1
|
Lai C, Zhang J, Lai G, He L, Xu H, Li S, Che J, Wang Q, Guan X, Huang J, Lai P, Chen G. Targeted regulation of 5-aminolevulinic acid enhances flavonoids, anthocyanins and proanthocyanidins accumulation in Vitis davidii callus. BMC PLANT BIOLOGY 2024; 24:944. [PMID: 39385100 PMCID: PMC11465859 DOI: 10.1186/s12870-024-05667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Spine grape (Vitis davidii) is a promising source of high-quality anthocyanins, with vast potential for application in food, pharmaceutical, and cosmetic industries. However, their availability is limited by resource constraints. Plant cell culture has emerged as a valuable approach for anthocyanin production and serves as an ideal model to investigate the regulation of anthocyanin biosynthesis. Elicitors are employed to achieve targeted enhancement of anthocyanin biosynthesis. The present study investigated the impact of 5-aminolevulinic acid (ALA) as an elicitor on the accumulation of anthocyanins and flavonoids during spine grape callus growth. Specifically, we examined the effects of ALA on anthocyanin and its component accumulation in callus, and biosynthetic anthocyanin gene expression. RESULTS ALA at 25 µg/L increased the biomass of spine grape callus. ALA induction enhanced the levels of flavonoids, anthocyanins and proanthocyanidins in callus, with maximum values reaching 911.11 mg/100 g DW, 604.60 mg/100 g DW, and 5357.00 mg/100 g DW, respectively, after callus culture for 45 days. Notably, those levels were 1.47-, 1.93- and 1.83-fold higher than controls. ALA induction modulated the flavonoid profile, and among 97 differential flavonoid metabolites differing from controls, 77 were upregulated and 20 were downregulated. Six kinds of anthocyanins, namely cyanidin (8), delphinidin (6), peonidin (5), malvidin (4), petunidin (3) and pelargonidin (3), were detected in callus, with peonidin most abundant. Compared with controls, anthocyanin components were increased in ALA-treated callus. The key genes PAL1, PAL2, PAL4, CHI, CHS3, F3'H, F3H, FLS, DFR, UFGT, MYBA1, LDOX, OMT3, GT1 and ACT involved in anthocyanin biosynthesis were upregulated following ALA treatment, resulting in anthocyanin accumulation. CONCLUSION This study revealed a novel mode of ALA-mediated promotion of plant anthocyanin biosynthesis and accumulation at the cellular level, and a strategy for enhancing anthocyanin content in spine grape callus. The findings advance commercial-scale production of anthocyanins via spine grape callus culture. we also explored the accumulation patterns of flavonoids and anthocyanins under ALA treatment. Augmentation of anthocyanins coincided with elevated expression levels of most genes involved in anthocyanin biosynthesis within spine grape callus following ALA treatment.
Collapse
Affiliation(s)
- Chengchun Lai
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China.
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, 350003, China.
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, Fujian, 350003, China.
| | - Jing Zhang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian, 350002, P.R. China
| | - Gongti Lai
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, 350003, China
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, Fujian, 350003, China
| | - Liyuan He
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian, 350002, P.R. China
| | - Heng Xu
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian, 350002, P.R. China
| | - Siyu Li
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian, 350002, P.R. China
| | - Jianmei Che
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences Fuzhou, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
| | - Qi Wang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, 350003, China
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, Fujian, 350003, China
| | - Xuefang Guan
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, 350003, China
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, Fujian, 350003, China
| | - Juqing Huang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, 350003, China
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, Fujian, 350003, China
| | - Pufu Lai
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China.
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, 350003, China.
| | - Guixin Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian, 350002, P.R. China
| |
Collapse
|
2
|
Kanwal S, De-Eknamkul W. A Non-functional γ-Aminobutyric Acid Shunt Pathway in Cyanobacterium Synechocystis sp. PCC 6803 Enhances δ-Aminolevulinic Acid Accumulation under Modified Nutrient Conditions. Int J Mol Sci 2023; 24:1213. [PMID: 36674729 PMCID: PMC9864891 DOI: 10.3390/ijms24021213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
To redirect carbon flux from the γ-aminobutyric acid (GABA) shunt to the δ-aminolevulinic acid (ALA) biosynthetic pathway, we disrupted the GABA shunt route of the model cyanobacterium Synechocystis sp. PCC 6803 by inactivating Gdc, the gene-encoding glutamate decarboxylase. The generated ΔGdc strain exhibited lower intracellular GABA and higher ALA levels than the wild-type (WT) one. The ΔGdc strain’s ALA levels were ~2.8 times higher than those of the WT one when grown with levulinic acid (LA), a competitive inhibitor of porphobilinogen synthase. Abiotic stress conditions including salinity induced by 10 mM NaCl and cold at 4 °C increased the ALA levels in ΔGdc up to ~2.5 and 5 ng g−1 cell DW, respectively. The highest ALA production in the ΔGdc cyanobacteria grown in BG11 medium was triggered by glucose induction, followed by glutamate supplementation with 60 mM of LA, thereby resulting in ~360 ng g−1 cell DW of ALA, that is >300-fold higher ALA accumulation than that observed in ΔGdc cyanobacteria grown in normal medium. Increased levels of the gdhA (involved in the interconversion of α-ketoglutarate to glutamate) and the hemA (a major regulatory target of the ALA biosynthetic pathway) transcripts occurred in ΔGdc cyanobacteria grown under modified growth conditions. Our study provides critical insight into the facilitation of ALA production in cyanobacteria.
