1
|
Thomas AM, Kuntaiah K, Korra MR, Nandakishore SS. Efficient removal of fluoride on aluminum modified activated carbon: an adsorption behavioral study and application to remediation of ground water. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:69-80. [PMID: 36840367 DOI: 10.1080/10934529.2023.2177059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
In recent times, ground water contamination by toxic elements is of great concern and it is to be addressed for consumption of human, animal, and plant growth. In this context, we have synthesized an adsorbent by modifying commercially available activated carbon with aluminum and tested for de-fluoridation studies. The activity results suggested that the optimized adsorbent is highly efficient in removing the fluoride from ground water. Adsorption maxima are obtained over a wide pH range from 4 to 9, with a contact time of 15 minutes at a dosage of 4 g/L. The results also revealed that the synthesized adsorbent is suitable for application in ground water without any pH adjustment and has exhibited 85%-95% tolerance for common anions in the range of 100-500 mg/L. Equilibrium adsorption isotherm models as well as kinetics of adsorption were applied for the system. An adsorption capacity of 20.4 mg/g and fast kinetics observed are most favorable for defluoridation. Reuse of adsorbent over repeated cycles was investigated. Residual amount of aluminum in treated water is found to be negligible. The removal of toxic elements like Pb, Cd, Cr, Cu, Ni, Zn, As, and Se under the optimized experimental conditions has also been investigated. Al-AC found to be a highly promising material for removal of fluoride and toxic metals from drinking water.
Collapse
Affiliation(s)
- Anitha Mary Thomas
- Atomic Minerals Directorate for Exploration and Research Nagarbhavi, Bangalore, India
| | - Kuncham Kuntaiah
- Atomic Minerals Directorate for Exploration and Research Nagarbhavi, Bangalore, India
| | - Mareswara Rao Korra
- Atomic Minerals Directorate for Exploration and Research Nagarbhavi, Bangalore, India
| | - S S Nandakishore
- Atomic Minerals Directorate for Exploration and Research Nagarbhavi, Bangalore, India
| |
Collapse
|
2
|
Mohammadi AA, Moghanlo S, Kazemi MS, Nazari S, Ghadiri SK, Saleh HN, Sillanpää M. Comparative removal of hazardous cationic dyes by MOF-5 and modified graphene oxide. Sci Rep 2022; 12:15314. [PMID: 36097048 PMCID: PMC9468029 DOI: 10.1038/s41598-022-19550-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/31/2022] [Indexed: 12/07/2022] Open
Abstract
Among cationic dyes, malachite green (MG) is commonly used for dying purposes and also as an inhibitor in aquaculture, food, health, and chemical industries due to its cytotoxic effects. Therefore, MG removal is essential to keep the ecosystem and human health safety. Adsorption is a viable and versatile option and exploring efficient adsorbents have high priority. Herein, MOF-5 and aminated corn Stover reduced graphene oxide (ACS-RGO) of typical adsorbents of metal-organic-frameworks (MOFs) and carbon-based classes were studied for MG removal. MOF-5 and ACS-RGO had a specific surface area and total pore volume of 507.4 and 389.0 m2/g, and 0.271 cm3/g and 0.273 cm3/g, respectively. ACS-RGO was superior for MG adsorption and the kinetic rate coefficient for ACS-RGO was ~ 7.2 times compared to MOF-5. For ACS-RGO, MG removal remained high (> 94%) in a wide range of pH. However, dye removal was pH-dependent for MOF-5 and increased from ~ 32% to ~ 67% by increasing pH from 4 to 12. Increasing dye concentration from 25 mg/L to 100 mg/L decreased adsorption by MOF-5 and ACS-RGO for ~ 30% and 7%, respectively. Dye removal was evident in a few tens of seconds after adding ACS-RGO at doses above 0.5 g/L. A significant loss of 46% in adsorption was observed by decreasing MOF-5 mass from 1 to 0.1 g/L. ACS-RGO removed MG in multilayer with an exceptional adsorption capacity of 1088.27 mg/g. In conclusion, ACS-RGO, and MOF-5 showed promising kinetic rates and adsorption capacities toward MG.
