1
|
Zhang Y, Song J, Wu C, Deng G. Lutein-loaded lotus root starch nanoparticles: Preparation, release, and in vitro anti-inflammatory activity. Int J Biol Macromol 2025; 304:140785. [PMID: 39924030 DOI: 10.1016/j.ijbiomac.2025.140785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
The study aimed to construct an effective composite of lutein-loaded lotus root starch nanoparticles (LUT-LRSNPs) and evaluate its in vitro anti-inflammatory activity. LUT-LRSNPs were prepared via the antisolvent nanoprecipitation method and characterized by infrared spectroscopy, X-ray diffraction, and iodine complexation. The result confirmed that lutein was successfully encapsulated in LRSNPs with an encapsulation efficiency up to 84.6 %. Lutein combined with LRSNPs through hydrogen bonding and hydrophobic interaction to form a stable composite, which enhanced the photothermal stability of lutein and realized its controlled release. The cumulative release of lutein in simulated intestinal fluid reached 86.5 %. An inflammatory model was established by stimulating Caco-2 cells with lipopolysaccharide. LUT-LRSNPs significantly decreased the intensity of ROS, inhibited the secretion of TLR4 and the phosphorylation of p38, thus reducing the activation of the NF-κB pathway. It also reduced NO content, IL-1β, IL-6, and TNF-α secretion, as well as the corresponding mRNA expressions in a concentration-dependent manner, with the effect significantly superior to lutein. The prevention group generally exhibited better inhibitory effect than that of the treatment group. In conclusion, LUT-LRSNPs emphasized the enhanced anti-inflammatory effects of lutein and could constitute an alternative for preventing or alleviating related inflammations.
Collapse
Affiliation(s)
- Yan Zhang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jiangfeng Song
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guozhe Deng
- Jiangsu Food & Pharmaceutical Science College, Huaian 223003, China
| |
Collapse
|
2
|
Nadeem M, Majid H, Ansari MD, Ahmad FJ, Parvez S, Akhtar M, Ahmad S, Najmi AK. Development and Optimization of Piracetam and Shatavarin IV-Loaded Nanoemulsion for Alzheimer's Disease Therapy: In Silico and Experimental Analysis. ACS OMEGA 2025; 10:9132-9153. [PMID: 40092812 PMCID: PMC11904661 DOI: 10.1021/acsomega.4c09072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
Alzheimer's disease (AD) presents a significant challenge due to cognitive decline resulting from nerve cell degeneration. Shatavarin IV, a prominent bioactive compound fromAsparagus racemosus and Piracetam, has been investigated for its neuroprotective potential. This study examines the molecular docking, formulation, and characterization of a nanoemulsion containing Piracetam and Shatavarin IV for treating AD. The in silico study demonstrated that Shatavarin IV exhibited strong binding affinities with multiple AD-related targets, including TNF-α (-7.29 kcal/mol), the GSK-3 axin complex (-9.6785 kcal/mol), amyloid-β (-6.8326 kcal/mol), and GSK-3 β (-8.8243 kcal/mol). The extraction of Shatavarin IV from Asparagus racemosus roots yielded 401.1 ± 2.3 mg with a purity of 66%, as confirmed by HPTLC. A combination index study revealed a synergistic effect with a CI value of 0.10843 at a 1:1 ratio of Piracetam and Shatavarin IV. The nanoemulsion was optimized using a Box-Behnken design, with oil concentration, surfactant mixture (S mix), and sonication time as key factors. The optimized formulation exhibited a particle size of 183.6 nm and a PDI of 0.194. Characterization techniques, including TEM and DSC, confirmed the uniformity, stability, and incorporation of the drugs in the nanoemulsion. The in vitro drug release study revealed a significantly higher release profile (84.30 ± 1.03% in 24 h) for the nanoemulsion than the drug suspension. Ex vivo studies demonstrated a superior permeability rate for the nanoemulsion (56.35 ± 1.19%) compared to the conventional suspension. Additionally, the nanoemulsion showed enhanced antioxidant activity compared with the pure extract. Stability studies indicated that the formulation remained stable with only minor changes in particle size, PDI, and zeta potential over time. This nanoemulsion presents a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Mohd Nadeem
- Department
of Pharmacology. School of Pharmaceutical Education and Research. Jamia Hamdard, New Delhi 110062, India
| | - Haya Majid
- Department
of Translational and Clinical Research, School of Chemical and Life
Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Danish Ansari
- Department
of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala
Lumpur 50603, Malaysia
| | - Farhan Jalees Ahmad
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Suhel Parvez
- Department
of Medical Elementology and Toxicology, School of Chemical and Life
Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Akhtar
- Department
of Pharmacology. School of Pharmaceutical Education and Research. Jamia Hamdard, New Delhi 110062, India
| | - Sayeed Ahmad
- Department
of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education
and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abul Kalam Najmi
- Department
of Pharmacology. School of Pharmaceutical Education and Research. Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
3
|
Han M, Liu K, Liu X, Rashid MT, Zhang H, Wang M. Research Progress of Protein-Based Bioactive Substance Nanoparticles. Foods 2023; 12:2999. [PMID: 37627998 PMCID: PMC10453113 DOI: 10.3390/foods12162999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Bioactive substances exhibit various physiological activities-such as antimicrobial, antioxidant, and anticancer activities-and have great potential for application in food, pharmaceuticals, and nutraceuticals. However, the low solubility, chemical instability, and low bioavailability of bioactive substances limit their application in the food industry. Using nanotechnology to prepare protein nanoparticles to encapsulate and deliver active substances is a promising approach due to the abundance, biocompatibility, and biodegradability of proteins. Common protein-based nanocarriers include nano-emulsions, nano-gels, nanoparticles, and nano complexes. In this review, we give an overview of protein-based nanoparticle fabrication methods, highlighting their pros and cons. Additionally, we discuss the applications and current issues regarding the utilization of protein-based nanoparticles in the food industry. Finally, we provide perspectives on future development directions, with a focus on classifying bioactive substances and their functional properties.
Collapse
Affiliation(s)
- Mengqing Han
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Xin Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Muhammad Tayyab Rashid
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Huiyan Zhang
- Zhengzhou Ruipu Biological Engineering Co., Ltd., Zhengzhou 450001, China;
| | - Meiyue Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
| |
Collapse
|
4
|
Mirzaeei S, Tahmasebi N, Islambulchilar Z. Optimization of a Self-microemulsifying Drug Delivery System for Oral Administration of the Lipophilic Drug, Resveratrol: Enhanced Intestinal Permeability in Rat. Adv Pharm Bull 2023; 13:521-531. [PMID: 37646050 PMCID: PMC10460816 DOI: 10.34172/apb.2023.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/12/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Purpose This study aimed to formulate Resveratrol, a practically water-insoluble antioxidant in a self-microemulsifying drug delivery system (SMEDDS) to improve the solubility, release rate, and intestinal permeability of the drug. Methods The suitable oil, surfactant, and co-surfactant were chosen according to the drug solubility study. Utilizing the design of experiment (DoE) method, the pseudo-ternary phase diagram was plotted based on the droplet size. In vitro dissolution study and the single-pass intestinal perfusion were performed for the investigation of in vitro and in-situ permeability for drugs formulated as SMEDDS in rat intestine using High-Performance Liquid Chromatography. Results Castor oil, Cremophor® RH60, and PEG 1500 were selected as oil, surfactant, and co-surfactant. According to the pseudo-ternary phase diagram, nine formulations developed microemulsions with sizes ranging between 145-967 nm. Formulations passed the centrifuge and freeze-thaw stability tests. The optimum formulation possessed an almost 2.5-fold higher cumulative percentage of in vitro released resveratrol, in comparison to resveratrol aqueous suspension within 120 minutes. The results of the in-situ permeability study suggested a 2.6-fold higher intestinal permeability for optimum formulation than that of the resveratrol suspension. Conclusion SMEDDS can be considered suitable for the oral delivery of resveratrol according to the observed increased intestinal permeability, which could consequently enhance the bioavailability and therapeutic efficacy of the drug.