Collapse
Affiliation(s)
| | - Wanchai De-Eknamkul
- Natural Product Biotechnology Research Unit, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Hendawy AO, Shirai M, Takeya H, Sugimura S, Miyanari S, Taniguchi S, Sato K. Effects of 5-aminolevulinic acid supplementation on milk production, iron status, and immune response of dairy cows. J Dairy Sci 2019; 102:11009-11015. [PMID: 31587902 DOI: 10.3168/jds.2018-15982] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/12/2019] [Indexed: 02/02/2023]
Abstract
The objective of this study was to investigate the effect of 5-aminolevulinic acid (5-ALA) as a dietary supplement on milk yield and composition as well as iron status and immune response in lactating dairy cows. In this study 13 lactating Holstein cows were randomly assigned to either a control group or a treatment group supplemented with 10 mg of 5-ALA per kilogram of dry matter. During feeding, 5-ALA was mixed with a small amount of the total mixed ration and top-dressed. The experiments followed a crossover design with 2 periods. Each period consisted of an adaptation period of 12 d and a test period of 2 d. Dairy cows fed the diet supplemented with 5-ALA exhibited increased counts of white blood cells and granulocytes compared with the control group. The rate of phagocytosis and mitogen-induced proliferation of peripheral blood mononuclear cells in cows fed 5-ALA were higher than in cows fed a basal diet. However, 5-ALA did not affect iron status or plasma biochemical composition. Supplementation with 5-ALA improved milk protein and milk casein contents; however, it had no effect on milk production, milk fat, lactose, total solids, or solids-not-fat, compared with the control. We conclude that dietary supplementation of 5-ALA to lactating dairy cows may have a positive effect on milk protein synthesis and the immune response.
Collapse
Affiliation(s)
- A O Hendawy
- Department of Biological Production, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - M Shirai
- Department of Biological Production, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - H Takeya
- Department of Biological Production, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - S Sugimura
- Department of Biological Production, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | | | | | - K Sato
- Department of Biological Production, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan.
| |
Collapse
|
4
|
Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B 12. Nat Commun 2018; 9:4917. [PMID: 30464241 PMCID: PMC6249242 DOI: 10.1038/s41467-018-07412-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/01/2018] [Indexed: 11/30/2022] Open
Abstract
The only known source of vitamin B12 (adenosylcobalamin) is from bacteria and archaea. Here, using genetic and metabolic engineering, we generate an Escherichia coli strain that produces vitamin B12 via an engineered de novo aerobic biosynthetic pathway. In vitro and/or in vivo analysis of genes involved in adenosylcobinamide phosphate biosynthesis from Rhodobacter capsulatus suggest that the biosynthetic steps from co(II)byrinic acid a,c-diamide to adocobalamin are the same in both the aerobic and anaerobic pathways. Finally, we increase the vitamin B12 yield of a recombinant E. coli strain by more than ∼250-fold to 307.00 µg g−1 DCW via metabolic engineering and optimization of fermentation conditions. Beyond our demonstration of E. coli as a microbial biosynthetic platform for vitamin B12 production, our study offers an encouraging example of how the several dozen proteins of a complex biosynthetic pathway can be transferred between organisms to facilitate industrial production. Vitamin B12 is an essential nutrient with limited natural sources. Here the authors transfer 28 pathway synthesis genes from several bacteria including R. capsulatus to E. coli and, using metabolic engineering and optimised fermentation conditions, achieve high yields.
