1
|
Kamble M, Singh A, Singh SV, Upadhyay A, Kondepudi KK, Chinchkar AV. Effect of gastrointestinal resistant encapsulate matrix on spray dried microencapsulated Lacticaseibacillus rhamnosus GG powder and its characterization. Food Res Int 2024; 192:114804. [PMID: 39147504 DOI: 10.1016/j.foodres.2024.114804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
This study investigated spray drying a method for microencapsulating Lacticaseibacillus rhamnosus GG using a gastrointestinal resistant composite matrix. An encapsulate composite matrix comprising green banana flour (GBF) blended with maltodextrin (MD) and gum arabic (GA). The morphology of resulted microcapsules revealed a near-spherical shape with slight dents and no surface cracks. Encapsulation efficiency and product yield varied significantly among the spray-dried microencapsulated probiotic powder samples (SMPPs). The formulation with the highest GBF concentration (FIV) exhibited maximum post-drying L. rhamnosus GG viability (12.57 ± 0.03 CFU/g) and best survivability during simulated gastrointestinal digestion (9.37 ± 0.05 CFU/g). Additionally, glass transition temperature (Tg) analysis indicated good thermal stability of SMPPs (69.3 - 92.9 ℃), while Fourier Transform infrared (FTIR) spectroscopy confirmed the structural integrity of functional groups within microcapsules. The SMPPs characterization also revealed significant variation in moisture content, water activity, viscosity, and particle size. Moreover, SMPPs exhibited differences in total phenolic and flavonoid, along with antioxidant activity and color values throughout the study. These results suggested that increasing GBF concentration within the encapsulating matrix, while reducing the amount of other composite materials, may offer enhanced protection to L. rhamnosus GG during simulated gastrointestinal conditions, likely due to the gastrointestinal resistance properties of GBF.
Collapse
Affiliation(s)
- Meenatai Kamble
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM-K), Kundli, Sonipat, Haryana 131028, India; Department of Food Technology, Vignan's Foundation for Science, Technology and Research, Guntur, Andhra Pradesh 522213, India
| | - Anurag Singh
- Department of Food Technology, Harcourt Butler Technical University, Nawabganj, Kanpur, Uttar Pradesh 208002, India.
| | - Sukh Veer Singh
- Department of Food Technology and Management, Loyola Academy (Degree and PG College), Old Alwal, Secunderabad, Telangana 500010, India
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM-K), Kundli, Sonipat, Haryana 131028, India
| | - Kanthi Kiran Kondepudi
- Department of Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India
| | - Ajay V Chinchkar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM-K), Kundli, Sonipat, Haryana 131028, India
| |
Collapse
|
2
|
Kim H, Bang WY, Choi B, Lee HB, Yang J. A frontier approach for the production of enteric soft capsules containing omega-3 fatty acids and probiotics. CZECH JOURNAL OF FOOD SCIENCES 2024; 42:127-135. [DOI: 10.17221/181/2023-cjfs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Reyes Escogido MDL, Barrón Vilchis D, Zavala Martínez LG, Angulo Romero F. Opuntia robusta mucilage combined with alginate as encapsulation matrix for Lactiplantibacillus plantarum. CYTA - JOURNAL OF FOOD 2023. [DOI: 10.1080/19476337.2023.2168303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Daniela Barrón Vilchis
- Department of Pharmacy, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | | | - Fabiola Angulo Romero
- Department of Medicine and Nutrition, Health Sciences Division, University of Guanajuato, Leon, Mexico
| |
Collapse
|
4
|
Agriopoulou S, Tarapoulouzi M, Varzakas T, Jafari SM. Application of Encapsulation Strategies for Probiotics: From Individual Loading to Co-Encapsulation. Microorganisms 2023; 11:2896. [PMID: 38138040 PMCID: PMC10745938 DOI: 10.3390/microorganisms11122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Consumers are increasingly showing a preference for foods whose nutritional and therapeutic value has been enhanced. Probiotics are live microorganisms, and their existence is associated with a number of positive effects in humans, as there are many and well-documented studies related to gut microbiota balance, the regulation of the immune system, and the maintenance of the intestinal mucosal barrier. Hence, probiotics are widely preferred by consumers, causing an increase in the corresponding food sector. As a consequence of this preference, food industries and those involved in food production are strongly interested in the occurrence of probiotics in food, as they have proven beneficial effects on human health when they exist in appropriate quantities. Encapsulation technology is a promising technique that aims to preserve probiotics by integrating them with other materials in order to ensure and improve their effectiveness. Encapsulated probiotics also show increased stability and survival in various stages related to their processing, storage, and gastrointestinal transit. This review focuses on the applications of encapsulation technology in probiotics in sustainable food production, including controlled release mechanisms and encapsulation techniques.