Collapse
Affiliation(s)
- Ali Akbar Mohammadi
- Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Soheila Moghanlo
- Department of Environmental Health Engineering, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Malihe Samadi Kazemi
- Department of Chemistry, Faculty of Sciences, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | - Shahram Nazari
- Department of Environmental Health Engineering, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Seid Kamal Ghadiri
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Najafi Saleh
- Department of Environmental Health Engineering, Khalkhal University of Medical Sciences, Khalkhal, Iran.
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, Himachal Pradesh, 173212, India
| |
Collapse
|
3
|
Bayuo J, Rwiza M, Abukari MA, Pelig-Ba KB, Mtei K. Modeling and optimization of independent factors influencing lead(II) biosorption from aqueous systems: A statistical approach. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
4
|
Bayuo J, Rwiza M, Mtei K. Response surface optimization and modeling in heavy metal removal from wastewater-a critical review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:351. [PMID: 35396639 DOI: 10.1007/s10661-022-09994-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The existence of hazardous heavy metals in aquatic settings causes health risks to humans, prompting researchers to devise effective methods for removing these pollutants from drinking water and wastewater. To obtain optimum removal efficiencies and sorption capacities of the contaminants on the sorbent materials, it is normally necessary to optimize the purification technology to attain the optimum value of the independent process variables. This review discusses the most current advancements in using various adsorbents for heavy metal remediation, as well as the modeling and optimization of the adsorption process independent factors by response surface methodology. The remarkable efficiency of the response surface methodology for the extraction of the various heavy metal ions from aqueous systems by various types of adsorbents is confirmed in this critical review. For the first time, this review also identifies several gaps in the optimization of adsorption process factors that need to be addressed. The comprehensive analysis and conclusions in this review should also be useful to industry players, engineers, environmentalists, scientists, and other motivated researchers interested in the use of the various adsorbents and optimization methods or tools in environmental pollution cleanup.
Collapse
Affiliation(s)
- Jonas Bayuo
- Department of Materials Science and Engineering, The Nelson Mandela African Institution of Science and Technology, Postal Box 447, Arusha, Tanzania.
- Department of Science Education, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Postal Box 24, Upper East Region, Ghana.
| | - Mwemezi Rwiza
- Department of Materials Science and Engineering, The Nelson Mandela African Institution of Science and Technology, Postal Box 447, Arusha, Tanzania
| | - Kelvin Mtei
- Department of Materials Science and Engineering, The Nelson Mandela African Institution of Science and Technology, Postal Box 447, Arusha, Tanzania
| |
Collapse
|
5
|
Manfrin J, Gonçalves Junior AC, Schwantes D, Zimmermann J, Conradi Junior E. Effective Cd 2+ removal from water using novel micro-mesoporous activated carbons obtained from tobacco: CCD approach, optimization, kinetic, and isotherm studies. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1851-1874. [PMID: 34900312 PMCID: PMC8617146 DOI: 10.1007/s40201-021-00740-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/11/2021] [Indexed: 06/14/2023]
Abstract
PURPOSE This research aimed to develop activated carbons from tobacco by double (thermal-physical) and triple activations (thermal-chemical-physical) for high-efficiency removal of Cd2+. METHODS The adsorbents were characterized by their chemical composition, point of zero charge (pHPZC), SEM, FT-IR, BET, and BJH. The subsequent adsorption studies were conducted: optimal conditions (CCD on adsorbent dose versus pH of Cd2+ solution), kinetics, equilibrium, thermodynamics, and desorption studies. RESULTS The activated carbons have irregular and heterogeneous morphology, surface functional groups COO-, C-O, C-O-C, C=O and O-H, pHPZC of 11.11 and 10.86, and enhanced SSA (especially for CT NaOH + CO2 = 103.40 g m-2). The optimal conditions for Cd2+ adsorption occur using 4.0 g L-1, pH from 3.0 to 7.0, with most of the Cd2+ adsorbed in the first 10-20 min. The goodness of the fit found for pseudo-first order, pseudo-second order, intraparticle diffusion, Langmuir, Freundlich, Dubinin-Radushkevich, Sips, and Temkin suggest the occurrence of Cd2+ chemisorption and physisorption in mono and multilayers. The values of ∆G° < 0 kJ mol-1 indicate that the observed phenomena are energetically favorable and spontaneous; the values of ∆H° < 0 and the effective desorption rates (58.52% and 44.64%) suggest that the adsorption of Cd2+ is ruled mainly (but not only) by physical interactions. CONCLUSION Our excellent results on Cd2+ removal allow us to state that tobacco use as a raw material for adsorbent development is a renewable and eco-friendly technique, allowing the production of highly effective activated carbons and providing an adequate destination for this waste. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40201-021-00740-8.