Collapse
|
5
|
Lo KJ, Lin SS, Lu CW, Kuo CH, Liu CT. Whole-genome sequencing and comparative analysis of two plant-associated strains of Rhodopseudomonas palustris (PS3 and YSC3). Sci Rep 2018; 8:12769. [PMID: 30143697 PMCID: PMC6109142 DOI: 10.1038/s41598-018-31128-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/13/2018] [Indexed: 11/14/2022] Open
Abstract
Rhodopseudomonas palustris strains PS3 and YSC3 are purple non-sulfur phototrophic bacteria isolated from Taiwanese paddy soils. PS3 has beneficial effects on plant growth and enhances the uptake efficiency of applied fertilizer nutrients. In contrast, YSC3 has no significant effect on plant growth. The genomic structures of PS3 and YSC3 are similar; each contains one circular chromosome that is 5,269,926 or 5,371,816 bp in size, with 4,799 or 4,907 protein-coding genes, respectively. In this study, a large class of genes involved in chemotaxis and motility was identified in both strains, and genes associated with plant growth promotion, such as nitrogen fixation-, IAA synthesis- and ACC deamination-associated genes, were also identified. We noticed that the growth rate, the amount of biofilm formation, and the relative expression levels of several chemotaxis-associated genes were significantly higher for PS3 than for YSC3 upon treatment with root exudates. These results indicate that PS3 responds better to the presence of plant hosts, which may contribute to the successful interactions of PS3 with plant hosts. Moreover, these findings indicate that the existence of gene clusters associated with plant growth promotion is required but not sufficient for a bacterium to exhibit phenotypes associated with plant growth promotion.
Collapse
Affiliation(s)
- Kai-Jiun Lo
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan.,Center of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.,National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu, 300, Taiwan
| | - Chia-Wei Lu
- Center for Shrimp Disease Control and Genetic Improvement, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan. .,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 115, Taiwan. .,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung City, 402, Taiwan.
| | - Chi-Te Liu
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan. .,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
6
|
Zhang W, Fortman JL, Carlson JC, Yan J, Liu Y, Bai F, Guan W, Jia J, Matainaho T, Sherman DH, Li S. Characterization of the bafilomycin biosynthetic gene cluster from Streptomyces lohii. Chembiochem 2013; 14:301-6. [PMID: 23362147 PMCID: PMC3771327 DOI: 10.1002/cbic.201200743] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Indexed: 11/08/2022]
Abstract
New hope for old bones: The plecomacrolide bafilomycin has been explored for decades as an anti-osteoporotic. However, its structural complexity has limited the synthesis of analogues. The cloning of the bafilomycin biosynthetic gene cluster from the environmental isolate Streptomyces lohii opens the door to the production of new analogues through bioengineering.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, Shandong 266101 (P. R. China), Fax: (+86)-532-8066-2778
| | - J. L. Fortman
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, and Microbiology and Immunology University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216 (USA), Fax: (+1)-734-615-3641
| | - Jacob C. Carlson
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, and Microbiology and Immunology University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216 (USA), Fax: (+1)-734-615-3641
| | - Jiyong Yan
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, Shandong 266101 (P. R. China), Fax: (+86)-532-8066-2778
| | - Yi Liu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, Shandong 266101 (P. R. China), Fax: (+86)-532-8066-2778
| | - Fali Bai
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, Shandong 266101 (P. R. China), Fax: (+86)-532-8066-2778
| | - Wenna Guan
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, Shandong 266101 (P. R. China), Fax: (+86)-532-8066-2778
| | - Junyong Jia
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, and Microbiology and Immunology University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216 (USA), Fax: (+1)-734-615-3641
| | - Teatulohi Matainaho
- Professor Teatulohi Matainaho, Department of Pharmacology, University of Papua New Guinea, Port Morseby (Papua New Guinea)
| | - David H. Sherman
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, and Microbiology and Immunology University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216 (USA), Fax: (+1)-734-615-3641
| | - Shengying Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, Shandong 266101 (P. R. China), Fax: (+86)-532-8066-2778
| |
Collapse
|
7
|
Yan L, Kim I. Evaluation of dietary supplementation of delta-aminolevulinic acid and chitooligosaccharide on growth performance, nutrient digestibility, blood characteristics, and fecal microbial shedding in weaned pigs. Anim Feed Sci Technol 2011. [DOI: 10.1016/j.anifeedsci.2011.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Kiatpapan P, Phonghatsabun M, Yamashita M, Murooka Y, Panbangred W. Production of 5-aminolevulinic acid by Propionibacterium acidipropionici TISTR442. J Biosci Bioeng 2010; 111:425-8. [PMID: 21185777 DOI: 10.1016/j.jbiosc.2010.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 11/08/2010] [Accepted: 11/23/2010] [Indexed: 11/19/2022]
Abstract
Propionibacterium acidipropionici TISTR442 produced the highest amount of 5-aminolevulinic acid (ALA) when cultivated in medium supplemented with glycine at 18g/l. ALA production correlated with ALA synthase activity, whereas ALA dehydratase activity was maintained at a low level. ALA yield reached 405mg/l after prolonged cultivation for 1 month.