Collapse
Affiliation(s)
- Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece;
| | - Maria Tarapoulouzi
- Department of Chemistry, Faculty of Pure and Applied Science, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece;
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran;
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran 14158-45371, Iran
| |
Collapse
|
5
|
Seke F, Adiamo OQ, Sultanbawa Y, Sivakumar D. In Vitro Antioxidant Activity, Bioaccessibility, and Thermal Stability of Encapsulated Strawberry Fruit ( Fragaria × ananassa) Polyphenols. Foods 2023; 12:4045. [PMID: 37959164 PMCID: PMC10647287 DOI: 10.3390/foods12214045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Bioactive compounds in red fruits, such as strawberries, are vulnerable to digestion, and encapsulation has become an alternative for their protection. This study aims at encapsulating strawberry juice (SJ) by freeze-drying with pea protein and okra mucilage (SJPO), pea protein and psyllium mucilage (SJPP), and pea protein, psyllium mucilage, and okra mucilage (SJPPO) and investigating the in vitro release. The highest encapsulation efficiency was observed in capsule SJPPO (95.38%) and the lowest efficiency in SJPO (82.45%). Scanning electron microscopy revealed an amorphous glassy structure for the structure of the strawberry microcapsules, and X-ray diffraction confirmed that observation. However, X-ray diffraction further showed that SJPPO was crystalline, indicating a tighter crosslinking density than the other microcapsules. Fourier transform infrared spectroscopy showed peaks at 3390 and 1650 cm-1, confirming the presence of polyphenols and polysaccharides in the strawberry microcapsules. Thermal stability was higher for SJPPO, and the observed thermal transitions were due to the bonds formed between the polymers and polyphenols. Pelargonidin 3-glucoside, cyanidin 3-glucoside, cyanidin, delphinidin, malvidin 3-glucoside, ellagic acid, chlorogenic acid, catechin, and kaempferol were identified in the strawberry microcapsules. Digestion affected the compounds' content; the bioaccessibility for SJ was 39.26% and 45.43% for TPC and TAC, respectively. However, encapsulation improved the bioaccessibility of both TPC (SJPP, 51.54%; SJPO, 48.52%; and SJPPO, 54.39%) and TAC (SJPP, 61.08%; SJPO, 55.03%; and SJPPO, 71.93%). Thus, encapsulating pea protein isolate, psyllium mucilage, and okra mucilage is an effective method to facilitate targeted release and preserve the biological activities of fruits.
Collapse
Affiliation(s)
- Faith Seke
- Phytochemical Food Network Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West, Pretoria 0001, South Africa;
| | - Oladipupo Q. Adiamo
- Australian Research Council Industrial Transformation Training Centre for Uniquely, Australian Foods, Queensland Alliance for Agriculture and Food Innovation, Centre for Food Science and Nutrition, The University of Queensland, Indooroopilly, QLD 4068, Australia; (O.Q.A.); (Y.S.)
| | - Yasmina Sultanbawa
- Australian Research Council Industrial Transformation Training Centre for Uniquely, Australian Foods, Queensland Alliance for Agriculture and Food Innovation, Centre for Food Science and Nutrition, The University of Queensland, Indooroopilly, QLD 4068, Australia; (O.Q.A.); (Y.S.)
| | - Dharini Sivakumar
- Phytochemical Food Network Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West, Pretoria 0001, South Africa;
- Australian Research Council Industrial Transformation Training Centre for Uniquely, Australian Foods, Queensland Alliance for Agriculture and Food Innovation, Centre for Food Science and Nutrition, The University of Queensland, Indooroopilly, QLD 4068, Australia; (O.Q.A.); (Y.S.)
| |
Collapse
|
6
|
Sionek B, Szydłowska A, Zielińska D, Neffe-Skocińska K, Kołożyn-Krajewska D. Beneficial Bacteria Isolated from Food in Relation to the Next Generation of Probiotics. Microorganisms 2023; 11:1714. [PMID: 37512887 PMCID: PMC10385805 DOI: 10.3390/microorganisms11071714] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Recently, probiotics are increasingly being used for human health. So far, only lactic acid bacteria isolated from the human gastrointestinal tract were recommended for human use as probiotics. However, more authors suggest that probiotics can be also isolated from unconventional sources, such as fermented food products of animal and plant origin. Traditional fermented products are a rich source of microorganisms, some of which may have probiotic properties. A novel category of recently isolated microorganisms with great potential of health benefits are next-generation probiotics (NGPs). In this review, general information of some "beneficial microbes", including NGPs and acetic acid bacteria, were presented as well as essential mechanisms and microbe host interactions. Many reports showed that NGP selected strains and probiotics from unconventional sources exhibit positive properties when it comes to human health (i.e., they have a positive effect on metabolic, human gastrointestinal, neurological, cardiovascular, and immune system diseases). Here we also briefly present the current regulatory framework and requirements that should be followed to introduce new microorganisms for human use. The term "probiotic" as used herein is not limited to conventional probiotics. Innovation will undoubtedly result in the isolation of potential probiotics from new sources with fascinating new health advantages and hitherto unforeseen functionalities.
Collapse
Affiliation(s)
- Barbara Sionek
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Aleksandra Szydłowska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Katarzyna Neffe-Skocińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Danuta Kołożyn-Krajewska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| |
Collapse
|
7
|
Liu S, Liu W, Yin H, Yang C, Chen J. Improving rhamnolipids production using fermentation-foam fractionation coupling system: cell immobilization and waste frying oil emulsion. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02890-5. [PMID: 37338581 DOI: 10.1007/s00449-023-02890-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
This work focused on the development of an inexpensive carbon source and the improvement of the fermentation-foam fractionation coupling system. The rhamnolipids production capacity of waste frying oil (WFO) was evaluated. The suitable bacterial cultivation of seed liquid and the addition amount of WFO was 16 h and 2% (v/v), respectively. A combined strategy of cell immobilization and oil emulsion avoid cell entrainment inside foam and improves the oil mass transfer rate. The immobilization conditions of bacterial cells into alginate-chitosan-alginate (ACA) microcapsules were optimized using the response surface method (RSM). Under the optimal conditions, rhamnolipids production using batch fermentation with immobilized strain reached 7.18 ± 0.23% g/L. WFO was emulsified into a fermentation medium using rhamnolipids as emulsifier (0.5 g/L). By monitoring dissolved oxygen, 30 mL/min was selected as a suitable air volumetric flow rate for fermentation-foam fractionation coupling operation. The total production and recovery percentage of rhamnolipids were 11.29 ± 0.36 g/L and 95.62 ± 0.38%, respectively.