Collapse
Affiliation(s)
- Jéssica Manfrin
- Universidade Estadual do Oeste do Paraná (UNIOESTE), Universitária Street, 1619, Universitário, Cascavel, State of Paraná 85819-110 Brazil
| | - Affonso Celso Gonçalves Junior
- Pesquisador Produtividade em Pesquisa do CNPq -Nível 1C, Universidade Estadual do Oeste do Paraná (UNIOESTE), Universitária Street, 1619, Universitário, Cascavel, State of Paraná 85819-110 Brazil
| | - Daniel Schwantes
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ing. Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Región Metropolitana, Santiago, Chile
| | - Juliano Zimmermann
- Universidade Estadual do Oeste do Paraná (UNIOESTE), Universitária Street, 1619, Universitário, Cascavel, State of Paraná 85819-110 Brazil
| | - Elio Conradi Junior
- Universidade Estadual do Oeste do Paraná (UNIOESTE), Universitária Street, 1619, Universitário, Cascavel, State of Paraná 85819-110 Brazil
| |
Collapse
|
6
|
Hossien Saghi M, Chabot B, Rezania S, Sillanpää M, Akbar Mohammadi A, Shams M, Alahabadi A. Water-stable zirconium and iron-based metal-organic frameworks (MOFs) as fluoride scavengers in aqueous medium. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118645] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Ulatowska J, Stala Ł, Polowczyk I. Comparison of Cr(VI) Adsorption Using Synthetic Schwertmannite Obtained by Fe 3+ Hydrolysis and Fe 2+ Oxidation: Kinetics, Isotherms and Adsorption Mechanism. Int J Mol Sci 2021; 22:8175. [PMID: 34360943 PMCID: PMC8348447 DOI: 10.3390/ijms22158175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 11/19/2022] Open
Abstract
Good sorption properties and simple synthesis route make schwertmannite an increasingly popular adsorbent. In this work, the adsorption properties of synthetic schwertmannite towards Cr(VI) were investigated. This study aimed to compare the properties and sorption performance of adsorbents obtained by two methods: Fe3+ hydrolysis (SCHA) and Fe2+ oxidation (SCHB). To characterise the sorbents before and after Cr(VI) adsorption, specific surface area, particle size distribution, density, and zeta potential were determined. Additionally, optical micrographs, SEM, and FTIR analyses were performed. Adsorption experiments were performed in varying process conditions: pH, adsorbent dosage, contact time, and initial concentration. Adsorption isotherms were fitted by Freundlich, Langmuir, and Temkin models. Pseudo-first-order, pseudo-second-order, intraparticle diffusion, and liquid film diffusion models were used to fit the kinetics data. Linear regression was used to estimate the parameters of isotherm and kinetic models. The maximum adsorption capacity resulting from the fitted Langmuir isotherm is 42.97 and 17.54 mg·g-1 for SCHA and SCHB. Results show that the adsorption kinetics follows the pseudo-second-order kinetic model. Both iron-based adsorbents are suitable for removing Cr(VI) ions from aqueous solutions. Characterisation of the adsorbents after adsorption suggests that Cr(VI) adsorption can be mainly attributed to ion exchange with SO42- groups.
