1
|
Aliabbasi N, Mehrabi S, Kheirandish M, Gashtasbi S, Mokhtarian M, Hosseini-Isfahani M, Vakilinezami A, Vakilinezami P, Mostaghim T, Rezaeinia H. The novel nano-electrospray delivery of curcumin via ultrasound assisted Balangu (Lallemantia royleana) hydrocolloid-chickpea protein interaction. Food Chem 2025; 484:144388. [PMID: 40267673 DOI: 10.1016/j.foodchem.2025.144388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/21/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
This research examines the development of complexes between chickpea protein isolate and Balangu seed gum using ultrasound (200 W, 350 W, 500 W, 650 W, and 800 W) to curcumin delivery by electrospray. Higher ultrasound powers (650 W and 800 W) enhanced the formation of complexes, as confirmed by FTIR and XRD. Complexes treated at 650 W demonstrated optimal solution properties for electrospraying, featuring the lowest surface tension of 31.79 mN/m and the highest zeta potential an electrical conductivity of -68.46 mV, and 1896 μS/cm, respectively. The electrospray effectively produced nanoparticles from the 650 W-treated complex solution, achieving a high curcumin encapsulation efficiency (93.67 ± 1.22 %). Loading curcumin into the complex solution altered the nanoparticles' morphology, resulting in more uniform particles. In the small intestine simulation, the hydrolysis of complex particles led to a significant curcumin release of 100 % within 480 min. The best-fitting model for curcumin release from complexes was the Peppas-Sahlin.
Collapse
Affiliation(s)
- Neda Aliabbasi
- Transfer Phenomena Laboratory (TPL), Department of Food Science, Technology and Engineering, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, 31587-11167 Karadj, Iran
| | - Shima Mehrabi
- Department of Food Science and Technology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Kheirandish
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sara Gashtasbi
- Transfer Phenomena Laboratory (TPL), Department of Food Science, Technology and Engineering, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, 31587-11167 Karadj, Iran
| | - Morassa Mokhtarian
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mona Hosseini-Isfahani
- Department of Food Science and Technology, Islamic Azad University, Safadasht Branch, Tehran, Iran
| | - Amir Vakilinezami
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Research and Development, Zar Sauce Company, Zar Industrial and Research Group, Karaj, Iran
| | | | - Toktam Mostaghim
- Department of Food Science and Technology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Hassan Rezaeinia
- Department of Research and Development, Zar Sauce Company, Zar Industrial and Research Group, Karaj, Iran; Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), km 12 Mashhad-Quchan Highway, P.O. Box: 91895-157-356, Mashhad, Iran.
| |
Collapse
|
2
|
Aminoroaya A, Khorasani SN, Bagheri R, Talebi Z, Malekkhouyan R, Das O, Neisiany RE. Facile encapsulation of cyanoacrylate-based bioadhesive by electrospray method and investigation of the process parameters. Sci Rep 2024; 14:5389. [PMID: 38443417 PMCID: PMC10914717 DOI: 10.1038/s41598-024-56008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/29/2024] [Indexed: 03/07/2024] Open
Abstract
Polymer microcapsules containing cyanoacrylates have represented a promising option to develop self-healing biomaterials. This study aims to develop an electrospray method for the preparation of capsules using poly(methyl methacrylate) (PMMA) as the encapsulant and ethyl 2-cyanoacrylate (EC) as the encapsulate. It also aims to study the effect of the electrospray process parameters on the size and morphology of the capsules. The capsules were characterized using Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and field-emission scanning electron microscopy (FE-SEM). Moreover, the effects of electrospray process parameters on the size were investigated by Taguchi experimental design. FTIR and TGA approved the presence of both PMMA and EC without further reaction. FE-SEM micrograph demonstrated that an appropriate choice of solvents, utilizing an appropriate PMMA:EC ratio and sufficient PMMA concentration are critical factors to produce capsules dominantly with an intact and spherical morphology. Utilizing various flow rates (0.3-0.5 ml/h) and applied voltage (18-26 kV), capsules were obtained with a 600-1000 nm size range. At constantly applied voltages, the increase in flow rate increased the capsule size up to 40% (ANOVA, p ≤ 0.05), while at constant flow rates, the increase in applied voltage reduced the average capsule size by 3.4-26% (ANOVA, p ≤ 0.05). The results from the Taguchi design represented the significance of solution flow rate, applied voltage, and solution concentration. It was shown that the most effective parameter on the size of capsules is flow rate. This research demonstrated that electrospray can be utilized as a convenient method for the preparation of sub-micron PMMA capsules containing EC. Furthermore, the morphology of the capsules is dominated by solvents, PMMA concentration, and PMMA:EC ratio, while the average size of the capsules can be altered by adjusting the flow rate and applied voltage of the electrospray process.
Collapse
Affiliation(s)
- Alireza Aminoroaya
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, East Lansing, MI, 48824, USA
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Rouholah Bagheri
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Zahra Talebi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Roya Malekkhouyan
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Oisik Das
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187, Lulea, Sweden.
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland.
- Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar, 9617976487, Iran.
| |
Collapse
|
3
|
Lai J, Sun J, Li C, Lu J, Tian Y, Liu Y, Zhao C, Zhang M. H-bond-type thermo-responsive schizophrenic copolymers: The phase transition correlation with their parent polymers and the improved protein co-assembly ability. J Colloid Interface Sci 2023; 650:1881-1892. [PMID: 37517188 DOI: 10.1016/j.jcis.2023.07.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Schizophrenic copolymers are one type of the popular smart polymers that show invertible colloidal structures in response to temperature stimulus. However, the lack of principles to predict the phase transition temperature of a schizophrenic copolymer from its corresponding parent thermo-responsive polymers limits their development. Additionally, studies on their applications remain scarce. Herein, a series of schizophrenic copolymers were synthesized by polymerization of a RAFT-made polymer precursor poly(acrylamide-co-N-acryloxysuccinimide-co-acrylic acid) (P(AAm-co-NAS-co-AAc)) with the mixture of N-isopropylmethacrylamide (NIPAm) and acrylamide (AAm) in varying molar ratios. In aqueous solution, the block P(AAm-co-NAS-co-AAc) and the block poly(NIPAm-co-AAm) exhibited upper and lower critical solution temperature (UCST and LCST) behavior, respectively. The schizophrenic copolymers featured either UCST-LCST, LCST-UCST, or only LCST thermo-responsive transition. A preliminary correlation of phase transition between the schizophrenic copolymers and their parent polymers was summarized. Furthermore, the co-assembly of the schizophrenic copolymers and proteins were conducted and the kinetics of protein loading and protein activity were investigated, which showed that the schizophrenic copolymers were efficient platforms for protein co-assembly with ultra-high protein loading while preserving the protein bioactivities. Additionally, all the materials were non-toxic towards NIH 3T3 and MCF-7 cells. This work offers the prospects of the schizophrenic polymers in soft colloidal and assembly systems, particularly in guiding the design of new materials and their use in biomedical applications.