Collapse
Affiliation(s)
- Siyuan Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, DingziGu, Hongqiao District, Tianjin, 300130, China
| | - Wei Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, DingziGu, Hongqiao District, Tianjin, 300130, China.
| | - Hao Yin
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, DingziGu, Hongqiao District, Tianjin, 300130, China
| | - Chunyan Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, DingziGu, Hongqiao District, Tianjin, 300130, China
| | - Jianxin Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, DingziGu, Hongqiao District, Tianjin, 300130, China
| |
Collapse
|
8
|
Microencapsulation in the chitosan-coated alginate-inulin matrix of Limosilactobacillus reuteri SW23 and Lactobacillus salivarius RBL50 and their characterization. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
9
|
Kinetics and Mechanisms of Saccharomyces boulardii Release from Optimized Whey Protein-Agavin-Alginate Beads under Simulated Gastrointestinal Conditions. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9090460. [PMID: 36135006 PMCID: PMC9495568 DOI: 10.3390/bioengineering9090460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/27/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
Encapsulation is a process in which a base material is encapsulated in a wall material that can protect it against external factors and/or improve its bioavailability. Among the different encapsulation techniques, ionic gelation stands out as being useful for thermolabile compounds. The aim of this work was to encapsulate Saccharomyces boulardii by ionic gelation using agavins (A) and whey protein (WP) as wall materials and to evaluate the morphostructural changes that occur during in vitro gastrointestinal digestion. Encapsulations at different levels of A and WP were analyzed using microscopic, spectroscopic and thermal techniques. Encapsulation efficiency and cell viability were evaluated. S. boulardii encapsulated at 5% A: 3.75% WP (AWB6) showed 88.5% cell survival after the simulated gastrointestinal digestion; the bead showed a significantly different microstructure from the controls. The mixture of A and WP increased in the survival of S. boulardii respect to those encapsulated with alginate, A or WP alone. The binary material mixture simultaneously allowed a controlled release of S. boulardii by mostly diffusive Fickian mechanisms and swelling. The cell-release time was found to control the increment of the Damköhler number when A and WP were substrates for S. boulardii, in this way allowing greater protection against gastrointestinal conditions.
Collapse
|
10
|
Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art. Int J Mol Sci 2022; 23:ijms23169035. [PMID: 36012297 PMCID: PMC9409034 DOI: 10.3390/ijms23169035] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/20/2022] Open
Abstract
Biopolymeric nanoparticulate systems hold favorable carrier properties for active delivery. The enhancement in the research interest in alginate formulations in biomedical and pharmaceutical research, owing to its biodegradable, biocompatible, and bioadhesive characteristics, reiterates its future use as an efficient drug delivery matrix. Alginates, obtained from natural sources, are the colloidal polysaccharide group, which are water-soluble, non-toxic, and non-irritant. These are linear copolymeric blocks of α-(1→4)-linked l-guluronic acid (G) and β-(1→4)-linked d-mannuronic acid (M) residues. Owing to the monosaccharide sequencing and the enzymatically governed reactions, alginates are well-known as an essential bio-polymer group for multifarious biomedical implementations. Additionally, alginate’s bio-adhesive property makes it significant in the pharmaceutical industry. Alginate has shown immense potential in wound healing and drug delivery applications to date because its gel-forming ability maintains the structural resemblance to the extracellular matrices in tissues and can be altered to perform numerous crucial functions. The initial section of this review will deliver a perception of the extraction source and alginate’s remarkable properties. Furthermore, we have aspired to discuss the current literature on alginate utilization as a biopolymeric carrier for drug delivery through numerous administration routes. Finally, the latest investigations on alginate composite utilization in wound healing are addressed.
Collapse
|
11
|
Zhang Y, Dong L, Liu L, Wu Z, Pan D, Liu L. Recent Advances of Stimuli-Responsive Polysaccharide Hydrogels in Delivery Systems: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6300-6316. [PMID: 35578738 DOI: 10.1021/acs.jafc.2c01080] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogels obtained from natural polymers have received widespread attention for their excellent biocompatible property, nontoxicity, easy gelation, and functionalization. Polysaccharides can regulate the gut microbiota and improve the intestinal microenvironment, thus exerting the healthy effect of intestinal immunity. In an active substance delivery system, the extent and speed of the substance reaching its target are highly dependent on the carrier. Thus, the smart active substance delivery systems are gradually increasing. The smart polysaccharide-hydrogels possess the ability in response to external stimuli through changing their volume phase and structure, which are applied in various fields. Natural polysaccharide-based hydrogels possess excellent characteristics of environmental friendliness, good biocompatibility, and abundant sources. According to the response type, natural polysaccharide-based hydrogels are usually divided into stimulus-responsive hydrogels, including internal response (pH, temperature, enzyme, redox) and external response (light, electricity, magnetism) hydrogels. The delivery system based on polysaccharides can exert their effects in the gastrointestinal tract. At the same time, polysaccharides may also take part in regulating the brain signals through the microbiota-gut-brain axis. Therefore, natural polysaccharide-hydrogels are considered as promising biomaterials, which can be designed as delivery systems for regulating the gut-brain axis. This article reviews the research advance of stimulus-responsive hydrogels, which focus on the types, response characteristics, and applications for polysaccharide-based smart hydrogels as delivery systems.