Collapse
|
9
|
Wang JP, Lee JH, Jang HD, Yan L, Cho JH, Kim IH. Effects of δ-aminolevulinic acid and vitamin C supplementation on iron status, production performance, blood characteristics and egg quality of laying hens. J Anim Physiol Anim Nutr (Berl) 2010; 95:417-23. [DOI: 10.1111/j.1439-0396.2010.01067.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Lu H, Ma J, Liu N, Wang S. Effects of heme precursors on CYP1A2 and POR expression in the baculovirus/Spodoptera frugiperda system. J Biomed Res 2010; 24:242-9. [PMID: 23554636 PMCID: PMC3596560 DOI: 10.1016/s1674-8301(10)60034-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE CYP1A2 and NADPH-CYP450 oxidoreductase (POR) were expressed in the baculovirus/Spodoptera frugiperda (sf9) system. The aim of this study was to investigate the effects of heme precursors on the expression of CYP1A2 and POR. METHODS The heme precursors [δ-Aminolaevulinic Acid (5-ALA), Fe(3+) and hemin] were introduced into the system to evaluate their effects on the expression of CYP1A2, POR and their co-expression. All the proteins were identified using immunoblotting, CO-difference spectroscopy, or cytochrome c assay. RESULTS In the present study, functional CYP1A2 and POR were successfully expressed in the baculovirus/sf9 system, and both of them showed high activities. Co-addition of 5-ALA and Fe(3+) significantly improved expression of CYP1A2 by about 50% compared with the addition of 5-ALA, Fe(3+) or hemin alone. Either co-addition of 5-ALA and Fe(3+) or addition of 5-ALA or Fe(3+) alone improved the POR expression level 2 fold and its activity 7-10 fold compared with control (no addition). However, unlike CYP1A2, there was no difference between the co-addition and addition of these heme precursors alone. Different ratios of BvCYP1A2 to BvPOR also affected the co-expression of CYP1A2 and POR, with a 3:1 ratio of BvCYP1A2 / BvPOR significantly increasing their co-expression. Surprisingly, the addition of 0.1 mM 5-ALA or Fe(3+) alone, but not their co-addition, could significantly improve the CYP1A2 and POR co-expression (P < 0.05). CONCLUSION 5-ALA and Fe(3+) increased the expression of CYP1A2 and POR in a baculovirus/sf9 system, but the pattern of their expression was different between their expression alone and co-expression.
Collapse
Affiliation(s)
| | | | | | - Shoulin Wang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
11
|
Chen Y, Kim I, Cho J, Min B, Yoo J, Wang Q. Effect of δ-aminolevulinic acid on growth performance, nutrient digestibility, blood parameters and the immune response of weanling pigs challenged with Escherichia coli lipopolysaccharide. Livest Sci 2008. [DOI: 10.1016/j.livsci.2007.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Qin G, Lin J, Liu X, Cen P. Effects of medium composition on production of 5-aminolevulinic acid by recombinant Escherichia coli. J Biosci Bioeng 2006; 102:316-22. [PMID: 17116578 DOI: 10.1263/jbb.102.316] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 07/13/2006] [Indexed: 11/17/2022]
Abstract
The recombinant Escherichia coli BL21(DE3) harboring hemA from Agrobacterium radiobacter, which was engineered in our previous work, was used for the extracellular production of 5-aminolevulinic acid (ALA). The effects of various physiological factors, such as the concentrations of precursors (glycine, succinic acid and glucose) and the inhibitor 5-aminolevulinate dehydratase (levulinic acid), on the ALA accumulation in the fermentation broth were investigated in both shake flasks and a jar fermentor. Among these precursors, glycine exhibited the strongest ability to inhibit cell growth, while glucose mainly inhibited ALA formation. The optimum initial concentrations of glycine, succinic acid and glucose were found to be 2.0, 10.0 and 2.0 g/l, respectively. Levulinic acid (LA; 30 mM) was fed to the fermentation broth at the end of the exponential cell growth phase (about 8 h), and the intracellular activity of ALA dehydratase was efficaciously suppressed. Repeating the optimum composition of the medium in a stirred tank fermenter resulted in 1.49 g/l ALA. Furthermore, the fed batch of the precursors and inhibitor further increased ALA production up to 3.01 g/l.
Collapse
Affiliation(s)
- Gang Qin
- Institute of Bioengineering, College of Material Science and Chemical Engineering, Zhejiang University, Hangzhou 310027, China
| | | | | | | |
Collapse
|
13
|
Expression of 5-aminolevulinic acid synthase in recombinant Escherichia coli. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-005-9057-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Influence of culture conditions on the production of extra-cellular 5-aminolevulinic acid (ALA) by recombinant E. coli. Process Biochem 2005. [DOI: 10.1016/j.procbio.2004.01.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
KIATPAPAN PORNPIMON, MUROOKA YOSHIKATSU. Genetic Manipulation System in Propionibacteria. J Biosci Bioeng 2002. [DOI: 10.1263/jbb.93.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|