Collapse
Affiliation(s)
- Jiahui Lai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jialin Sun
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chen Li
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jianlei Lu
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yueyi Tian
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yuting Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chuanzhuang Zhao
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
4
|
Pereira TM, Bonatto CC, Silva LP. Rapid and Versatile Biosensing of Liposome Encapsulation Efficiency Using Electrical Conductivity Sensor. BIOSENSORS 2023; 13:878. [PMID: 37754112 PMCID: PMC10526778 DOI: 10.3390/bios13090878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
Liposomes are prominent nanosystems for drug delivery, with potential extending beyond isolated drugs. Ethanol-aqueous plant extracts can be encapsulated within liposomes to protect bioactive compounds (secondary metabolites) from rapid oxidation and enable sustained release. Determining which compound classes are present in each extract and the encapsulation efficiency (EE) of these extracts in liposomes is crucial for nanocarrier functionality. This involves assessing the ratio of bioactive substances within liposomes to the total content. However, quantifying EE for non-isolated compounds poses challenges due to the need for advanced analytical equipment and biosensing approaches. This study introduces an innovative method for EE quantification, using a conductivity electrode (k = 0.842/cm) to establish an EE biosensing technology. By correlating dynamic light scattering (DLS), zeta potential (ZP), and electrical conductivity (Cnd) data with the conductivity meter's calibration curve, a robust relationship between the free extract concentration and Cnd (r2 ≥ 0.950) was established. Lavender-loaded liposomes demonstrated an EE of 56.33%, while wormwood and oregano formulations exhibited high EEs of 94.33% and 91.70%, respectively. In contrast, sage-loaded liposomes exhibited an inadequate EE, encapsulating only approximately 0.57% of the extract. The straightforward quantification of the free extract within liposome formulations, compared to more complex approaches, could facilitate EE determination and support future characterizations.
Collapse
Grants
- 001 and 23038.019088/2009- 58 Coordenação de Aperfeicoamento de Pessoal de Nível Superior
- 311825/2021-4, 307853/2018-7, 408857/2016-1, 306413/2014-0, and 563802/2010-3 National Council for Scientific and Technological Development
- 193.001.392/2016 Foundation for Research Support of the Federal District
- 10.20.03.009.00.00, 23.17.00.069.00.02, 13.17.00.037.00.00, 21.14.03.001.03.05, 13.14.03.010.00.02, 12.16.04.010.00.06, 22.16.05.016.00.04, and 11.13.06.001.06.03 Brazilian Agricultural Research Corporation
Collapse
Affiliation(s)
- Tatiane Melo Pereira
- Embrapa Recursos Genéticos e Biotecnologia, Laboratório de Nanobiotecnologia (LNANO), Parque Estação Biológica, Final W5 Norte, Brasília 70770-917, DF, Brazil; (T.M.P.); (C.C.B.)
- Postgraduate Program in Life Sciences (Molecular Biology), University of Brasilia (UnB), Brasília 70910-900, DF, Brazil
| | - Cínthia Caetano Bonatto
- Embrapa Recursos Genéticos e Biotecnologia, Laboratório de Nanobiotecnologia (LNANO), Parque Estação Biológica, Final W5 Norte, Brasília 70770-917, DF, Brazil; (T.M.P.); (C.C.B.)
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Botanical Garden, Curitiba 80210-170, PR, Brazil
| | - Luciano Paulino Silva
- Embrapa Recursos Genéticos e Biotecnologia, Laboratório de Nanobiotecnologia (LNANO), Parque Estação Biológica, Final W5 Norte, Brasília 70770-917, DF, Brazil; (T.M.P.); (C.C.B.)
- Postgraduate Program in Life Sciences (Molecular Biology), University of Brasilia (UnB), Brasília 70910-900, DF, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Botanical Garden, Curitiba 80210-170, PR, Brazil
| |
Collapse
|
5
|
Sözeri Atik D, Bölük E, Bildik F, Altay F, Torlak E, Kaplan AA, Kopuk B, Palabıyık İ. Particle morphology and antimicrobial properties of electrosprayed propolis. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Gomaa E, Attia MS, Ghazy FES, Hassan AE, Hasan AA. Pump-free electrospraying: A novel approach for fabricating Soluplus®-based solid dispersion nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Onyekuru LC, Moreira A, Zhang J, Angkawinitwong U, Costa PF, Brocchini S, Williams GR. An investigation of alkaline phosphatase enzymatic activity after electrospinning and electrospraying. J Drug Deliv Sci Technol 2021; 64:None. [PMID: 34345260 PMCID: PMC8312041 DOI: 10.1016/j.jddst.2021.102592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022]
Abstract
The high target specificity and multifunctionality of proteins has led to great interest in their clinical use. To this end, the development of delivery systems capable of preserving their bioactivity and improving bioavailability is pivotal to achieve high effectiveness and satisfactory therapeutic outcomes. Electrohydrodynamic (EHD) techniques, namely electrospinning and electrospraying, have been widely explored for protein encapsulation and delivery. In this work, monoaxial and coaxial electrospinning and electrospraying were used to encapsulate alkaline phosphatase (ALP) into poly(ethylene oxide) fibres and particles, respectively, and the effects of the processing techniques on the integrity and bioactivity of the enzyme were assessed. A full morphological and physicochemical characterisation of the blend and core-shell products was performed. ALP was successfully encapsulated within monolithic and core-shell electrospun fibres and electrosprayed particles, with drug loadings and encapsulation efficiencies of up to 21% and 99%, respectively. Monoaxial and coaxial electrospinning were equally effective in preserving ALP function, leading to no activity loss compared to fresh aqueous solutions of the enzyme. While the same result was observed for monoaxial electrospraying, coaxial electrospraying of ALP caused a 40% reduction in its bioactivity, which was attributed to the high voltage (22.5 kV) used during processing. This demonstrates that choosing between blend and coaxial EHD processing for protein encapsulation is not always straightforward, being highly dependent on the chosen therapeutic agent and the effects of the processing conditions on its bioactivity.