Collapse
Affiliation(s)
- Yunzhen Zhang
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| | - Lezhen Dong
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| | - Lingyi Liu
- University of Nebraska Lincoln, Department of Food Science & Technology, Lincoln, Nebraska 68588, United States
| | - Zufang Wu
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| | - Daodong Pan
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| | - Lianliang Liu
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| |
Collapse
|
12
|
Rodrigues F, Cedran M, Pereira G, Bicas J, Sato H. Effective encapsulation of reuterin-producing Limosilactobacillus reuteri in alginate beads prepared with different mucilages/gums. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 34:e00737. [PMID: 35686007 PMCID: PMC9171447 DOI: 10.1016/j.btre.2022.e00737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 01/07/2023]
Abstract
The mainly aim of this study was to use mucilaginous solutions obtained from tamarind, mutamba, cassia tora, psyllium and konjac powdered to encapsulate reuterin-producing Limosilactobacillus reuteri in alginate beads by extrusion technique. In the particles were determined the bacterial encapsulation efficiency, cell viability during storage and survival under simulated gastric and intestinal conditions. Moreover, the reuterin production, its entrapment into the beads and the influence on viability of encapsulated microorganism were evaluated. Scanning electron microscopy and Fourier Transform Infrared spectroscopy were employed to characterize the produced particles. The beads showed a relatively spherical shape with homogenous distribution of L. reuteri. The use of gums and mucilages combined with alginate improved the encapsulation efficiency (from 93.2 to 97.4%), the viability of encapsulated bacteria during refrigerated storage (especially in prolonged storage of 20, 30 and 60 days) and the survival after exposure to gastric and enteric environments (from 67.7 to 76.6%). The L. reuteri was able to produce reuterin via bioconversion of glycerol in the film-forming solutions, and the entrapment of the metabolite was improved using konjac, mutamba and tamarind mucilaginous solutions in the encapsulation process (45, 44.57 and 41.25%, respectively). Thus, our findings confirm the great potential of these hydrocolloids to different further purposes, enabling its application as support material for delivery of chemical or biological compounds.
Collapse
Affiliation(s)
- F.J. Rodrigues
- Food Biochemistry Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - M.F. Cedran
- Food Biotechnology Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - G.A. Pereira
- School of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém, PA, Brazil
| | - J.L. Bicas
- Food Biotechnology Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - H.H. Sato
- Food Biochemistry Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
13
|
Advances in extrusion-dripping encapsulation of probiotics and omega-3 rich oils. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Jiang T, Lu W, Fang Z, Wang H, Zhu J, Zhang H, Zhao J. Bifidobacterium Treated by Electrostatic Spray Drying Relieved Constipation by Changing the Relative Abundance of Bacteria Associated With Gastrointestinal Regulatory Peptides. Front Cell Infect Microbiol 2022; 12:894216. [PMID: 35573767 PMCID: PMC9094687 DOI: 10.3389/fcimb.2022.894216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 12/03/2022] Open
Abstract
In this study, three different microencapsulation methods were used to embed Bifidobacterium to explore the alleviating effects of embedding methods on constipated mice. By measuring the defecation-related parameters, it was found that the Bifidobacteria treated by electrostatic spray drying had the best ability to relieved constipation. Furthermore, by detecting constipation-related gastrointestinal regulatory peptides, inflammatory factors, intestinal microbiota, and SCFAs, it was discovered that Bifidobacteria treated by electrostatic spray drying changed the composition of intestinal microbiota, especially the relative abundance of bacteria that were positively correlated with AQP3, but negatively correlated with ET-1 and SS, then increased the level of AQP3 in the intestine, and finally relieved constipation by increasing the fecal water content and small intestinal propulsion rate. In conclusion, the electrostatic spray drying method was superior to the other two methods in maintaining the activity of Bifidobacteria and relieved constipation by changing the relative abundance of bacteria that were correlated with gastrointestinal regulatory peptides and increasing the content of fecal water and small intestinal propulsion rate.
Collapse
Affiliation(s)
- Tian Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Zhifeng Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
- *Correspondence: Jianxin Zhao,
| |
Collapse
|
15
|
de Souza WFC, Pereira I, de Lucena FA, Martins LP, Furtado RF, de Castro RJS, Sato HH. A new system of Erwinia sp. D12 cells immobilized in a matrix of alginate and algaroba gum (Prosopis juliflora): An efficient way to improve isomaltulose production. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Immobilization Techniques on Bioprocesses: Current Applications Regarding Enzymes, Microorganisms, and Essential Oils. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Cedran M, Rodrigues F, Sato H, Bicas J. Optimization of a water-in-oil emulsion containing Limosilactobacillus reuteri: Applicability of pequi oil as a continuous phase. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
18
|
Reuterin-producing Limosilactobacillus reuteri: Optimization of in situ reuterin production in alginate-based filmogenic solutions. Curr Res Food Sci 2021; 4:926-931. [PMID: 34927088 PMCID: PMC8646958 DOI: 10.1016/j.crfs.2021.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
Limosilactobacillus reuteri produces reuterin via glycerol anaerobic fermentation. This compound has antimicrobial properties and is used for food preservation purposes. Filmogenic solutions constituted of polysaccharides and glycerol are also employed, however, reuterin synthesis in filmogenic solutions has not yet been reported. Thus, the aim of this study was to optimize the in situ reuterin production by L. reuteri in alginate- and glycerol based-filmogenic solution, evaluating the survival of reuterin-producing bacteria during fermentation. The study consisted of a completely randomized design employing two L. reuteri strains (DSM 20016 and DSM 17938). The filmogenic solutions were obtained using sodium alginate (20 g/L) and two independent variables were studied: glycerol (0–300 mmol/L) and initial biomass of L. reuteri (≅6, 7, and 8 log CFU/mL). The samples were analyzed every 24 h for 72 h of anaerobic fermentation (37 °C). Both L.reuteri strains confirmed the potential for reuterin production and were susceptible to the metabolite produced. The highest reuterin production was achieved using L. reuteri DSM 20016. The initial microbial biomass of 8 log CFU/mL and 100 mmol/L of glycerol increased the reuterin production. However, higher conversion yields from glycerol to reuterin were obtained using 50 mmol/L of substrate. L. reuteri strains DSM 20016 and DSM 17938 produce reuterin. In situ reuterin production was detected in filmogenic solution. Reuterin production varied with initial microbial biomass and glycerol concentration.