Collapse
Affiliation(s)
- Justyna Ulatowska
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego Street 27, 50-370 Wrocław, Poland; (Ł.S.); (I.P.)
| | | | | |
Collapse
|
8
|
Janani B, Al-Mohaimeed AM, Raju LL, Al Farraj DA, Thomas AM, Khan SS. Synthesis and characterizations of hybrid PEG-Fe 3O 4 nanoparticles for the efficient adsorptive removal of dye and antibacterial, and antibiofilm applications. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:389-400. [PMID: 34150243 PMCID: PMC8172665 DOI: 10.1007/s40201-021-00612-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/04/2021] [Indexed: 05/20/2023]
Abstract
PURPOSE Dyes are highly toxic coloured compounds in nature that are largely applied in paper, food, textile and printing industries. Here, the adsorption technique was performed to remove methyl orange (MO) dye from water by polyethylene glycol (PEG) modified iron oxide nanoparticles (Fe3O4 NPs). METHODS The method used for Fe3O4 NPs synthesis was chemical precipitation. The particles were analyzed by transmission electron microscope, magnetometer, BET analyzer, fourier-transform infrared spectroscopy, X-ray powder diffraction, zetasizer and particle size analyzer. The influence of pH (4.0 to 10.0), NaCl concentration (0.01 mM to 2 M), adsorbent dosage (1 to 10 mg), and the role of surface charge on adsorptive removal were investigated. RESULTS The NPs size, zeta potential and surface area was found to be 26 ± 1.26 nm, 33.12 ± 1.01 mV and 119 m2/g respectively. The adsorption of MO on Fe3O4 NPs agreed best to Freundlich model (R2 = 0.965) when compared with Langmuir model (R2 = 0.249). By comparing pseudo-first-order kinetic model (R2 = 0.937), kinetic adsorption study was better followed by pseudo-second-order kinetic model (R2 = 1). The adsorption rate decreased with increasing NaCl concentration. At pH 4, maximum adsorption was noted. The particles were also exhibited excellent antibacterial and antibiofilm activities. The ROS formation, lipid peroxidation and oxidative stress were increased with increase in NPs concentration. The NPs precoated slides exhibited more than 50% growth inhibition. CONCLUSION The investigation denotes the versatile applications of the prepared particles for removing the dye stuffs from industrial effluents and as antibacterial and antibiofilm agent.
Collapse
Affiliation(s)
- B. Janani
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu India
| | - Amal M. Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495 Saudi Arabia
| | - Lija L. Raju
- Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, India
| | - Dunia A. Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ajith M. Thomas
- Department of Botany and Biotechnology, St Xavier’s College, Thumba, Thiruvananthapuram, India
| | - S. Sudheer Khan
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu India
| |
Collapse
|
9
|
Shokoohi R, Khazaei M, Karami M, Seid-mohammadi A, Khotanlou H, Berijani N, Torkshavand Z. Deterministic and probabilistic human health risk assessment approach of exposure to heavy metals in drinking water sources: A case study of a semi-arid region in the west of Iran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1047-1055. [PMID: 34150293 PMCID: PMC8172687 DOI: 10.1007/s40201-021-00671-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/21/2021] [Indexed: 05/28/2023]
Abstract
In the current study, the concentration of heavy metals (Ba, Mn, Pb, and Cd) in drinking water resources of 328 villages in Hamadan Province were measured using ICP-OES apparatus during two dry (September 2018) and wet (April 2019) seasons. The assessment of the non-carcinogenic risk of selected heavy metals was conducted based on the recommendations of the USEPA. Also, sensitivity analysis and uncertainty of the effective variables were performed using Monte-Carlo simulations. Based on the results, Mn level in drinking water samples ranged 0.08-25.63 μg/L and 0.08-20.03 μg/L in dry and wet seasons, respectively. Similarly, Ba levels in water samples ranged 0.15-70.13 μg/L and 0.84-65 μg/L. Also, Cd and Pb concentrations in all sampling sites were below the limits of detection (LOD) of the ICP-OES apparatus. The hazard index (HI) values for adult and children were 2.17 × 10-3 and 3.29 × 10-3, respectively, which show a lack of non-carcinogenic risk for the examined heavy metals (Mn and Ba) to the local inhabitants. The results of the sensitivity analyses for adults and children revealed that two variables including metal concentration and ingestion rate of drinking water (IR) had the highest positive effects on the non-carcinogenic risk estimates. It was also found that there was no significant non-carcinogenic risk for the local residents in the studied area due to drinking water consumption.