Collapse
Affiliation(s)
- Lesley C. Onyekuru
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Anabela Moreira
- Biofabics Lda., Rua Alfredo Allen 455, 4200-135, Porto, Portugal
| | - Jiazhe Zhang
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Ukrit Angkawinitwong
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Pedro F. Costa
- Biofabics Lda., Rua Alfredo Allen 455, 4200-135, Porto, Portugal
| | - Steve Brocchini
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| |
Collapse
|
8
|
Choukaife H, Doolaanea AA, Alfatama M. Alginate Nanoformulation: Influence of Process and Selected Variables. Pharmaceuticals (Basel) 2020; 13:E335. [PMID: 33114120 PMCID: PMC7690787 DOI: 10.3390/ph13110335] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Nanocarriers are defined as structures and devices that are constructed using nanomaterials which add functionality to the encapsulants. Being small in size and having a customized surface, improved solubility and multi-functionality, it is envisaged that nanoparticles will continue to create new biomedical applications owing to their stability, solubility, and bioavailability, as well as controlled release of drugs. The type and physiochemical as well as morphological attributes of nanoparticles influence their interaction with living cells and determine the route of administration, clearance, as well as related toxic effects. Over the past decades, biodegradable polymers such as polysaccharides have drowned a great deal of attention in pharmaceutical industry with respect to designing of drug delivery systems. On this note, biodegradable polymeric nanocarrier is deemed to control the release of the drug, stabilize labile molecules from degradation and site-specific drug targeting, with the main aim of reducing the dosing frequency and prolonging the therapeutic outcomes. Thus, it is essential to select the appropriate biopolymer material, e.g., sodium alginate to formulate nanoparticles for controlled drug delivery. Alginate has attracted considerable interest in pharmaceutical and biomedical applications as a matrix material of nanocarriers due to its inherent biological properties, including good biocompatibility and biodegradability. Various techniques have been adopted to synthesize alginate nanoparticles in order to introduce more rational, coherent, efficient and cost-effective properties. This review highlights the most used and recent manufacturing techniques of alginate-based nanoparticulate delivery system, including emulsification/gelation complexation, layer-by-layer, spray drying, electrospray and electrospinning methods. Besides, the effects of the main processing and formulation parameters on alginate nanoparticles are also summarized.
Collapse
Affiliation(s)
- Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu 22200, Malaysia;
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu 22200, Malaysia;
| |
Collapse
|
9
|
Alallam B, Altahhan S, Taher M, Mohd Nasir MH, Doolaanea AA. Electrosprayed Alginate Nanoparticles as CRISPR Plasmid DNA Delivery Carrier: Preparation, Optimization, and Characterization. Pharmaceuticals (Basel) 2020; 13:E158. [PMID: 32707857 PMCID: PMC7465179 DOI: 10.3390/ph13080158] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 11/17/2022] Open
Abstract
Therapeutic gene editing is becoming more feasible with the emergence of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) system. However, the successful implementation of CRISPR/Cas9-based therapeutics requires a safe and efficient in vivo delivery of the CRISPR components, which remains challenging. This study presents successful preparation, optimization, and characterization of alginate nanoparticles (ALG NPs), loaded with two CRISPR plasmids, using electrospray technique. The aim of this delivery system is to edit a target gene in another plasmid (green fluorescent protein (GFP)). The effect of formulation and process variables were evaluated. CRISPR ALG NPs showed mean size and zeta potential of 228 nm and -4.42 mV, respectively. Over 99.0% encapsulation efficiency was achieved while preserving payload integrity. The presence of CRISPR plasmids in the ALG NPs was confirmed by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy. The tests revealed that the nanoparticles were cytocompatible and successfully introduced the Cas9 transgene in HepG2 cells. Nanoparticles-transfected HepG2 was able to edit its target plasmid by introducing double-strand break (DSB) in GFP gene, indicating the bioactivity of CRISPR plasmids encapsulated in alginate nanoparticles. This suggests that this method is suitable for biomedical application in vitro or ex vivo. Future investigation of theses nanoparticles might result in nanocarrier suitable for in vivo delivery of CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Batoul Alallam
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (B.A.); (M.T.)
| | - Sara Altahhan
- College of Pharmacy, Alfaisal University, Riyadh 11533, Kingdom of Saudi Arabia;
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (B.A.); (M.T.)
| | - Mohd Hamzah Mohd Nasir
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Malaysia;
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (B.A.); (M.T.)
- IKOP Sdn Bhd, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia
| |
Collapse
|
10
|
Boel E, Koekoekx R, Dedroog S, Babkin I, Vetrano MR, Clasen C, Van den Mooter G. Unraveling Particle Formation: From Single Droplet Drying to Spray Drying and Electrospraying. Pharmaceutics 2020; 12:pharmaceutics12070625. [PMID: 32635464 PMCID: PMC7408114 DOI: 10.3390/pharmaceutics12070625] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/25/2022] Open
Abstract
Spray drying and electrospraying are well-established drying processes that already have proven their value in the pharmaceutical field. However, there is currently still a lack of knowledge on the fundamentals of the particle formation process, thereby hampering fast and cost-effective particle engineering. To get a better understanding of how functional particles are formed with respect to process and formulation parameters, it is indispensable to offer a comprehensive overview of critical aspects of the droplet drying and particle formation process. This review therefore closely relates single droplet drying to pharmaceutical applications. Although excellent reviews exist of the different aspects, there is, to the best of our knowledge, no single review that describes all steps that one should consider when trying to engineer a certain type of particle morphology. The findings presented in this article have strengthened the predictive value of single droplet drying for pharmaceutical drying applications like spray drying and electrospraying. Continuous follow-up of the particle formation process in single droplet drying experiments hence allows optimization of manufacturing processes and particle engineering approaches and acceleration of process development.