Collapse
Affiliation(s)
- Shahla Mirzaeei
- Nano Drug Delivery Research Centre, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Centre, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negar Tahmasebi
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ziba Islambulchilar
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Wang Y, Zhang X, Yan M, Zhao Q. Enhancing the stability of lutein emulsions with a water-soluble antioxidant and a oil-soluble antioxidant. Heliyon 2023; 9:e15459. [PMID: 37113795 PMCID: PMC10126903 DOI: 10.1016/j.heliyon.2023.e15459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Lutein is critical for protecting the eye against light damage. The low solubility and high sensitivity of lutein to environmental stresses prevent its further application. The hypothesis is that the combination of one water-soluble antioxidant and one oil-soluble antioxidant will be beneficial to improve the stability of lutein emulsions. A low-energy method was performed to prepare lutein emulsions. The combination of a lipid-soluble antioxidant (propyl gallate or ethylenediaminetetraacetic acid) and a water-soluble antioxidant (tea polyphenol or ascobic acid) were investigated for improving the lutein retention rates. It was shown that the highest lutein retention rate was achieved by using propyl gallate and tea polyphenol, 92.57%, at Day 7. It was proven that the lutein retention rates of emulsions with propyl gallate and tea polyphenol were 89.8%, 73.5% and 55.2% at 4 °C, 25 °C and 37 °C, respectively, at Day 28. The current study is helpful to prepare for the further application of lutein emulsions for ocular delivery.
Collapse
|
6
|
Saini A, Panesar PS, Dilbaghi N, Prasad M, Bera MB. Lutein extract loaded nanoemulsions: Preparation, characterization, and application in dairy product. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Anuradha Saini
- Department of Food Engineering & Technology Sant Longowal Institute of Engineering and Technology Longowal Punjab India
- Amity Institute of Biotechnology Amity University Rajasthan Jaipur India
| | - Parmjit Singh Panesar
- Department of Food Engineering & Technology Sant Longowal Institute of Engineering and Technology Longowal Punjab India
| | - Neeraj Dilbaghi
- Department of Bio & Nano Technology Guru Jambheshwar University of Science & Technology Haryana India
| | - Minakshi Prasad
- Department of Animal Biotechnology Lala Lajpat Rai University of Veterinary and Animal Sciences Hisar India
| | - Manab Bandhu Bera
- Department of Food Engineering & Technology Sant Longowal Institute of Engineering and Technology Longowal Punjab India
| |
Collapse
|
7
|
Sani MA, Tavassoli M, Azizi-Lalabadi M, Mohammadi K, McClements DJ. Nano-enabled plant-based colloidal delivery systems for bioactive agents in foods: Design, formulation, and application. Adv Colloid Interface Sci 2022; 305:102709. [PMID: 35640316 DOI: 10.1016/j.cis.2022.102709] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/21/2022]
Abstract
Consumers are becoming increasingly aware of the impact of their dietary choices on the environment, animal welfare, and health, which is causing many of them to adopt more plant-based diets. For this reason, many sectors of the food industry are reformulating their products to contain more plant-based ingredients. This article describes recent research on the formation and application of nano-enabled colloidal delivery systems formulated from plant-based ingredients, such as polysaccharides, proteins, lipids, and phospholipids. These delivery systems include nanoemulsions, solid lipid nanoparticles, nanoliposomes, nanophytosomes, and biopolymer nanoparticles. The composition, size, structure, and charge of the particles in these delivery systems can be manipulated to create novel or improved functionalities, such as improved robustness, higher optical clarity, controlled release, and increased bioavailability. There have been major advances in the design, assembly, and application of plant-based edible nanoparticles within the food industry over the past decade or so. As a result, there are now a wide range of different options available for creating delivery systems for specific applications. In the future, it will be important to establish whether these formulations can be produced using economically viable methods and provide the desired functionality in real-life applications.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Tavassoli
- Student's Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyhan Mohammadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
8
|
