment. The interaction of multiple factors may account for the pervasive nature of diffusing capacity impairment in HIV infection.
Collapse
Affiliation(s)
- Matthew R. Gingo
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiayan He
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Catherine Wittman
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carl Fuhrman
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph K. Leader
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cathy Kessinger
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lorrie Lucht
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - William A. Slivka
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Frank C. Sciurba
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alison Morris
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Thomson EM, Williams A, Yauk CL, Vincent R. Overexpression of tumor necrosis factor-α in the lungs alters immune response, matrix remodeling, and repair and maintenance pathways. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1413-30. [PMID: 22322299 DOI: 10.1016/j.ajpath.2011.12.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 12/03/2011] [Accepted: 12/09/2011] [Indexed: 11/25/2022]
Abstract
Increased production of tumor necrosis factor (TNF)-α and matrix metalloproteinases (MMPs) is a feature of inflammatory lung diseases, including emphysema and fibrosis, but the divergent pathological characteristics that result indicate involvement of other processes in disease pathogenesis. Transgenic mice overexpressing TNF-α in type II alveolar epithelial cells under the control of the surfactant protein (SP)-C promoter develop pulmonary inflammation and emphysema but are resistant to induction of fibrosis by administration of bleomycin or transforming growth factor-β. To study the molecular mechanisms underlying the development of this phenotype, we used a microarray approach to characterize the pulmonary transcriptome of SP-C/TNF-α mice and wild-type littermates. Four-month-old SP-C/TNF-α mice displayed pronounced pulmonary inflammation, airspace enlargement, increased MMP-2 and MMP-9 levels, and altered expression of 2332 probes. The functional assessment of genes with increased expression revealed enrichment of inflammatory/immune responses and proteases, whereas genes involved in protease inhibition, angiogenesis, cross-linking of basement membrane proteins, and myofibroblast differentiation were predominantly decreased. Comparison with multiple lung disease models identified a set of genes unique to the SP-C/TNF-α model and revealed that lack of extracellular matrix production distinguished SP-C/TNF-α mice from fibrosis models. Activation of inflammatory and proteolytic pathways and disruption of maintenance and repair processes are central features of emphysema in this TNF-overexpression model. Impairment of myofibroblast differentiation and extracellular matrix production may underlie resistance to induction of fibrosis.
Collapse
Affiliation(s)
- Errol M Thomson
- Hazard Identification Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
6
|
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) constitutes a worldwide health problem. There is currently an urgent and unmet need for the development of small molecule therapeutics capable of blocking and/or reversing the progression of the disorder. Recent studies have greatly illuminated our understanding of the multiple pathogenic processes associated with COPD. Of paramount importance is the key role played by proteases, oxidative stress, apoptosis and inflammation. Insights gained from these studies have made possible the exploration of new therapeutic approaches. AREAS COVERED An overview of major developments in COPD research with emphasis on low-molecular mass neutrophil elastase inhibitors is described in this review. EXPERT OPINION Great strides have been made toward our understanding of the biochemical and cellular events associated with COPD. However, our knowledge regarding the inter-relationships among the multiple pathogenic mechanisms and their mediators involved is still limited. The problem is further compounded by the unavailability of suitable validated biomarkers for assessing the efficacy of potential therapeutic interventions. The complexity of COPD suggests that effective therapeutic interventions may require the administration of more than one agent such as a human neutrophil elastase or MMP-12 inhibitor with an anti-inflammatory agent such as a PDE4 inhibitor or a dual function agent capable of disrupting the cycle of proteolysis, apoptosis, inflammation and oxidative stress.
