1
|
Choe JP, Kang M. Apple watch accuracy in monitoring health metrics: a systematic review and meta-analysis. Physiol Meas 2025; 46:04TR01. [PMID: 40199339 DOI: 10.1088/1361-6579/adca82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/08/2025] [Indexed: 04/10/2025]
Abstract
Objective. Wearable technology like the Apple Watch is increasingly important for monitoring health metrics. Accurate measurement is crucial, as inaccuracies can impact health outcomes. Despite extensive research, findings on the Apple Watch's accuracy vary across different conditions. While previous reviews have summarized findings, few have utilized a meta-analytic approach. This study aims to quantitatively evaluate the accuracy of the Apple Watch in measuring health metrics. The accuracy of the Apple Watch was assessed in measuring energy expenditure (EE), heart rate (HR), and step counts (steps).Approach. We searched Embase, PubMed, Scopus, and SPORTDiscus for studies on adults using the Apple Watch compared to reference measures. The Bland-Altman framework was applied to assess mean bias and limits of agreement (LoA), with robust variance estimation to address within-study correlations. Heterogeneity was assessed across variables such as age, health status, device series, activity intensity, and activity type. Additionally, the mean absolute percentage error (MAPE) reported in the included studies was summarized by subgroups.Main results. This review included 56 studies, comprising 270 effect sizes on EE (71), HR (148), and steps (51). The meta-analysis showed a mean bias of 0.30 (LoA: -2.09-2.69) for EE (kcal min-1), -0.12 (LoA: -11.06-10.81) for HR (beats min-1), -1.83 (LoA: -9.08-5.41) for steps (steps min-1). The forest plots showed variability in LoA across subgroups. For MAPE, all subgroups for EE exceeded the 10% validity threshold, while none of the subgroups for HR exceeded this threshold. For steps, some subgroups exceeded 10%, highlighting variability in accuracy based on different conditions.Significance. This study demonstrates that while the Apple Watch generally provides accurate HR and step measurements, its accuracy for EE is limited. Although HR and step measurements showed acceptable accuracy, variability was observed across different user characteristics and measurement conditions. These findings highlight the importance of considering such factors when evaluating validity.
Collapse
Affiliation(s)
- Ju-Pil Choe
- Health and Sport Analytics Laboratory, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, University, MS 38677, United States of America
| | - Minsoo Kang
- Health and Sport Analytics Laboratory, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, University, MS 38677, United States of America
| |
Collapse
|
2
|
Hong KR, Hwang IW, Kim HJ, Yang SH, Lee JM. Apple Watch 6 vs. Galaxy Watch 4: A Validity Study of Step-Count Estimation in Daily Activities. SENSORS (BASEL, SWITZERLAND) 2024; 24:4658. [PMID: 39066055 PMCID: PMC11281039 DOI: 10.3390/s24144658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
The purpose of this study was to examine the validity of two wearable smartwatches (the Apple Watch 6 (AW) and the Galaxy Watch 4 (GW)) and smartphone applications (Apple Health for iPhone mobiles and Samsung Health for Android mobiles) for estimating step counts in daily life. A total of 104 healthy adults (36 AW, 25 GW, and 43 smartphone application users) were engaged in daily activities for 24 h while wearing an ActivPAL accelerometer on the thigh and a smartwatch on the wrist. The validities of the smartwatch and smartphone estimates of step counts were evaluated relative to criterion values obtained from an ActivPAL accelerometer. The strongest relationship between the ActivPAL accelerometer and the devices was found for the AW (r = 0.99, p < 0.001), followed by the GW (r = 0.82, p < 0.001), and the smartphone applications (r = 0.93, p < 0.001). For overall group comparisons, the MAPE (Mean Absolute Percentage Error) values (computed as the average absolute value of the group-level errors) were 6.4%, 10.5%, and 29.6% for the AW, GW, and smartphone applications, respectively. The results of the present study indicate that the AW and GW showed strong validity in measuring steps, while the smartphone applications did not provide reliable step counts in free-living conditions.
Collapse
Affiliation(s)
- Kyu-Ri Hong
- Department of Physical Education, Graduate School of Education, Kyung Hee University, Yongin-si 17014, Republic of Korea;
| | - In-Whi Hwang
- Department of Sports Medicine and Science, Graduate School of Physical Education, Kyung Hee University, Yongin-si 17014, Republic of Korea;
| | - Ho-Jun Kim
- Department of Physical Education, College of Physical Education, Kyung Hee University, Yongin-si 17014, Republic of Korea;
| | - Seo-Hyung Yang
- School of Global Sport Studies, Korea University, 2511 Sejong-ro, Sejong City 30019, Republic of Korea;
| | - Jung-Min Lee
- Sports Science Research Center, Global Campus, Kyung Hee University, Yongin-si 17014, Republic of Korea
- Department of Physical Education, Kyung Hee University, Yongin-si 17014, Republic of Korea
| |
Collapse
|
3
|
de Zambotti M, Goldstein C, Cook J, Menghini L, Altini M, Cheng P, Robillard R. State of the science and recommendations for using wearable technology in sleep and circadian research. Sleep 2024; 47:zsad325. [PMID: 38149978 DOI: 10.1093/sleep/zsad325] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/21/2023] [Indexed: 12/28/2023] Open
Abstract
Wearable sleep-tracking technology is of growing use in the sleep and circadian fields, including for applications across other disciplines, inclusive of a variety of disease states. Patients increasingly present sleep data derived from their wearable devices to their providers and the ever-increasing availability of commercial devices and new-generation research/clinical tools has led to the wide adoption of wearables in research, which has become even more relevant given the discontinuation of the Philips Respironics Actiwatch. Standards for evaluating the performance of wearable sleep-tracking devices have been introduced and the available evidence suggests that consumer-grade devices exceed the performance of traditional actigraphy in assessing sleep as defined by polysomnogram. However, clear limitations exist, for example, the misclassification of wakefulness during the sleep period, problems with sleep tracking outside of the main sleep bout or nighttime period, artifacts, and unclear translation of performance to individuals with certain characteristics or comorbidities. This is of particular relevance when person-specific factors (like skin color or obesity) negatively impact sensor performance with the potential downstream impact of augmenting already existing healthcare disparities. However, wearable sleep-tracking technology holds great promise for our field, given features distinct from traditional actigraphy such as measurement of autonomic parameters, estimation of circadian features, and the potential to integrate other self-reported, objective, and passively recorded health indicators. Scientists face numerous decision points and barriers when incorporating traditional actigraphy, consumer-grade multi-sensor devices, or contemporary research/clinical-grade sleep trackers into their research. Considerations include wearable device capabilities and performance, target population and goals of the study, wearable device outputs and availability of raw and aggregate data, and data extraction, processing, and analysis. Given the difficulties in the implementation and utilization of wearable sleep-tracking technology in real-world research and clinical settings, the following State of the Science review requested by the Sleep Research Society aims to address the following questions. What data can wearable sleep-tracking devices provide? How accurate are these data? What should be taken into account when incorporating wearable sleep-tracking devices into research? These outstanding questions and surrounding considerations motivated this work, outlining practical recommendations for using wearable technology in sleep and circadian research.