Collapse
Affiliation(s)
- Reza Shokoohi
- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Khazaei
- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Manoochehr Karami
- Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolmotaleb Seid-mohammadi
- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hassan Khotanlou
- Department of Computer Engineering, Bu-Ali Sina University, Hamadan, Iran
| | - Nima Berijani
- Occupational Medicine Specialist, Sepehr Occupational Medicine Center, Hamadan, Iran
| | - Zahra Torkshavand
- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
10
|
Talebi SS, Javid AB, Roudbari AA, Yousefi N, Ghadiri SK, Shams M, Mousavi Khaneghah A. Defluoridationof drinking water by metal impregnated multi-layer green graphene fabricated from trees pruning waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18201-18215. [PMID: 33410018 DOI: 10.1007/s11356-020-11743-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
A novel adsorbent with excellent adsorptive properties for fluoride was prepared through a green and cheap synthesis route. Populus caspica pruning wastes, a cheap agri-waste material, were reduced to multi-layer green graphene (MLG) and then post-modified to aluminum/iron modified multi-layer green graphene (AMLG and IMLG). Batch experiments revealed the effect of pH (3-11), contact time (0.5-12 h), and initial fluoride concentration (5-40 mg/L). The conversion of raw material to MLG increased the specific surface area about 120 times (from 4 to 475 m2/g). Furthermore, a significant improvement in zero points of charge (pHzpc) was attained for IMLG (7.1) and AMLG (8) compared with pristine MLG (4.3). Fluoride showed superior affinity to AMLG and IMLG compared with MLG. Fluoride removal increased gradually by pH from 3 to 8 and then decreased sharply up to pH 11. The study of process dynamics demonstrated the monolayer fluoride adsorption onto AMLG and IMLG controlled by the chemisorptions. The highest predicted adsorption capacities based on the Langmuir model were 31.52, 47.01, and 53.76 mg/g for MLG, IMLG, and AMLG, respectively. Considering economic and technical feasibility presents AMLG and IMLG as a promising candidate against water contamination by elevated fluoride. Graphical abstract.
Collapse
Affiliation(s)
- Seyedeh Solmaz Talebi
- Department of Epidemiology, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Allaah Bakhsh Javid
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
- The environmental and occupational health research center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ali Akbar Roudbari
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
- The environmental and occupational health research center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nader Yousefi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seid Kamal Ghadiri
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran.
- The environmental and occupational health research center, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Mahmoud Shams
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, P.O. Box: 91735-951, Mashhad, Iran.
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), Campinas, São Paulo, 13083-862, Brazil.