Collapse
Affiliation(s)
- Eline Boel
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, 3000 Leuven, Belgium; (E.B.); (S.D.)
| | - Robin Koekoekx
- Department of Chemical Engineering, Soft Matter, Rheology and Technology, KU Leuven, 3001 Leuven, Belgium; (R.K.); (I.B.); (C.C.)
| | - Sien Dedroog
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, 3000 Leuven, Belgium; (E.B.); (S.D.)
| | - Iurii Babkin
- Department of Chemical Engineering, Soft Matter, Rheology and Technology, KU Leuven, 3001 Leuven, Belgium; (R.K.); (I.B.); (C.C.)
| | - Maria Rosaria Vetrano
- Department of Mechanical Engineering, Applied Mechanics and Energy Conversion, KU Leuven, 3001 Leuven, Belgium;
| | - Christian Clasen
- Department of Chemical Engineering, Soft Matter, Rheology and Technology, KU Leuven, 3001 Leuven, Belgium; (R.K.); (I.B.); (C.C.)
| | - Guy Van den Mooter
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, 3000 Leuven, Belgium; (E.B.); (S.D.)
- Correspondence: ; Tel.: +32-16-330304
| |
Collapse
|
11
|
Soleimanifar M, Jafari SM, Assadpour E. Encapsulation of olive leaf phenolics within electrosprayed whey protein nanoparticles; production and characterization. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105572] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Kibler E, Lavrinenko A, Kolesnik I, Stankevich K, Bolbasov E, Kudryavtseva V, Leonov A, Schepetkin I, Khlebnikov A, Quinn MT, Tverdokhlebov S. Electrosprayed poly(lactic-co-glycolic acid) particles as a promising drug delivery system for the novel JNK inhibitor IQ-1. Eur Polym J 2020; 127:109598. [PMID: 32372769 PMCID: PMC7199471 DOI: 10.1016/j.eurpolymj.2020.109598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitogen-activated protein kinases (MAPKs), including c-Jun N-terminal kinase (JNK), play important role in the regulation of pro-inflammatory cytokine secretion and signaling cascades. Therefore, JNKs are key targets for the treatment of cytokine/JNK-driven diseases. Herein, we developed electrospray poly(lactic-co-glycolic acid) (PLGA) microparticles doped with novel JNK inhibitor 11H-indeno[1,2-b]quinoxalin-11-one oxime (IQ-1). Optimized electrospray parameters allowed us to produce IQ-1-doped microparticles with round shape, smooth and non-porous surface, and mean diameter of 0.9-1.3 μm. We have shown that IQ-1 was well integrated into the polymer matrix and had a prolonged release in two steps via non-Fickian release. The fabricated particles doped with IQ-1 exhibited anti-inflammatory effects, as indicated by inhibited neutrophil activation and cytokine secretion by human monocytic MonoMac-6 cells. Overall, our study demonstrates that PLGA microparticles doped with a novel JNK inhibitor (IQ-1) could be a promising delivery system for treatment of JNK-mediated diseases.
Collapse
Affiliation(s)
- Elina Kibler
- National Research Tomsk Polytechnic University, Tomsk
634050, Russia
| | | | - Ilya Kolesnik
- National Research Tomsk Polytechnic University, Tomsk
634050, Russia
| | - Ksenia Stankevich
- National Research Tomsk Polytechnic University, Tomsk
634050, Russia
- Department of Microbiology and Immunology, Montana State
University, Bozeman, MT 59717, USA
| | - Evgeny Bolbasov
- National Research Tomsk Polytechnic University, Tomsk
634050, Russia
- Microwave Photonics Lab, Institute of Atmospheric Optics
V.E. Zuev SB RAS, Tomsk 634055, Russia
| | - Valeriya Kudryavtseva
- National Research Tomsk Polytechnic University, Tomsk
634050, Russia
- School of Engineering and Materials Science, Queen Mary
University of London, London E1 4NS, United Kingdom
| | - Andrey Leonov
- National Research Tomsk Polytechnic University, Tomsk
634050, Russia
- Institute of High Current Electronics, Siberian Branch,
Russian Academy of Sciences, Tomsk 634055, Russia
| | - Igor Schepetkin
- Department of Microbiology and Immunology, Montana State
University, Bozeman, MT 59717, USA
| | - Andrei Khlebnikov
- National Research Tomsk Polytechnic University, Tomsk
634050, Russia
- Faculty of Chemistry, National Research Tomsk State
University, Tomsk 634050, Russia
| | - Mark T. Quinn
- Department of Microbiology and Immunology, Montana State
University, Bozeman, MT 59717, USA
| | | |
Collapse
|
13
|
Mandegari M, Ghasemi‐Mobarakeh L, Zamani M. Manipulating the degradation rate of PVA nanoparticles by a novel chemical‐free method. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mansoor Mandegari
- Department of Textile EngineeringIsfahan University of Technology Isfahan Iran
| | | | - Maedeh Zamani
- Department of Cardiothoracic Surgery—Adult Cardiac SurgeryStanford University Stanford California USA
| |
Collapse
|
14
|
Preparation of Electrosprayed Poly(caprolactone) Microparticles Based on Green Solvents and Related Investigations on the Effects of Solution Properties as Well as Operating Parameters. COATINGS 2019. [DOI: 10.3390/coatings9020084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Electrosprayed poly(caprolactone) (PCL) microparticles were produced using five solvents (ethyl acetate, acetone, anisole, glacial acetic acid and chloroform) under different PCL concentrations and operating parameters. Not only green and appropriate solvent for PCL electrospraying was pointed out, but also the effects of solution properties (surface tension, electrical conductivity, viscosity and vapor pressure) and operating parameters (flow rate, working distance and applied voltage) on the formation of electrosprayed particles were clarified. The formation and shape of Taylor cone during electrospraying was observed by high-speed images captured with a camera, and the size and morphology of electrosprayed particles were characterized by optical and scanning electron microscopies. It can conclude that the cone–jet range of applied voltage mainly depended on electrical conductivity, and an ideal Taylor cone was easier to form under high viscosity and low surface tension. Although high electrical conductivity was a contributor to fabricate tiny particles, it was easier to fabricate mono-dispersed microparticles under low electrical conductivity. The poly-dispersed distribution obtained with a high electrical conductivity converted into mono-dispersed distribution with the increasing of viscosity. Furthermore, the size of electrosprayed particles also correlated with the surface tension and vapor pressure of the solvent used. Ethyl acetate, due to mild electrical conductivity and surface tension, moderate viscosity and vapor pressure, is a green and suitable solvent for PCL electrospraying. Single pore PCL microparticles with smooth cherry-like morphology can be prepared from ethyl acetate. Finally, long working distance not only stabilizes the break-up of charged jet, but also promotes the evaporation of solvent.