Collapse
|
19
|
Lasta EL, da Silva Pereira Ronning E, Dekker RFH, da Cunha MAA. Encapsulation and dispersion of Lactobacillus acidophilus in a chocolate coating as a strategy for maintaining cell viability in cereal bars. Sci Rep 2021; 11:20550. [PMID: 34654845 PMCID: PMC8519969 DOI: 10.1038/s41598-021-00077-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Flour from Pereskia aculeata leaf and green banana were used as ingredients in the formulation of a cereal bar with added Lactobacillus acidophilus LA02-ID-1688. Encapsulation in a calcium-alginate hydrogel reinforced with magnesium hydroxide was used as a strategy to protect the probiotic cells under gastrointestinal conditions and to prolong shelf-life. The results are relevant especially for maintaining cell viability during shelf-life; a challenge for the food industry in relation to dry probiotic products. Encapsulation promoted the protection of probiotic cells in simulated gastric and intestinal conditions, allowing the maintenance of high viable cell counts (> 10 log CFU, colony forming unit). Encapsulation also contributed to cellular protection under extreme temperature conditions, with reductions of cell viability of < 1 logarithmic cycle when the capsules were subjected to 55ºC/10 min. Even at 75ºC/10 min, encapsulation protected the probiotic cells 3-times greater than the free-cells. The food bar proved to be rich in dietary fiber (19 g 100 g-1), lipids (12.63 g 100 g-1) and showed an appreciable protein content (5.44 g 100 g-1). A high viable probiotic cell count on storage over 120 days (12.54 log CFU) was observed, maintaining a probiotic survival rate > 90% and viability levels sufficient to promote health benefits.
Collapse
Affiliation(s)
- Everton Luiz Lasta
- Programa de Pós-Graduação em Tecnologia de Processos Químicos e Bioquímicos, Universidade Tecnológica Federal do Paraná, Via do Conhecimento Km 01, Pato Branco, Paraná, CEP 85503-390, Brazil
| | - Eduardo da Silva Pereira Ronning
- Departamento de Química, Universidade Tecnológica Federal do Paraná, Via do Conhecimento Km 01, Pato Branco, Paraná, CEP 85503-390, Brazil
- Grupo de Pesquisa em Tecnologia de Bioprocessos e Alimentos (GTBio), Universidade Tecnológica Federal do Paraná, Via do Conhecimento Km 01, Pato Branco, Paraná, CEP 85503-390, Brazil
| | - Robert F H Dekker
- Grupo de Pesquisa em Tecnologia de Bioprocessos e Alimentos (GTBio), Universidade Tecnológica Federal do Paraná, Via do Conhecimento Km 01, Pato Branco, Paraná, CEP 85503-390, Brazil
- Beta-Glucan Produtos Farmoquímicos EIRELI, Lote 24A, Bloco Zircônia, Universidade Tecnológica Federal do Paraná, Câmpus Londrina, Avenida João Miguel Caram 731, Londrina, Paraná, CEP 86036-700, Brazil
| | - Mário Antônio Alves da Cunha
- Departamento de Química, Universidade Tecnológica Federal do Paraná, Via do Conhecimento Km 01, Pato Branco, Paraná, CEP 85503-390, Brazil.
- Grupo de Pesquisa em Tecnologia de Bioprocessos e Alimentos (GTBio), Universidade Tecnológica Federal do Paraná, Via do Conhecimento Km 01, Pato Branco, Paraná, CEP 85503-390, Brazil.
| |
Collapse
|
20
|
Machado CCDS, Fernandes MTC, Mauro CSI, Farinazzo FS, Prudencio SH, Garcia S. Probiotic Juçara and Banana Sorbet: Cell Viability, Antioxidant Activity during Storage and Sensory Acceptability by Children. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2021. [DOI: 10.1080/15428052.2020.1787287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | | | - Carolina Saori Ishii Mauro
- Department of Food Science and Technology, Center of Agricultural Sciences, Londrina State University, Londrina, Brazil
| | - Fernanda Silva Farinazzo
- Department of Food Science and Technology, Center of Agricultural Sciences, Londrina State University, Londrina, Brazil
| | - Sandra Helena Prudencio
- Department of Food Science and Technology, Center of Agricultural Sciences, Londrina State University, Londrina, Brazil
| | - Sandra Garcia
- Department of Food Science and Technology, Center of Agricultural Sciences, Londrina State University, Londrina, Brazil
| |
Collapse
|
21
|
Okra ( Abelmoschus esculentus L.) as a Potential Functional Food Source of Mucilage and Bioactive Compounds with Technological Applications and Health Benefits. PLANTS 2021; 10:plants10081683. [PMID: 34451728 PMCID: PMC8399980 DOI: 10.3390/plants10081683] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022]
Abstract
Abelmoschus esculentus has fruit popularly known as okra and belongs to the Malvaceae family. It is commonly used in cooking but also in traditional medicine in the treatment of worms, dysentery, inflammation, and also irritation of the stomach, intestines, and kidneys, as it is a potential functional food. Its mucilage is a highly viscous polysaccharide that is mostly composed of monosaccharides D-galactose, L-rhamnose, and galacturonic acid, as well as proteins and minerals. The functional properties of okra mucilage have been widely studied, mainly for its potential antidiabetic activity; thus, its use as adjuvant or nutraceutical therapy for diabetes is very promising. Due to its rheological properties, it is a potential resource for pharmaceutical and food applications. Okra mucilage can be extracted by several methods, which can directly influence its physicochemical characteristics and biological activity. Features such as low cost, non-toxicity, biocompatibility, and high availability in nature arouse the interest of researchers for the study of okra mucilage. The survey of research on the applications of okra mucilage highlights the importance of using this promising source of bioactive compounds with interesting technological properties. The potential of okra as a functional food, the properties of okra mucilage, and its technological applications are discussed in this review.