Collapse
Affiliation(s)
- Massimiliano de Zambotti
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
- Lisa Health Inc., Oakland, CA, USA
| | - Cathy Goldstein
- Sleep Disorders Center, Department of Neurology, University of Michigan-Ann Arbor, Ann Arbor, MI, USA
| | - Jesse Cook
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Luca Menghini
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
| | - Marco Altini
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Philip Cheng
- Sleep Disorders and Research Center, Henry Ford Health, Detroit, MI, USA
| | - Rebecca Robillard
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
- Canadian Sleep Research Consortium, Canada
| |
Collapse
|
4
|
Willingham TB, Stowell J, Collier G, Backus D. Leveraging Emerging Technologies to Expand Accessibility and Improve Precision in Rehabilitation and Exercise for People with Disabilities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:79. [PMID: 38248542 PMCID: PMC10815484 DOI: 10.3390/ijerph21010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024]
Abstract
Physical rehabilitation and exercise training have emerged as promising solutions for improving health, restoring function, and preserving quality of life in populations that face disparate health challenges related to disability. Despite the immense potential for rehabilitation and exercise to help people with disabilities live longer, healthier, and more independent lives, people with disabilities can experience physical, psychosocial, environmental, and economic barriers that limit their ability to participate in rehabilitation, exercise, and other physical activities. Together, these barriers contribute to health inequities in people with disabilities, by disproportionately limiting their ability to participate in health-promoting physical activities, relative to people without disabilities. Therefore, there is great need for research and innovation focusing on the development of strategies to expand accessibility and promote participation in rehabilitation and exercise programs for people with disabilities. Here, we discuss how cutting-edge technologies related to telecommunications, wearables, virtual and augmented reality, artificial intelligence, and cloud computing are providing new opportunities to improve accessibility in rehabilitation and exercise for people with disabilities. In addition, we highlight new frontiers in digital health technology and emerging lines of scientific research that will shape the future of precision care strategies for people with disabilities.
Collapse
Affiliation(s)
- T. Bradley Willingham
- Shepherd Center, Virginia C. Crawford Research Institute, Atlanta, GA 30309, USA (D.B.)
- Department of Physical Therapy, Georgia State University, Atlanta, GA 30302, USA
| | - Julie Stowell
- Shepherd Center, Virginia C. Crawford Research Institute, Atlanta, GA 30309, USA (D.B.)
- Department of Physical Therapy, Georgia State University, Atlanta, GA 30302, USA
| | - George Collier
- Shepherd Center, Virginia C. Crawford Research Institute, Atlanta, GA 30309, USA (D.B.)
| | - Deborah Backus
- Shepherd Center, Virginia C. Crawford Research Institute, Atlanta, GA 30309, USA (D.B.)
| |
Collapse
|
5
|
Roos LG, Slavich GM. Wearable technologies for health research: Opportunities, limitations, and practical and conceptual considerations. Brain Behav Immun 2023; 113:444-452. [PMID: 37557962 PMCID: PMC11233111 DOI: 10.1016/j.bbi.2023.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/31/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
One of the most notable limitations of laboratory-based health research is its inability to continuously monitor health-relevant physiological processes as individuals go about their daily lives. As a result, we have generated large amounts of data with unknown generalizability to real-world situations and also created a schism between where data are collected (i.e., in the lab) and where we need to intervene to prevent disease (i.e., in the field). Devices using noninvasive wearable technology are changing all of this, however, with their ability to provide high-frequency assessments of peoples' ever-changing physiological states in daily life in a manner that is relatively noninvasive, affordable, and scalable. Here, we discuss critical points that every researcher should keep in mind when using these wearables in research, spanning device and metric decisions, hardware and software selection, and data quality and sampling rate issues, using research on stress and health as an example throughout. We also address usability and participant acceptability issues, and how wearable "digital biomarker" and behavioral data can be integrated to enhance basic science and intervention studies. Finally, we summarize 10 key questions that should be addressed to make every wearable study as strong as possible. Collectively, keeping these points in mind can improve our ability to study the psychobiology of human health, and to intervene, precisely where it matters most: in peoples' daily lives.
Collapse
Affiliation(s)
- Lydia G Roos
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|