Collapse
|
15
|
Influence of Solvent Selection in the Electrospraying
Process of Polycaprolactone. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030402] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Electrosprayed polycaprolactone (PCL) microparticles are widely used in medical tissueengineering, drug control release delivery, and food packaging due to their prominent structuresand properties. In electrospraying, the selection of a suitable solvent system as the carrier of PCL isfundamental and a prerequisite for the stabilization of electrospraying, and the control ofmorphology and structure of electrosprayed particles. The latter is not only critical for diversifyingthe characteristics of electrosprayed particles and achieving improvement in their properties, butalso promotes the efficiency of the process and deepens the applications of electrosprayed particlesin various fields. In order to make it systematic and more accessible, this review mainly concludesthe effects of different solution properties on the operating parameters in electrospraying on theformation of Taylor cone and the final structure as well as the morphology. Meanwhile,correlations between operating parameters and electrospraying stages are summarized as well.Finally, this review provides detailed guidance on the selection of a suitable solvent systemregarding the desired morphology, structure, and applications of PCL particles.
Collapse
|
16
|
Giménez VM, Sperandeo N, Faudone S, Noriega S, Manucha W, Kassuha D. Preparation and characterization of bosentan monohydrate/ε-polycaprolactone nanoparticles obtained by electrospraying. Biotechnol Prog 2018; 35:e2748. [PMID: 30548149 DOI: 10.1002/btpr.2748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/23/2018] [Accepted: 11/13/2018] [Indexed: 11/08/2022]
Abstract
The electrospraying technique provides nano and microparticles that can be used as drug delivery systems. The aims of this study were, firstly, to optimize the influent parameters of electrospraying for the manufacture of a Bosentan (BOS) nanoparticulate platform, and secondly, to evaluate its physicochemical properties and in vitro biopharmaceutical behavior. Particles were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetry (TG) and Fourier transformed Infrared spectroscopy (FTIR). Drug loading, encapsulation efficiency and kinetic dissolution were determined. Additionally, Bosentan release assays at 24 and 72 h were performed in vitro to evaluate biopharmaceutical properties of nano-scaffolds by diffusion technique through dialysis bag. The nanostructures had heterogeneous sizes predominantly smaller than 550 nm and they were semicrystalline according to PXRD, indicating a partial amorphization of BOS during the encapsulation in the polymer matrix. FT-IR and DSC showed an absence of chemical interactions between BOS and ε-Polycaprolactone (PCL), suggesting that both components behaved as a physical mixture in these particles. The drug loading was 25.98%, and the encapsulation efficiency was 58.51%. Additionally, the release assays showed an extended and controlled release of BOS, in comparison to non-encapsulated BOS. These data also showed to fit with the Cubic Root kinetic dissolution. As a conclusion, we demonstrate that the use of electrospraying for the manufacture of BOS (or similar drugs) controlled release nanoplatforms would represent an interesting contribution in the development of new therapeutic alternatives for the treatment of pathologies such as pulmonary hypertension and other related diseases. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2748, 2019.
Collapse
Affiliation(s)
- Virna M Giménez
- Instituto de Investigaciones en Ciencias Químicas. Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, San Juan, Argentina
| | - Norma Sperandeo
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba and UNITEFA (CONICET-UNC), Córdoba, Argentina
| | - Sonia Faudone
- Centro de Excelencia en Productos y Procesos de Córdoba CEPROCOR, Córdoba, Argentina
| | - Sandra Noriega
- Instituto de Investigaciones en Ciencias Químicas. Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, San Juan, Argentina
| | - Walter Manucha
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Mendoza, Argentina.,Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Diego Kassuha
- Instituto de Investigaciones en Ciencias Químicas. Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, San Juan, Argentina
| |
Collapse
|
17
|
Le NT, Myrick JM, Seigle T, Huynh PT, Krishnan S. Mapping electrospray modes and droplet size distributions for chitosan solutions in unentangled and entangled concentration regimes. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Pawar A, Thakkar S, Misra M. A bird's eye view of nanoparticles prepared by electrospraying: advancements in drug delivery field. J Control Release 2018; 286:179-200. [DOI: 10.1016/j.jconrel.2018.07.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 01/19/2023]
|
19
|
Niu Y, Qi L, Zhang F, Zhao Y. Geometric screening of core/shell hydrogel microcapsules using a tapered microchannel with interdigitated electrodes. Biosens Bioelectron 2018; 112:162-169. [PMID: 29704784 DOI: 10.1016/j.bios.2018.04.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/30/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
Abstract
Core/shell hydrogel microcapsules attract increasing research attention due to their potentials in tissue engineering, food engineering, and drug delivery. Current approaches for generating core/shell hydrogel microcapsules suffer from large geometric variations. Geometrically defective core/shell microcapsules need to be removed before further use. High-throughput geometric characterization of such core/shell microcapsules is therefore necessary. In this work, a continuous-flow device was developed to measure the geometric properties of microcapsules with a hydrogel shell and an aqueous core. The microcapsules were pumped through a tapered microchannel patterned with an array of interdigitated microelectrodes. The geometric parameters (the shell thickness and the diameter) were derived from the displacement profiles of the microcapsules. The results show that this approach can successfully distinguish all unencapsulated microparticles. The geometric properties of core/shell microcapsules can be determined with high accuracy. The efficacy of this method was demonstrated through a drug releasing experiment where the optimization of the electrospray process based on geometric screening can lead to controlled and extended drug releasing profiles. This method does not require high-speed optical systems, simplifying the system configuration and making it an indeed miniaturized device. The throughput of up to 584 microcapsules per minute was achieved. This study provides a powerful tool for screening core/shell hydrogel microcapsules and is expected to facilitate the applications of these microcapsules in various fields.