Collapse
Affiliation(s)
- William C Groutas
- Wichita State University, Department of Chemistry, Wichita, KS 67260, USA.
| | | | | |
Collapse
|
7
|
Demkow U, van Overveld FJ. Role of elastases in the pathogenesis of chronic obstructive pulmonary disease: implications for treatment. Eur J Med Res 2011; 15 Suppl 2:27-35. [PMID: 21147616 PMCID: PMC4360323 DOI: 10.1186/2047-783x-15-s2-27] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neutrophil elastase, metalloproteinases, and their inhibitors play an important role in the development of chronic obstructive pulmonary disease (COPD), resulting in extensive tissue damage and malfunctioning of the airways. Nearly fifty years after the protease-antiprotease imbalance hypothesis has been suggested for the cause of emphysema, it is still appealing, but it does not explain the considerable variation in the clinical expressions of emphysema. However, there are many recent research findings to support the imbalance hypothesis as will be shown in this review. Although limited, there might be openings for the treatment of the disease.
Collapse
Affiliation(s)
- Urszula Demkow
- Dept. Lab. Diagn. and Clin. Immunol., Warsaw Medical University, Warsaw, Poland.
| | | |
Collapse
|
8
|
Renne R, Brix A, Harkema J, Herbert R, Kittel B, Lewis D, March T, Nagano K, Pino M, Rittinghausen S, Rosenbruch M, Tellier P, Wohrmann T. Proliferative and nonproliferative lesions of the rat and mouse respiratory tract. Toxicol Pathol 2010; 37:5S-73S. [PMID: 20032296 DOI: 10.1177/0192623309353423] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North America (STP) to develop an internationally-accepted nomenclature for proliferative and non-proliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying microscopic lesions observed in the respiratory tract of laboratory rats and mice, with color photomicrographs illustrating examples of some lesions. The standardized nomenclature presented in this document is also available electronically on the internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous developmental and aging lesions as well as lesions induced by exposure to test materials. A widely accepted and utilized international harmonization of nomenclature for respiratory tract lesions in laboratory animals will decrease confusion among regulatory and scientific research organizations in different countries and provide a common language to increase and enrich international exchanges of information among toxicologists and pathologists.
Collapse
Affiliation(s)
- Roger Renne
- Roger Renne ToxPath Consulting, Sumner, Washington, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Deslee G, Adair-Kirk TL, Betsuyaku T, Woods JC, Moore CH, Gierada DS, Conradi SH, Atkinson JJ, Toennies HM, Battaile JT, Kobayashi DK, Patterson GA, Holtzman MJ, Pierce RA. Cigarette smoke induces nucleic-acid oxidation in lung fibroblasts. Am J Respir Cell Mol Biol 2009; 43:576-84. [PMID: 20008282 DOI: 10.1165/rcmb.2009-0221oc] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Oxidative stress is widely proposed as a pathogenic mechanism for chronic obstructive pulmonary disease (COPD), but the molecular pathway connecting oxidative damage to tissue destruction remains to be fully defined. We suggest that reactive oxygen species (ROS) oxidatively damage nucleic acids, and this effect requires multiple repair mechanisms, particularly base excision pathway components 8-oxoguanine-DNA glycosylase (OGG1), endonuclease III homologue 1 (NTH1), and single-strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1), as well as the nucleic acid-binding protein, Y-box binding protein 1 (YB1). This study was therefore designed to define the levels of nucleic-acid oxidation and expression of genes involved in the repair of COPD and in corresponding models of this disease. We found significant oxidation of nucleic acids localized to alveolar lung fibroblasts, increased levels of OGG1 mRNA expression, and decreased concentrations of NTH1, SMUG1, and YB1 mRNA in lung samples from subjects with very severe COPD compared with little or no COPD. Mice exposed to cigarette smoke exhibited a time-dependent accumulation of nucleic-acid oxidation in alveolar fibroblasts, which was associated with an increase in OGG1 and YB1 mRNA concentrations. Similarly, human lung fibroblasts exposed to cigarette smoke extract exhibited ROS-dependent nucleic-acid oxidation. The short interfering RNA (siRNA)-dependent knockdown of OGG1 and YB1 expression increased nucleic-acid oxidation at the basal state and after exposure to cigarette smoke. Together, our results demonstrate ROS-dependent, cigarette smoke-induced nucleic-acid oxidation in alveolar fibroblasts, which may play a role in the pathogenesis of emphysema.