| |
Collapse
|
11
|
Bonyadi Z, Noghani F, Dehghan A, der Hoek JPV, Giannakoudakis DA, Ghadiri SK, Anastopoulos I, Sarkhosh M, Colmenares JC, Shams M. Biomass-derived porous aminated graphitic nanosheets for removal of the pharmaceutical metronidazole: Optimization of physicochemical features and exploration of process mechanisms. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Sadeghi S, Zakeri HR, Saghi MH, Ghadiri SK, Talebi SS, Shams M, Dotto GL. Modified wheat straw-derived graphene for the removal of Eriochrome Black T: characterization, isotherm, and kinetic studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3556-3565. [PMID: 32918690 DOI: 10.1007/s11356-020-10647-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
A cost-effective and environment-benign adsorbent was prepared from an abundant agro-waste material. Wheat straw was reduced to graphene and then modified by crosslinking to epichlorohydrin. During the conversion process of wheat straw to graphene, the specific surface area increased more than 100 times (from 4 to 415 m2 g-1). The adsorption efficiency of raw wheat straw, graphene nanosheets, and modified graphene against Eriochrome Black T (EBT) were 8.0, 34.7, and 74.4%, respectively. The modified graphene was further investigated for the effect of environmental condition, i.e., pH (3 to 11), EBT concentration (25-100 mg L-1), adsorbent dosage (0.25-0.75 g L-1), contact time (5-60 min), and solution temperature (30-60 °C). The dye removal remained at a high level under a wide range of pH from 3 to 9. The EBT removal decreased from 87.3 to 54.5 by increasing dye concentration and increased from 38.2 to 85.4% by increasing adsorbent dose in the studied ranges. Dye removal also increased by mixing time from 5 to 30 min, whereas a slight drop was observed by continuing agitation up to 60 min. Conducting experiments at various temperatures revealed an endothermic process. Pseudo-first-order and pseudo-second-order models were adequate to represent the adsorption kinetics. Isotherm models suggest a multilayer adsorption of EBT molecules on heterogeneous modified graphene surface with a maximum adsorption capacity of 146.2 mg g-1. The present work demonstrated that the modified graphene obtained from available and low-cost agro-wastes could be used effectively as adsorbent against EBT from aqueous media.
Collapse
Affiliation(s)
- Shahram Sadeghi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Spiritual Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hamid Reza Zakeri
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Hossien Saghi
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Seid Kamal Ghadiri
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyedeh Solmaz Talebi
- Department of Epidemiology, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Mahmoud Shams
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Guilherme Luiz Dotto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
13
|
Pourfadakari S, Jorfi S, Roudbari A, Javid A, Talebi SS, Ghadiri SK, Yousefi N. Optimization of electro-kinetic process for remediation of soil contaminated with phenanthrene using response surface methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1006-1017. [PMID: 32829432 DOI: 10.1007/s11356-020-10495-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The objective of this work was to investigate the modification of soil contaminated with phenanthrene (PHE) by electro-kinetic remediation (EKR) process using response surface methodology (RSM). The soil sample was obtained from the subgrades (0-30 cm) of an area close to Shahroud City, Northeast of Iran. The effect of variables such as initial pH, voltage, electrolyte concentration, and reaction time on PHE removal was studied. Based on the results obtained from the central composite design (CCD) experiment, the highest and lowest amount of PHE removal was 97 and 20%, respectively. In this study, the variables A, B, C, AB, AC, and C2 with a p value < 0.05 were significant model terms and the parameter of the lack of fit was not significant (p value = 0.0745). Findings indicated that the "predicted R-squared" of 0.9670 was in reasonable agreement with the "adj R-squared" of 0.9857 and the plot of residual followed a normal distribution and approximately linear. Also, the kinetic rates of the removal PHE by the EKR process best fitted with a first-order kinetic model (R2: 0.926). Results of the investigation of the effective variables showed that in values of pH 3, time of 168 h, voltage of 3 V, and electrolyte concentration of 4 mg/L, the removal efficiency of PHE reached 96.6%. Graphical abstract.