Collapse
Affiliation(s)
- Ye Niu
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, United States; Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Lin Qi
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Fen Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Yi Zhao
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
20
|
Wang P, Li Y, Jiang M. Effects of the multilayer structures on Exenatide release and bioactivity in microsphere/thermosensitive hydrogel system. Colloids Surf B Biointerfaces 2018; 171:85-93. [PMID: 30015142 DOI: 10.1016/j.colsurfb.2018.04.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 02/08/2023]
Abstract
Traditional polypeptide-loaded PLGA microspheres (PM) using emulsion electrospray techniques often exhibit unsteady release and limited bioactivity. To solve these two problems, an Exenatide (EXT)-loaded multilayer system composed ofPM and thermosensitive hydrogel was prepared by the emulsion electrospray technique in this study. Hydrogel mixture were loaded in PLGA microspheres as Depot-hydrogel to prepare Gel/PM. The PM/Gel and Gel/PM/Gel systems were obtained by dispersion of PM and Gel/PM into hydrogel mixture, respectively. EXT in Gel/PM/Gel showed a constantly in vitro release for 30 days, which was significantly enhanced in comparison of those in the PM/Gel and the Gel/PM. PM/Gel and Gel/PM/Gel showed diminished burst release and no platform period compared with PM and Gel/PM. And these could be because the introduced Matrix-hydrogel outside, as a buffer layer, inhibited burst releases and exhibited a sustained manner. The inner Depot-hydrogelstructure slowed the PLGA degradation rate and drug release rate. As well, more than 15-day blood glucose levels in KKAy mice were greatly maintained at 7.50-9.50 mmol/L after a single subcutaneous injection of Gel/PM/Gel (4.95 μg/kg). Spatial stability and further bioactivity of released EXT were well protected by EXT-hydrogel complexes, and undesirable uptake of EXT and microspheres via phagocytes were also decreased by PEG shell. Thus, the long-acting microspheres/hydrogel multilayer system prepared by emulsion electrospray technique showed promising potentials for loading hydrophilic polypeptides and proteins.
Collapse
Affiliation(s)
- Puxiu Wang
- Department of Pharmacy, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China; Department of the First Clinical Pharmacy, China Medical University, Shenyang, Liaoning, PR China.
| | - Yue Li
- Department of Pharmacy, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Mingyan Jiang
- Department of Pharmacy, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
21
|
Alehosseini A, Ghorani B, Sarabi-Jamab M, Tucker N. Principles of electrospraying: A new approach in protection of bioactive compounds in foods. Crit Rev Food Sci Nutr 2017; 58:2346-2363. [DOI: 10.1080/10408398.2017.1323723] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ali Alehosseini
- Department of Food Nanotechnology, Research Institute of Food Science & Technology (RIFST), Mashhad, Iran
| | - Behrouz Ghorani
- Department of Food Nanotechnology, Research Institute of Food Science & Technology (RIFST), Mashhad, Iran
| | - Mahboobe Sarabi-Jamab
- Department of Food Biotechnology, Research Institute of Food Science & Technology (RIFST), Mashhad, Iran
| | - Nick Tucker
- School of Engineering, University of Lincoln, Brayford Pool, Lincoln, United Kingdom
| |
Collapse
|
22
|
Yaghoobi N, Faridi Majidi R, Faramarzi MA, Baharifar H, Amani A. Preparation, Optimization and Activity Evaluation of PLGA/Streptokinase Nanoparticles Using Electrospray. Adv Pharm Bull 2017; 7:131-139. [PMID: 28507947 PMCID: PMC5426726 DOI: 10.15171/apb.2017.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/11/2017] [Accepted: 03/14/2017] [Indexed: 11/09/2022] Open
Abstract
Purpose: PLGA nanoparticles (NPs) have been extensively investigated as carriers of different drug molecules to enhance their therapeutic effects or preserve them from the aqueous environment. Streptokinase (SK) is an important medicine for thrombotic diseases. Methods: In this study, we used electrospray to encapsulate SK in PLGA NPs and evaluate its activity. This is the first paper which investigates activity of an electrosprayed enzyme. Effect of three input parameters, namely, voltage, internal diameter of needle (nozzle) and concentration ratio of polymer to protein on size and size distribution (SD) of NPs was evaluated using artificial neural networks (ANNs). Optimizing the SD has been rarely reported so far in electrospray. Results: From the results, to obtain lowest size of nanoparticles, ratio of polymer/enzyme and needle internal diameter (ID) should be low. Also, minimum SD was obtainable at high values of voltage. The optimum preparation had mean (SD) size, encapsulation efficiency and loading capacity of 37 (12) nm, 90% and 8.2%, respectively. Nearly, 20% of SK was released in the first 30 minutes, followed by cumulative release of 41% during 72 h. Activity of the enzyme was also checked 30 min after preparation and 19.2% activity was shown. Conclusion: Our study showed that electrospraying could be an interesting approach to encapsulate proteins/enzymes in polymeric nanoparticles. However, further works are required to assure maintaining the activity of the enzyme/protein after electrospray.
Collapse
Affiliation(s)
- Nasrin Yaghoobi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Faridi Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Baharifar
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Amani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Electrospraying: a Novel Technique for Efficient Coating of Foods. FOOD ENGINEERING REVIEWS 2016. [DOI: 10.1007/s12393-016-9150-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Guarino V, Altobelli R, Cirillo V, Cummaro A, Ambrosio L. Additive electrospraying: a route to process electrospun scaffolds for controlled molecular release. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3588] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Vincenzo Guarino
- Institute for Polymers, Composites and Biomaterials; Department of Chemical Science and Materials Technology, National Research Council of Italy; V.le Kennedy 54, Mostra D'Oltremare, Pad.20 80125 Naples Italy
- Department of Chemical Sciences and Materials Technology; National Research Council of Italy; 80125 Naples Italy
| | - Rosaria Altobelli
- Institute for Polymers, Composites and Biomaterials; Department of Chemical Science and Materials Technology, National Research Council of Italy; V.le Kennedy 54, Mostra D'Oltremare, Pad.20 80125 Naples Italy
- Department of Chemical Sciences and Materials Technology; National Research Council of Italy; 80125 Naples Italy
| | - Valentina Cirillo
- Institute for Polymers, Composites and Biomaterials; Department of Chemical Science and Materials Technology, National Research Council of Italy; V.le Kennedy 54, Mostra D'Oltremare, Pad.20 80125 Naples Italy
- Department of Chemical Sciences and Materials Technology; National Research Council of Italy; 80125 Naples Italy
| | - Annunziata Cummaro
- Institute for Polymers, Composites and Biomaterials; Department of Chemical Science and Materials Technology, National Research Council of Italy; V.le Kennedy 54, Mostra D'Oltremare, Pad.20 80125 Naples Italy
- Department of Chemical Sciences and Materials Technology; National Research Council of Italy; 80125 Naples Italy
| | - Luigi Ambrosio
- Institute for Polymers, Composites and Biomaterials; Department of Chemical Science and Materials Technology, National Research Council of Italy; V.le Kennedy 54, Mostra D'Oltremare, Pad.20 80125 Naples Italy
- Department of Chemical Sciences and Materials Technology; National Research Council of Italy; 80125 Naples Italy
| |
Collapse
|
25
|
Xie J, Jiang J, Davoodi P, Srinivasan MP, Wang CH. Electrohydrodynamic atomization: A two-decade effort to produce and process micro-/nanoparticulate materials. Chem Eng Sci 2015; 125:32-57. [PMID: 25684778 PMCID: PMC4322784 DOI: 10.1016/j.ces.2014.08.061] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electrohydrodynamic atomization (EHDA), also called electrospray technique, has been studied for more than one century. However, since 1990s it has begun to be used to produce and process micro-/nanostructured materials. Owing to the simplicity and flexibility in EHDA experimental setup, it has been successfully employed to generate particulate materials with controllable compositions, structures, sizes, morphologies, and shapes. EHDA has also been used to deposit micro- and nanoparticulate materials on surfaces in a well-controlled manner. All these attributes make EHDA a fascinating tool for preparing and assembling a wide range of micro- and nanostructured materials which have been exploited for use in pharmaceutics, food, and healthcare to name a few. Our goal is to review this field, which allows scientists and engineers to learn about the EHDA technique and how it might be used to create, process, and assemble micro-/nanoparticulate materials with unique and intriguing properties. We begin with a brief introduction to the mechanism and setup of EHDA technique. We then discuss issues critical to successful application of EHDA technique, including control of composition, size, shape, morphology, structure of particulate materials and their assembly. We also illustrate a few of the many potential applications of particulate materials, especially in the area of drug delivery and regenerative medicine. Next, we review the simulation and modeling of Taylor cone-jet formation for a single and co-axial nozzle. The mathematical modeling of particle transport and deposition is presented to provide a deeper understanding of the effective parameters in the preparation, collection and pattering processes. We conclude this article with a discussion on perspectives and future possibilities in this field.