Collapse
|
22
|
Nasiri H, Golestan L, Shahidi SA, Darjani P. Encapsulation of Lactobacillus casei in sodium alginate microcapsules: improvement of the bacterial viability under simulated gastrointestinal conditions using wild sage seed mucilage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01022-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Wouk J, Dekker RFH, Queiroz EAIF, Barbosa-Dekker AM. β-Glucans as a panacea for a healthy heart? Their roles in preventing and treating cardiovascular diseases. Int J Biol Macromol 2021; 177:176-203. [PMID: 33609583 DOI: 10.1016/j.ijbiomac.2021.02.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Factors increasing the risks for CVD development are related to obesity, diabetes, high blood cholesterol, high blood pressure and lifestyle. CVD risk factors may be treated with appropriate drugs, but prolonged can use cause undesirable side-effects. Among the natural products used in complementary and alternative medicines, are the β-ᴅ-glucans; biopolymers found in foods (cereals, mushrooms), and can easily be produced by microbial fermentation. Independent of source, β-glucans of the mixed-linked types [(1 → 3)(1 → 6)-β-ᴅ-glucans - fungal, and (1 → 3)(1 → 4)-β-ᴅ-glucans - cereal] have widely been studied because of their biological activities, and have demonstrated cardiovascular protective effects. In this review, we discuss the roles of β-ᴅ-glucans in various pathophysiological conditions that lead to CVDs including obesity, dyslipidemia, hyperglycemia, oxidative stress, hypertension, atherosclerosis and stroke. The β-glucans from all of the sources cited demonstrated potential hypoglycemic, hypocholesterolemic and anti-obesogenicity activities, reduced hypertension and ameliorated the atherosclerosis condition. More recently, β-glucans are recognized as possessing prebiotic properties that modulate the gut microbiome and impact on the health benefits including cardiovascular. Overall, all the studies investigated unequivocally demonstrated the dietary benefits of consuming β-glucans regardless of source, thus constituting a promising panaceutical approach to reduce CVD risk factors.
Collapse
Affiliation(s)
- Jéssica Wouk
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual do Centro-Oeste, Campus CEDETEG, CEP: 85040-167, Guarapuava, Paraná, Brazil
| | - Robert F H Dekker
- Universidade Tecnológica Federal do Paraná, Programa de Pós-Graduação em Engenharia Ambiental, Câmpus Londrina, CEP: 86036-370 Londrina, Paraná, Brazil; Beta-Glucan Produtos Farmoquímicos - EIRELI, Avenida João Miguel Caram 731, Lote 24(A), Bloco Zircônia, Universidade Tecnológica Federal do Paraná, CEP: 86036-700 Londrina, Paraná, Brazil.
| | - Eveline A I F Queiroz
- Núcleo de Pesquisa e Apoio Didático em Saúde, Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78.557-267 Sinop, Mato Grosso, Brazil
| | - Aneli M Barbosa-Dekker
- Beta-Glucan Produtos Farmoquímicos - EIRELI, Avenida João Miguel Caram 731, Lote 24(A), Bloco Zircônia, Universidade Tecnológica Federal do Paraná, CEP: 86036-700 Londrina, Paraná, Brazil
| |
Collapse
|
24
|
Carvalho PH, Kawaguti HY, de Souza WFC, Sato HH. Immobilization of Serratia plymuthica by ionic gelation and cross-linking with transglutaminase for the conversion of sucrose into isomaltulose. Bioprocess Biosyst Eng 2021; 44:1109-1118. [PMID: 33547961 DOI: 10.1007/s00449-021-02513-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/11/2021] [Indexed: 11/29/2022]
Abstract
Isomaltulose is an alternative sugar obtained from sucrose using some bacteria producing glycosyltransferase. This work aimed to optimize conditions for the immobilization of Serratia plymuthica through ionic gelation and cross-linking by transglutaminase using the sequential experimental strategy for the conversion of sucrose into isomaltulose. The effect of five variables (concentrations of cell mass, alginate, gelatin, transglutaminase, and calcium chloride) was studied, as well as the interactions between them on the matrix composition for the S. plymuthica immobilization. Three experimental designs were used to optimize the concentrations of each variable to obtain higher concentration of isomaltulose. A high conversion of sucrose into isomaltulose (71.04%) was obtained by the cells immobilized in a matrix composed of alginate (1.7%), CaCl2 (0.25 mol/L), gelatin (0.5%), transglutaminase (3.5%) and cell mass (33.5%). As a result, the transglutaminase application as a cross-linking agent improved the immobilization of Serratia plymuthica cells and the conversion of sucrose into isomaltulose.