Collapse
Affiliation(s)
- Sudabeh Pourfadakari
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sahand Jorfi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Aliakbar Roudbari
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Allahbakhsh Javid
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyedeh Solmaz Talebi
- Department of Epidemiology, School of Public Health,Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seid Kamal Ghadiri
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Nader Yousefi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Javid A, Roudbari A, Yousefi N, Fard MA, Barkdoll B, Talebi SS, Nazemi S, Ghanbarian M, Ghadiri SK. Modeling of chromium (VI) removal from aqueous solution using modified green-Graphene: RSM-CCD approach, optimization, isotherm, and kinetic studies. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:515-529. [PMID: 33312580 PMCID: PMC7721790 DOI: 10.1007/s40201-020-00479-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/14/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND The aim of this study was to investigate the removal of Cr (VI) using Green-Graphene Nanosheets (GGN) synthesized from rice straw. METHODS Synthesis of the GGN was optimized using response surface methodology and central composite design (CCD). The effect of two independent variables including KOH-to-raw rice ash (KOH/RRA) ratio and temperature on the specific surface area of the GGN was determined. To have better removal of Cr (VI), GGN was modified using the grafting amine group method. In the Cr (VI) removal process, the effects of four independent variables including initial Cr (VI) concentration, adsorbent dosage, contact time, and initial solution pH were studied. RESULTS The results of this study showed that the optimum values of the KOH/RRA ratio and temperature for the preparation of GGN were 10.85 and 749.61 °C, respectively. The maximum amount of SSA obtained at optimum conditions for GGN was 551.14 ± 3.83 m 2 /g. The optimum conditions for Cr (VI) removal were 48.35 mg/L, 1.46 g/L, 44.30 min, and 6.87 for Cr (VI) concentration, adsorbent dosage, contact time, and pH, respectively. Based on variance analysis, the adsorbent dose was the most sensitive factor for Cr (VI) removal. Langmuir isotherm (R2 = 0.991) and Pseudo-second-order kinetic models (R2 = 0.999) were the best fit for the study results and the Q max was 138.89 mg/g. CONCLUSIONS It can be concluded that the predicted conditions from the GGN synthesis model and the optimum conditions from the Cr (VI) removal model both agreed with the experimental findings.
Collapse
Affiliation(s)
- Allahbakhsh Javid
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Aliakbar Roudbari
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nader Yousefi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Alizadeh Fard
- Department of Civil and Environmental Engineering, Michigan Technological University, Houghton, MI USA
| | - Brian Barkdoll
- Department of Civil and Environmental Engineering, Michigan Technological University, Houghton, MI USA
| | - Seyedeh Solmaz Talebi
- Department of Epidemiology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Saeed Nazemi
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Marjan Ghanbarian
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seid Kamal Ghadiri
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
15
|
Saghi MH, Qasemi M, Alidadi H, Alahabadi A, Rastegar A, Kowsari MH, Shams M, Aziznezhad M, Goharshadi EK, Barczak M, Anastopoulos I, Giannakoudakis DA. Vanadium oxide nanoparticles for methylene blue water remediation: Exploring the effect of physicochemical parameters by process modeling. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Aminated graphitic carbon derived from corn stover biomass as adsorbent against antibiotic tetracycline: Optimizing the physicochemical parameters. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113523] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Ghadiri SK, Alidadi H, Tavakkoli Nezhad N, Javid A, Roudbari A, Talebi SS, Mohammadi AA, Shams M, Rezania S. Valorization of biomass into amine- functionalized bio graphene for efficient ciprofloxacin adsorption in water-modeling and optimization study. PLoS One 2020; 15:e0231045. [PMID: 32287274 PMCID: PMC7156080 DOI: 10.1371/journal.pone.0231045] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/13/2020] [Indexed: 12/07/2022] Open
Abstract
A green synthesis approach was conducted to prepare amine-functionalized bio-graphene (AFBG) as an efficient and low cost adsorbent that can be obtained from agricultural wastes. In this study, bio-graphene was successfully used to remove Ciprofloxacin (CIP) from synthetic solutions. The efficacy of adsorbent as a function of operating variables (i.e. pH, time, AFBG dose and CIP concentration) was described by a polynomial model. A optimal99.3% experimental removal was achieved by adjusting the mixing time, AFBG dose, pH and CIP concentration to 58.16, 0.99, 7.47, and 52.9, respectively. Kinetic model revealed that CIP diffusion into the internal layers of AFBG controls the rate of the process. Furthermore, the sorption process was in monolayer with a maximum monolayer capacity of 172.6 mg/g. Adsorption also found to be favored under higher CIP concentrations. The thermodynamic parameters (ΔG°<0, ΔH°>0, and ΔS°>0) demonstrated that the process is endothermic and spontaneous in nature. The regeneration study showed that the AFBG could simply regenerated without significant lost in adsorption capacity.