Collapse
Affiliation(s)
- Jingwei Xie
- Department of Pharmaceutical Sciences and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Jiang Jiang
- Department of Pharmaceutical Sciences and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Pooya Davoodi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585
| | - M. P. Srinivasan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585
| |
Collapse
|
26
|
Abstract
A mesoporous TiO2 photo-electrode for dye-sensitized solar cells (DSSCs) was fabricated by an electrospray method using a solution of dispersed TiO2 nanocrystals (P25). A mesoporous TiO2 disk has a larger surface area than P25. The sub micrometer-sized TiO2 disk promotes light scattering, thereby increasing the photocurrent conversion efficiency. However, the electrosprayed TiO2 electrodes have many pores and disconnected electron pathways. Thus, we investigated the enhanced electrical contact of an electrosprayed TiO2 electrode using a hot-pressing process and a titanium tetrachloride (TiCl4) treatment process. After optimizing the post-treatment process of an electrosprayed TiO2 electrode, the cell shows conversion efficiency up to 6% at standard sunlight of AM 1.5.
Collapse
|
27
|
Zamani M, Prabhakaran MP, Thian ES, Ramakrishna S. Protein encapsulated core–shell structured particles prepared by coaxial electrospraying: Investigation on material and processing variables. Int J Pharm 2014; 473:134-43. [DOI: 10.1016/j.ijpharm.2014.07.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/03/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
|
28
|
Paik DH, Choi SW. Entrapment of protein using electrosprayed poly(D,L-lactide-co-glycolide) microspheres with a porous structure for sustained release. Macromol Rapid Commun 2014; 35:1033-8. [PMID: 24700776 DOI: 10.1002/marc.201400042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/17/2014] [Indexed: 11/10/2022]
Abstract
The entrapment of a protein in porous poly(D,L-lactide-co-glycolide) (PLGA) microspheres is demonstrated through the closure of their outer surface pores for sustained delivery of the protein. The porous PLGA microspheres with less than 10 μm in size are prepared by electrospraying. Aqueous solutions containing fluorescein isothiocyanate-dextran or bovine serum albumin (BSA) are penetrated into the inner pores as a result of vacuum treatment, and the outer surface pores of the porous PLGA microspheres are then closed using a solvent (dimethyl sulfoxide) to ensure entrapment of the macromolecules. Confocal microscopy images confirm the presence of a large amount of the macromolecules inside the porous structure. Circular dichroism spectroscopy and release analysis reveal that BSA is entrapped without denaturation and released in a sustained manner for a period of over 2 months, respectively.
Collapse
Affiliation(s)
- Dong-Hyun Paik
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 420-743, Republic of Korea
| | | |
Collapse
|
29
|
Khan MKI, Maan AA, Schutyser M, Schroën K, Boom R. Electrospraying of water in oil emulsions for thin film coating. J FOOD ENG 2013. [DOI: 10.1016/j.jfoodeng.2013.05.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Koo SY, Cha KH, Song DG, Chung D, Pan CH. Microencapsulation of peppermint oil in an alginate-pectin matrix using a coaxial electrospray system. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12358] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Song Yi Koo
- Functional Food Center; Korea Institute of Science and Technology (KIST); Gangneung 210-340 Republic of Korea
| | - Kwang Hyun Cha
- Functional Food Center; Korea Institute of Science and Technology (KIST); Gangneung 210-340 Republic of Korea
| | - Dae-Geun Song
- Functional Food Center; Korea Institute of Science and Technology (KIST); Gangneung 210-340 Republic of Korea
| | - Donghwa Chung
- Department of Marine Food Science and Technology; Gangneung-Wonju National University; Gangneung 210-702 Republic of Korea
| | - Cheol-Ho Pan
- Functional Food Center; Korea Institute of Science and Technology (KIST); Gangneung 210-340 Republic of Korea
| |
Collapse
|
31
|
Gasperini L, Maniglio D, Migliaresi C. Microencapsulation of cells in alginate through an electrohydrodynamic process. J BIOACT COMPAT POL 2013. [DOI: 10.1177/0883911513501599] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The encapsulation of living cells within a semi-permeable matrix is an attractive process for transplanting nonautologous cells by limiting the interaction with the host immune system. The electrohydrodynamic process is a low-cost and high-throughput system to encapsulate cells by means of a static potential. We evaluated the use of this system for cell entrapment by assessing and then manufacturing capsules that had the best dimensions. The effect of different cell densities on the beads was determined to set up the basic parameters of the encapsulation system. The cell viability inside the beads and as a function of release time was observed for their biological response.