Collapse
Affiliation(s)
- Priscila Hoffmann Carvalho
- School of Food Engineering, University of Campinas, 80 Monteiro Lobato St. Campinas, São Paulo, 13083-862, Brazil
| | - Haroldo Yukio Kawaguti
- Center of Biological and Health Sciences, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Hélia Harumi Sato
- School of Food Engineering, University of Campinas, 80 Monteiro Lobato St. Campinas, São Paulo, 13083-862, Brazil
| |
Collapse
|
25
|
Waghmare R, R P, Moses JA, Anandharamakrishnan C. Mucilages: sources, extraction methods, and characteristics for their use as encapsulation agents. Crit Rev Food Sci Nutr 2021; 62:4186-4207. [PMID: 33480265 DOI: 10.1080/10408398.2021.1873730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The increasing interest in the use of natural ingredients has driven keen research and commercial interest in the use of mucilages for a range of applications. Typically, mucilages are polysaccharide hydrocolloids with distinct physicochemical and structural diversity, possessing characteristic functional and health benefits. Apart from their role as binding, thickening, stabilizing, and humidifying agents, they are valued for their antimicrobial, antihypertensive, antioxidant, antiasthmatic, hypoglycemic, and hypolipidemic activities. The focus of this review is to present the range of mucilages that have been explored as encapsulating agents. Encapsulation of food ingredients, nutraceutical, and pharmaceutical ingredients is an attractive technique to enhance the stability of targeted compounds, apart from providing benefits on delivery characteristics. The most widely adopted conventional and emerging extraction and purification methods are explained and supplemented with information on the key criteria involved in characterizing the physicochemical and functional properties of mucilages. The unique traits and benefits of using mucilages as encapsulation agents are detailed with the different methods used by researchers to encapsulate different food and bioactive compounds.
Collapse
Affiliation(s)
- Roji Waghmare
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - Preethi R
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| |
Collapse
|
26
|
Lai K, How Y, Pui L. Microencapsulation of Lactobacillus rhamnosus GG with flaxseed mucilage using co-extrusion technique. J Microencapsul 2020; 38:134-148. [PMID: 33306440 DOI: 10.1080/02652048.2020.1863490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIM This study aimed to evaluate the protective effect of flaxseed mucilage on the co-extrusion microencapsulation of Lactobacillus rhamnosus GG. METHODS Core flow rate, chitosan coating, and flaxseed mucilage concentration were optimised for the microencapsulation of L. rhamnosus. The microbeads were characterised and evaluated on microencapsulation efficiency and cell released after 6 h of sequential digestion. RESULTS The optimised parameters for the L. rhamnosus microencapsulation were 1.0 mL/min core flow rate, 0.4% (w/v) chitosan coating, and 0.4% (w/v) flaxseed mucilage. The L. rhamnosus microbeads with flaxseed mucilage in core and wall materials had a smooth surface with 781.3 µm diameter, the highest microencapsulation efficiency (98.8% w/w), lowest swelling (5196.7% w/w) and erosion ratio (515.5% w/w), and least cell release (<40% w/w) with 9.31 log10 CFU mL-1 after sequential digestion. CONCLUSIONS This study showed the protective capacity of flaxseed mucilage towards the L. rhamnosus GG during microencapsulation and gastrointestinal environment.
Collapse
Affiliation(s)
- Kawai Lai
- Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Yuhsuan How
- Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Liewphing Pui
- Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Encapsulation of Bifidobacterium BB12® in alginate-jaboticaba peel blend increases encapsulation efficiency and bacterial survival under adverse conditions. Appl Microbiol Biotechnol 2020; 105:119-127. [PMID: 33245392 DOI: 10.1007/s00253-020-11025-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/08/2020] [Accepted: 11/16/2020] [Indexed: 01/17/2023]
Abstract
Most foods with probiotics claims are associated to dairy products, whose consumption is restricted to part of the population, creating a favorable scenario for the development of probiotic foods in alternative matrices. However, the development of probiotic foods in non-dairy matrices is still a technological challenge, since the foods intrinsic parameters can cause injuries to microorganisms. An alternative to protect the microbial cells in adverse environments involves encapsulation. Therefore, the objective of this study was to evaluate the influence of alginate-jaboticaba peel blend in the improvement of encapsulation efficiency, viability maintenance, and cell survival of Bifidobacterium BB12® under simulated gastrointestinal digestion and after incorporating in traditional jaboticaba jam. The particles were obtained by ion gelling technique using alginate with or without powdered jaboticaba peel. The addition of jaboticaba peel in particles improved encapsulation efficiency (> 90%) and resulted in higher cell survival in simulated gastrointestinal digestion. During storage in jam, the loss in cell viability was approximately constant: c.a. 0.5 log CFU/g/day for encapsulated cells and c.a. 1.0 log CFU/g/day for free cells. These results suggest that use of alginate and powdered jaboticaba peel blend is a promising approach to protect Bifidobacterium BB12® against adverse environments, such as non-dairy food matrices. KEY POINTS: • Powdered jaboticaba peel increased the encapsulation efficiency in alginate particles. • Encapsulation improved cell survival under adverse conditions. • Useful approach for the development of non-conventional probiotic products. Graphical abstract.
Collapse
|
28
|
Ying D, Wang Z, Zheng Y, Cai J, Zhang L. Insight into Morphology Change of Chitin Microspheres using Tertiary Butyl Alcohol/H 2 O Binary System Freeze-Drying Method. Macromol Rapid Commun 2020; 42:e2000502. [PMID: 33205586 DOI: 10.1002/marc.202000502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/02/2020] [Indexed: 11/07/2022]
Abstract
The morphology of materials usually plays a significant role in their applications; the mechanical properties of the materials and characteristics such as specific surface area, surface energy, adsorbability, and wettability are dependent on the morphology. This study is focused on studying the effects of different tertiary butyl alcohol (TBA) aqueous solutions on the freeze-dried morphologies of chitin microspheres (CMs). By constructing a TBA/H2 O phase diagram, the underlying mechanisms of morphology change are explored. It is found that by freeze drying the CMs with 20 and 100 wt% TBA, a fine nanofiber weaved pore structure can be obtained. Away from these two ratios, the nanofibers are oppressed by the large crystals formed during the precool process or bind together due to the existence of water in the secondary drying stage, poor morphology and pore characteristics appearing. Moreover, the 20 wt% TBA freeze-drying route is conducive to split the CMs and other polysaccharide (PS) microspheres. The split method is also helpful for exploring the internal structure of the microspheres. Therefore, this study makes it possible to simplify the morphology control of CMs, which helps in the characterization of porous PS-based microspheres.