Collapse
Affiliation(s)
- Gaetan Deslee
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Washington University, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hartl D, He CH, Koller B, Da Silva CA, Kobayashi Y, Lee CG, Flavell RA, Elias JA. Acidic mammalian chitinase regulates epithelial cell apoptosis via a chitinolytic-independent mechanism. THE JOURNAL OF IMMUNOLOGY 2009; 182:5098-106. [PMID: 19342690 DOI: 10.4049/jimmunol.0803446] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acidic mammalian chitinase (AMCase) is produced during and plays an important role in the pathogenesis of Th2-mediated diseases and antiparasite responses. However, the effector responses of AMCase in these settings have not been adequately defined and the relationship(s) between its chitinolytic and other biologic properties have not been investigated. In these studies, we demonstrate that AMCase protects airway epithelial cells from Fas ligand- and growth factor withdrawal-induced apoptosis. This cytoprotection was associated with Akt phosphorylation and abrogated when the PI3K/Akt pathway was inhibited. Comparable cytoprotection was also seen in experiments comparing wild-type AMCase and mutant AMCase that lacked chitinolytic activity. Importantly, the apoptosis-inhibiting effect of enzymatically active and inactive AMCase was abrogated by treatment with allosamidin. These studies demonstrate that secreted AMCase feeds back in an autocrine and/or paracrine manner to protect pulmonary epithelial cells from growth factor withdrawal- and Fas ligand-induced apoptosis. They also demonstrate that the cytoprotection is mediated via a PI3K/Akt-dependent and allosamidin-sensitive pathway that is independent of the chitinolytic activity of this chitinase.
Collapse
Affiliation(s)
- Dominik Hartl
- Department of Internal Medicine, Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Deslee G, Woods JC, Moore C, Conradi SH, Gierada DS, Atkinson JJ, Battaile JT, Liu L, Patterson GA, Adair-Kirk TL, Holtzman MJ, Pierce RA. Oxidative damage to nucleic acids in severe emphysema. Chest 2008; 135:965-974. [PMID: 19118262 DOI: 10.1378/chest.08-2257] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Oxidative stress is a key element in the pathogenesis of emphysema, but oxidation of nucleic acids has been largely overlooked. The aim of this study was to investigate oxidative damage to nucleic acids in severe emphysematous lungs. METHODS Thirteen human severe emphysematous lungs, including five with alpha(1)-antitrypsin deficiency (AATD), were obtained from patients receiving lung transplantation. Control lung tissue was obtained from non-COPD lungs (n = 8) and donor lungs (n = 8). DNA and RNA oxidation were investigated by immunochemistry. Morphometry (mean linear intercept [Lm] and CT scan) and immunostaining for CD68 and neutrophil elastase also were performed. RESULTS Nucleic acid oxidation was increased in alveolar wall cells in emphysematous lungs compared to non-COPD and donor lungs (p < 0.01). In emphysematous lungs, oxidative damage to nucleic acids in alveolar wall cells was increased in the more severe emphysematous areas assessed by histology (Lm, > 0.5 mm; p < 0.05) and CT scan (< -950 Hounsfield units; p < 0.05). Compared to classic emphysema, AATD lungs exhibited higher levels of nucleic acid oxidation in macrophages (p < 0.05) and airway epithelial cells (p < 0.01). Pretreatments with DNase and RNase demonstrated that RNA oxidation was more prevalent than DNA oxidation in alveolar wall cells. CONCLUSIONS We demonstrated for the first time that nucleic acids, especially RNA, are oxidized in human emphysematous lungs. The correlation between the levels of oxidative damage to nucleic acids in alveolar wall cells and the severity of emphysema suggest a potential role in the pathogenesis of emphysema.