Collapse
Affiliation(s)
- L Gasperini
- Department of Industrial Engineering, Biotech Research Center, University of Trento, Trento, Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, Italy
| | - D Maniglio
- Department of Industrial Engineering, Biotech Research Center, University of Trento, Trento, Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, Italy
- INSTM–Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Firenze, Italy
| | - C Migliaresi
- Department of Industrial Engineering, Biotech Research Center, University of Trento, Trento, Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, Italy
- INSTM–Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Firenze, Italy
| |
Collapse
|
32
|
Abstract
Electrostatics continues to play an important role in pharmaceutical aerosols for inhalation. Despite its ubiquitous nature, the charging process is complex and not well understood. Nonetheless, significant advances in the past few years continue to improve understanding and lead to better control of electrostatics. The purpose of this critical review is to present an overview of the literature, with an emphasis on how electrostatic charge can be useful in improving pulmonary drug delivery.
Collapse
|
33
|
Preparation of porous microsphere-scaffolds by electrohydrodynamic forming and thermally induced phase separation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2488-98. [DOI: 10.1016/j.msec.2012.12.098] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/20/2012] [Accepted: 12/22/2012] [Indexed: 11/23/2022]
|
34
|
Moore K, Amos J, Davis J, Gourdie R, Potts JD. Characterization of polymeric microcapsules containing a low molecular weight peptide for controlled release. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:213-226. [PMID: 23360728 DOI: 10.1017/s143192761201389x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A need exists to prolong the release of rapidly metabolized peptides of a low molecular weight, while delivering this peptide without environmental interference. Previous studies have used bovine serum albumin (BSA) as a model peptide to study release characteristics from alginate microcapsules. BSA is 66 kDa in size, while the peptide of interest here, connexin-43 carboxyl-terminus mimetic peptide (αCT1), is only 3.4 kDa. Such a change in size results in a much different set of release parameters. Our overall goal is a sustained release over a 24+ h period. Prolonged application of the peptide to a wound site to investigate therapeutic effects is ideal. As a result, a diffusion method using alginate microcapsules, along with the addition of poly-l-lysine and poly-l-ornithine, has been explored. We first aimed to establish and characterize our parameters through a set of parametric tests. Variations in polymer coating, change in pH, and changes in loading ratio have previously been shown to effect release using model compounds. Here we test specific changes in these parameters to show effects on the release of αCT1. Additionally, the microcapsules were attached to several biomaterials and surgical implants by ultraviolet cross-linking to study the effectiveness of attachment and delivery. Analysis and measurements using phase contrast microscopy, scanning electron microscopy, and atomic force microscopy were used to characterize changes in microcapsule morphology.
Collapse
Affiliation(s)
- Keith Moore
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29209, USA.
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Hu C, Zhao J, Cui W. Fabrication and surface characterization of electrosprayed poly(L-lactide) microspheres. J Appl Polym Sci 2012. [DOI: 10.1002/app.38383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Khan MKI, Schutyser MA, Schroën K, Boom R. The potential of electrospraying for hydrophobic film coating on foods. J FOOD ENG 2012. [DOI: 10.1016/j.jfoodeng.2011.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Enayati M, Chang MW, Bragman F, Edirisinghe M, Stride E. Electrohydrodynamic preparation of particles, capsules and bubbles for biomedical engineering applications. Colloids Surf A Physicochem Eng Asp 2011. [DOI: 10.1016/j.colsurfa.2010.11.038] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Electrospraying, a Reproducible Method for Production of Polymeric Microspheres for Biomedical Applications. Polymers (Basel) 2011. [DOI: 10.3390/polym3010131] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
40
|
Park CH, Lee J. Electrosprayed polymer particles: Effect of the solvent properties. J Appl Polym Sci 2009. [DOI: 10.1002/app.30498] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Chakraborty S, Liao IC, Adler A, Leong KW. Electrohydrodynamics: A facile technique to fabricate drug delivery systems. Adv Drug Deliv Rev 2009; 61:1043-54. [PMID: 19651167 DOI: 10.1016/j.addr.2009.07.013] [Citation(s) in RCA: 308] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
Abstract
Electrospinning and electrospraying are facile electrohydrodynamic fabrication methods that can generate drug delivery systems (DDS) through a one-step process. The nanostructured fiber and particle morphologies produced by these techniques offer tunable release kinetics applicable to diverse biomedical applications. Coaxial electrospinning/electrospraying, a relatively new technique of fabricating core-shell fibers/particles have added to the versatility of these DDS by affording a near zero-order drug release kinetics, dampening of burst release, and applicability to a wider range of bioactive agents. Controllable electrospinning/spraying of fibers and particles and subsequent drug release from these chiefly polymeric vehicles depends on well-defined solution and process parameters. The additional drug delivery capability from electrospun fibers can further enhance the material's functionality in tissue engineering applications. This review discusses the state-of-the-art of using electrohydrodynamic technique to generate nanofiber/particles as drug delivery devices.
Collapse
|
42
|
Xu Y, Hanna MA. Morphological and structural properties of two-phase coaxial jet electrosprayed BSA-PLA capsules. J Microencapsul 2009; 25:469-77. [PMID: 18608807 DOI: 10.1080/02652040802049513] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Bovine serum albumin (BSA) was encapsulated with poly (lactide) (PLA) using a two-phase coaxial jet electrospray technique in which two immiscible liquids were injected separately through two concentrically located and electrified capillary needles under a sufficiently strong electric field. BSA acted as the driving liquid due to its high electrical conductivity, while the high viscosity of the PLA and low interfacial tension of the PLA and BSA solutions favoured the formation of stable cone-jets. The morphology of the particles was changed from irregular to fully spherical with smooth surfaces when the PLA concentration increased from 1 to 5%. The effects of the PLA concentration and flow rate and applied voltage on particle size were statistically significant. Particle size increased as PLA concentration increased from 2 to 3.5% and decreased as the applied voltage was increased from 15 to 19 kV. No BSA melting peak was detected in DSC plot and BSA exhibited an amorphous or disordered-crystalline state in the PLA micoparticles, while FTIR results indicated that the secondary structure of the BSA was preserved.
Collapse
Affiliation(s)
- Yixiang Xu
- Industrial Agricultural Products Center, University of Nebraska, Lincoln, NE 68583-0730, USA
| | | |
Collapse
|
43
|
Yubing Xie, Castracane J. High-voltage, electric field-driven micro/nanofabrication for polymeric drug delivery systems. ACTA ACUST UNITED AC 2009; 28:23-30. [DOI: 10.1109/memb.2008.931013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Jaworek A. Electrostatic micro- and nanoencapsulation and electroemulsification: A brief review. J Microencapsul 2008; 25:443-68. [DOI: 10.1080/02652040802049109] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|