Collapse
Affiliation(s)
- Seid Kamal Ghadiri
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Alidadi
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nahid Tavakkoli Nezhad
- Department of Environmental Health Engineering, Student Research Committee, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Allahbakhsh Javid
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Aliakbar Roudbari
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyedeh Solmaz Talebi
- Department of Epidemiology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ali Akbar Mohammadi
- Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur, Iran
- * E-mail: (AAM); (MS); (SR)
| | - Mahmoud Shams
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- * E-mail: (AAM); (MS); (SR)
| | - Shahabaldin Rezania
- Department of Environment & Energy, Sejong University, Seoul, South Korea
- * E-mail: (AAM); (MS); (SR)
| |
Collapse
|
18
|
Sharifi S, Nabizadeh R, Akbarpour B, Azari A, Ghaffari HR, Nazmara S, Mahmoudi B, Shiri L, Yousefi M. Modeling and optimizing parameters affecting hexavalent chromium adsorption from aqueous solutions using Ti-XAD7 nanocomposite: RSM-CCD approach, kinetic, and isotherm studies. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:873-888. [PMID: 32030160 PMCID: PMC6985374 DOI: 10.1007/s40201-019-00405-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/26/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Due to the high toxicity of chromium, particularly as Hexavalent chromium Cr (VI), it is removed from industrial effluents before their discharge into the environment by a variety of methods, including loading catalysts onto the polymeric supports. This study focused on the removal of Cr(VI) from aqueous solutions using Amberlite XAD7 resin loaded titanium dioxide (Ti-XAD7). METHODS Ti-XAD7 was synthesized using Amberlite XAD-7 impregnated with titanium tetraethoxide. The prepared Ti-XAD7 was characterized by using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Isotherms and kinetic studies were carried out to describe the adsorption behavior of adsorbent for the removal of Cr(VI) ions. Quadratic models considering independent variables, i.e. the initial Cr(VI) concentration, adsorbent dosage, time, and pH, were evaluated and optimized to describe the behavior of Cr(VI) adsorption onto the Ti-XAD7 using RSM based on a Five-level-four-factor CCD approach. RESULTS The accuracy and the fitting of the model were evaluated by ANOVA with R2 > 0.725 and P value = 5.221 × 10-5. The optimum conditions for the adsorption process were an initial Cr(VI) concentration 2750 ppb, contact time of 51.53 min, pH of 8.7, and Ti-XAD7 dosage of 5.05 g/L. The results revealed that the Langmuir and Sips isotherm models with R2 = 0.998 and 0.999 were the best models fitting the experimental data. The adsorption capacity of Ti-XAD7 and RL constant were 2.73 mg/g and 0.063-0.076 based on the Langmuir isotherm, respectively. Kinetic studies also indicated that the adsorption behavior of Cr(VI) was acceptably explained by the Elovich kinetic model with a good fitting (R2 = 0.97). CONCLUSIONS Comparison of the Ti-XAD7 and XAD7 yield in chromium adsorption showed that modified XAD7 had higher removal efficiency (about 98%) compared to XAD7 alone.
Collapse
Affiliation(s)
- Sahar Sharifi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Quality Research, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Akbarpour
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Azari
- Department of Environmental Health Engineering, School of Public Health, Kashan University of Medical Sciences, Kashan, Iran
- Research Center for Health, Safety and Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Ghaffari
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Shahrokh Nazmara
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Mahmoudi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Shiri
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Yousefi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|