Collapse
Affiliation(s)
- Gaetan Deslee
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jason C Woods
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Carla Moore
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO
| | - Susan H Conradi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - David S Gierada
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Jeffrey J Atkinson
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO
| | - John T Battaile
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO
| | - Lucy Liu
- Department of Physics, Washington University School of Medicine, St. Louis, MO
| | - G Alexander Patterson
- Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Tracy L Adair-Kirk
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO
| | - Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO
| | - Richard A Pierce
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
12
|
Takahashi M, Fukuoka J, Nitta N, Takazakura R, Nagatani Y, Murakami Y, Otani H, Murata K. Imaging of pulmonary emphysema: a pictorial review. Int J Chron Obstruct Pulmon Dis 2008; 3:193-204. [PMID: 18686729 PMCID: PMC2629965 DOI: 10.2147/copd.s2639] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The term 'emphysema' is generally used in a morphological sense, and therefore imaging modalities have an important role in diagnosing this disease. In particular, high resolution computed tomography (HRCT) is a reliable tool for demonstrating the pathology of emphysema, even in subtle changes within secondary pulmonary lobules. Generally, pulmonary emphysema is classified into three types related to the lobular anatomy: centrilobular emphysema, panlobular emphysema, and paraseptal emphysema. In this pictorial review, we discuss the radiological--pathological correlation in each type of pulmonary emphysema. HRCT of early centrilobular emphysema shows an evenly distributed centrilobular tiny areas of low attenuation with ill-defined borders. With enlargement of the dilated airspace, the surrounding lung parenchyma is compressed, which enables observation of a clear border between the emphysematous area and the normal lung. Because the disease progresses from the centrilobular portion, normal lung parenchyma in the perilobular portion tends to be preserved, even in a case of far-advanced pulmonary emphysema. In panlobular emphysema, HRCT shows either panlobular low attenuation or ill-defined diffuse low attenuation of the lung. Paraseptal emphysema is characterized by subpleural well-defined cystic spaces. Recent topics related to imaging of pulmonary emphysema will also be discussed, including morphometry of the airway in cases of chronic obstructive pulmonary disease, combined pulmonary fibrosis and pulmonary emphysema, and bronchogenic carcinoma associated with bullous lung disease.
Collapse
Affiliation(s)
- Masashi Takahashi
- Department of Radiology, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga 520-2192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Christensen PJ, Preston AM, Ling T, Du M, Fields WB, Curtis JL, Beck JM. Pneumocystis murina infection and cigarette smoke exposure interact to cause increased organism burden, development of airspace enlargement, and pulmonary inflammation in mice. Infect Immun 2008; 76:3481-90. [PMID: 18490462 PMCID: PMC2493196 DOI: 10.1128/iai.00165-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 03/08/2008] [Accepted: 05/11/2008] [Indexed: 11/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by the presence of airflow obstruction and lung destruction with airspace enlargement. In addition to cigarette smoking, respiratory pathogens play a role in pathogenesis, but specific organisms are not always identified. Recent reports demonstrate associations between the detection of Pneumocystis jirovecii DNA in lung specimens or respiratory secretions and the presence of emphysema in COPD patients. Additionally, human immunodeficiency virus-infected individuals who smoke cigarettes develop early emphysema, but a role for P. jirovecii in pathogenesis remains speculative. We developed a new experimental model using immunocompetent mice to test the interaction of cigarette smoke exposure and environmentally acquired Pneumocystis murina infection in vivo. We hypothesized that cigarette smoke and P. murina would interact to cause increases in total lung capacity, airspace enlargement, and pulmonary inflammation. We found that exposure to cigarette smoke significantly increases the lung organism burden of P. murina. Pulmonary infection with P. murina, combined with cigarette smoke exposure, results in changes in pulmonary function and airspace enlargement characteristic of pulmonary emphysema. P. murina and cigarette smoke exposure interact to cause increased lung inflammatory cell accumulation. These findings establish a novel animal model system to explore the role of Pneumocystis species in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Paul J Christensen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Karrasch S, Holz O, Jörres RA. Aging and induced senescence as factors in the pathogenesis of lung emphysema. Respir Med 2008; 102:1215-30. [PMID: 18617381 DOI: 10.1016/j.rmed.2008.04.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 03/21/2008] [Accepted: 04/04/2008] [Indexed: 12/17/2022]