Collapse
Affiliation(s)
- Daofa Ying
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan, 430072, China
| | - Zhenggang Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 St & 85 Ave, AB T6G 2R3, Alberta, Canada
| | - Yiran Zheng
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan, 430072, China
| | - Jie Cai
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan, 430072, China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
29
|
Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications – A narrative review. Food Res Int 2020; 137:109682. [DOI: 10.1016/j.foodres.2020.109682] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/04/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
|
30
|
Azam M, Saeed M, Pasha I, Shahid M. A prebiotic-based biopolymeric encapsulation system for improved survival of Lactobacillus rhamnosus. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100679] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
31
|
Liu H, Xie M, Nie S. Recent trends and applications of polysaccharides for microencapsulation of probiotics. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.11] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Huan Liu
- State Key Laboratory of Food Science and Technology China–Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology China–Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology China–Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| |
Collapse
|
32
|
Encapsulation of Lactobacillus casei in alginate microcapsules: improvement of the bacterial viability under simulated gastrointestinal conditions using flaxseed mucilage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00437-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Terpou A, Papadaki A, Lappa IK, Kachrimanidou V, Bosnea LA, Kopsahelis N. Probiotics in Food Systems: Significance and Emerging Strategies Towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients 2019; 11:E1591. [PMID: 31337060 PMCID: PMC6683253 DOI: 10.3390/nu11071591] [Citation(s) in RCA: 349] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/02/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022] Open
Abstract
Preserving the efficacy of probiotic bacteria exhibits paramount challenges that need to be addressed during the development of functional food products. Several factors have been claimed to be responsible for reducing the viability of probiotics including matrix acidity, level of oxygen in products, presence of other lactic acid bacteria, and sensitivity to metabolites produced by other competing bacteria. Several approaches are undertaken to improve and sustain microbial cell viability, like strain selection, immobilization technologies, synbiotics development etc. Among them, cell immobilization in various carriers, including composite carrier matrix systems has recently attracted interest targeting to protect probiotics from different types of environmental stress (e.g., pH and heat treatments). Likewise, to successfully deliver the probiotics in the large intestine, cells must survive food processing and storage, and withstand the stress conditions encountered in the upper gastrointestinal tract. Hence, the appropriate selection of probiotics and their effective delivery remains a technological challenge with special focus on sustaining the viability of the probiotic culture in the formulated product. Development of synbiotic combinations exhibits another approach of functional food to stimulate the growth of probiotics. The aim of the current review is to summarize the strategies and the novel techniques adopted to enhance the viability of probiotics.
Collapse
Affiliation(s)
- Antonia Terpou
- Food Biotechnology Group, Department of Chemistry, University of Patras, GR-26500 Patras, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Iliada K Lappa
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Vasiliki Kachrimanidou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Loulouda A Bosnea
- Hellenic Agricultural Organization DEMETER, Institute of Technology of Agricultural Products, Dairy Department, Katsikas, 45221 Ioannina, Greece.
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece.
| |
Collapse
|
34
|
Cai D, Harrison NA, Kling DN, Gonzalez CF, Lorca GL. Blueberries as an additive to increase the survival of Lactobacillus johnsonii N6.2 to lyophilisation. Benef Microbes 2019; 10:473-482. [PMID: 30931589 DOI: 10.3920/bm2018.0144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Effective cultivation methods, total cost, and biomass preservation are key factors that have a significant impact on the commercialisation and effectiveness of probiotics, such as Lactobacillus. Sugar polymers, milk and whey proteins have been suggested as good additives for industrial preparations. Alternative compounds, such as phytophenols, are a more attractive option, given their potential benefits to human health. The overall goal of this study was to determine if the addition of blueberry phytophenols improves the survival of Lactobacillus johnsonii N6.2 during the freeze-drying process. The addition of blueberry aqueous extract (BAE) stimulated the growth of L. johnsonii under aerobic conditions and improved the stationary phase survival of the bacteria. Furthermore, the addition of BAE to the culture media improved the endurance of L. johnsonii N6.2 to freeze-drying stress, as well as to storage at 4 °C for up to 21 weeks. Moreover, blueberry extract performed more effectively as a lyophilising additive compared to skim milk and microencapsulation with whey protein/sodium alginate. In sum, this study demonstrates that BAE is an effective additive to increase the growth and survival of L. johnsonii N6.2 when added to the culture medium and/or used as a lyophilising preservative. Moreover, BAE or other polyphenols sources might likely enhance growth and increase survival of more probiotic lactic acid bacterial strains.
Collapse
Affiliation(s)
- D Cai
- 1 Department of Microbiology and Cell Science, Genetics Institute, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL 32610, USA
| | - N A Harrison
- 1 Department of Microbiology and Cell Science, Genetics Institute, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL 32610, USA
| | - D N Kling
- 1 Department of Microbiology and Cell Science, Genetics Institute, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL 32610, USA
| | - C F Gonzalez
- 1 Department of Microbiology and Cell Science, Genetics Institute, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL 32610, USA
| | - G L Lorca
- 1 Department of Microbiology and Cell Science, Genetics Institute, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
35
|
Dekker RFH, Queiroz EAIF, Cunha MAA, Barbosa-Dekker AM. Botryosphaeran – A Fungal Exopolysaccharide of the (1→3)(1→6)-β-D-Glucan Kind: Structure and Biological Functions. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Rodrigues FJ, Cedran MF, Garcia S. Influence of Linseed Mucilage Incorporated into an Alginate-Base Edible Coating Containing Probiotic Bacteria on Shelf-Life of Fresh-Cut Yacon (Smallanthus sonchifolius). FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2128-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|