Abstract
Classically, the development of emphysema in chronic obstructive pulmonary disease is believed to involve inflammation induced by cigarette smoke and leukocyte activation, including oxidant-antioxidant and protease-antiprotease imbalances. While there is substantial evidence for this, additional aspects have been suggested by a number of clinical and experimental observations. Smokers exhibit signs of premature aging, particularly obvious in the skin. The link between aging and chronic disease is well-known, e.g., for the brain and musculoskeletal or cardiovascular system, as well as the clinical link between malnutrition and emphysema, and the experimental link to caloric restriction. Interestingly, this intervention also increases lifespan, in parallel with alterations in metabolism, oxidant burden and endocrine signaling. Of special interest is the observation that, even in the absence of an inflammatory environment, lung fibroblasts from patients with emphysema show persistent alterations, possibly based on epigenetic mechanisms. The importance of these mechanisms for cellular reprogramming and response patterns, individual risk profile and therapeutic options is becoming increasingly recognized. The same applies to cellular senescence. Recent findings from patients and experimental models open novel views into the arena of gene-environment interactions, including the role of systemic alterations, cellular stress, telomeres, CDK inhibitors such as p16, p21, pRb, PI3K, mTOR, FOXO transcription factors, histone modifications, and sirtuins. This article aims to outline this emerging picture and to stimulate the identification of challenging questions. Such insights also bear implications for the long-term course of the disease in relation to existing or future therapies and the exploration of potential lung regeneration.
Collapse
Affiliation(s)
- Stefan Karrasch
- Institute for Inhalation Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg/Munich, Germany
| | | | | |
Collapse
|
15
|
Rossiter HB, Scadeng M, Tang K, Wagner PD, Breen EC. Doxycycline treatment prevents alveolar destruction in VEGF-deficient mouse lung. J Cell Biochem 2008; 104:525-35. [PMID: 18181212 DOI: 10.1002/jcb.21643] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In vivo lung-targeted VEGF gene inactivation results in pulmonary cell apoptosis, airspace enlargement, and increased lung compliance consistent with an emphysema-like phenotype. The predominant hypothesis for the cause of lung destruction in emphysema is an imbalance between active lung protease and anti-protease molecules. Therefore, we investigated the role of protease (e.g., matrix metalloproteinases--MMPs) and anti-protease (e.g., tissue inhibitors of metalloproteinases--TIMPs) expression in contributing to the lung structural remodeling observed in pulmonary-VEGF-deficient mice. VEGFLoxP mice instilled through the trachea with an adeno-associated virus expressing Cre recombinase (AAV/Cre) manifest airspace enlargement and a greater (P < 0.05) mean linear intercept (MLI: 44.2 +/- 4.2 microm) compared to mice instilled with a control virus expressing LacZ (31.3 +/- 2.5 microm). Airspace enlargement was prevented by the continuous administration of the general MMP inhibitor, doxycycline (Dox) (Cre + Dox: 32.6 +/- 2.5 microm), and MLI values were not different from either control (LacZ + Dox: 30.5 +/- 1.2 microm). In situ magnetic resonance imaging of VEGF gene inactivated mouse lungs revealed uneven inflation, residual trapped gas volumes upon oxygen absorption deflation/re-inflation, and loss of parenchymal structure; effects that were largely prevented by Dox. Five weeks after AAV/Cre infection Western blot revealed a 9.9-fold increase in pulmonary MMP-3, and 2-fold increases in MMP-9 and TIMP-2. However, the increase in MMP-3 was prevented by Dox administration and was associated with a 2-fold increase in serpin b5 (Maspin) expression. These results suggest that doxycycline treatment largely prevents the aberrant lung remodeling response observed in VEGF-deficient mouse lungs and is associated with changes in protease and anti-protease expression.
Collapse
Affiliation(s)
- Harry B Rossiter
- Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|