Xu Y, Song J, Dai Z, Niu L, Dajing L, Wu C. Study on physicochemical characteristics of lutein nanoemulsions stabilized by chickpea protein isolate-stevioside complex. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1872-1882. [PMID: 34498276 DOI: 10.1002/jsfa.11524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Chickpea protein isolate (CPI) originating from chickpeas has the advantages of facilitating the stability of food emulsions. Stevioside (STE) exhibits a notable surface activity and can improve the water solubility of numerous hydrophobic nutrients. STE and protein mixtures show great potential as emulsions stabilizers. The present study aimed to prepare a novel nanoemulsion for encapsulating lutein (LUT) by ultrasonic homogenization using chickpea protein isolate-stevioside complex (CPI-STE) as a stabilizer and also to investigate the physicochemical characteristics. RESULTS The results obtained showed that different preparation conditions demonstrated significant influences on the physicochemical properties of CPI-STE-LUT nanoemulsions. Under the optimal condition, the average particle size of CPI-STE-LUT nanoemulsions was 195.1 nm, and the emulsifying and encapsulation efficiencies of lutein were 91.04% and 87.56%, respectively. CPI-STE-LUT nanoemulsions stabilized by CPI-STE could significantly increase the emulsifying and encapsulation efficiencies of lutein compared to that stabilized by CPI. Fourier transform infrared spectroscopy revealed that hydrogen bond was the main binding force of CPI and lutein, and there was a covalent bond between the two molecules. Furthermore, the stability of CPI-STE-LUT nanoemulsions in gastrointestinal phase was higher than that of CPI-LUT nanoemulsions, which could load lutein more effectively and be more resistant to digestive enzymes. CONCLUSION The present study reports the physicochemical characterization of CPI-STE-LUT nanoemulsions for the first time. CPI-STE-LUT nanoemulsions were characterized by a small average particle size lower than 200 nm, as well as high emulsifying and encapsulation efficiencies, and good stability. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yayuan Xu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jiangfeng Song
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhuqing Dai
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liying Niu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Li Dajing
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Caie Wu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
9
|
Mehrandish S, Mirzaeei S. Design of Novel Nanoemulsion Formulations for Topical Ocular Delivery of Itraconazole: Development, Characterization and In Vitro Bioassay. Adv Pharm Bull 2022; 12:93-101. [PMID: 35517876 PMCID: PMC9012932 DOI: 10.34172/apb.2022.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/09/2020] [Accepted: 02/05/2021] [Indexed: 01/22/2023] Open
Abstract
Purpose: The objective of this study was to design and develop nanoemulsion formulations of Itraconazole (ITZ), a water-insoluble, potent antifungal drug using the spontaneous emulsification method, to improve the ocular delivery and achieve a sustained release of the drug. Methods: The oil was selected on the basis of the ITZ solubility while the surfactant and co-surfactant were selected based on the thermodynamic stability and globule size. Following the selection of components, a pseudo-ternary phase diagram was constructed for the most promising formulation (F11) using benzyl benzoate (BB) as the oil, Eumulgin CO40 as the surfactant, and propylene glycol as the co-surfactant, by the design of experiments (DoE). Results: F7 and F11 formulations were found to have an average globule size of 223.5 ± 10.7 nm and 157.5 ± 14.2 nm, besides thermodynamic stability and suitable physicochemical properties. F11 possessed an almost seven-fold higher cumulative percentage of in vitro released ITZ, in comparison to ITZ aqueous suspension after 24 hours. The release data suggested that the best fitted kinetical model for F11 and F7 was the Higuchi and Korsmeyer-Peppas model. Conclusion: The extended-release of the drug beside an acceptable amount of loaded ITZ suggested that nanoemulsion is suitable for the delivery of the ITZ.
Collapse
Affiliation(s)
- Saba Mehrandish
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahla Mirzaeei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
10
|
Wen MM, Ismail NIK, Nasra MMA, El-Kamel AH. Repurposing ibuprofen-loaded microemulsion for the management of Alzheimer's disease: evidence of potential intranasal brain targeting. Drug Deliv 2021; 28:1188-1203. [PMID: 34121565 PMCID: PMC8205090 DOI: 10.1080/10717544.2021.1937383] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022] Open
Abstract
Studies have shown the use of non-steroidal anti-inflammatory drugs, such as ibuprofen could reduce the risk of Alzheimer's disease. The drug-repurposing strategy offers a bright opportunity for these patients. Intranasal administration through the olfactory pathway provides noninvasive and direct drug delivery to the target brain. A novel ibuprofen microemulsion was prepared, characterized and assessed the brain uptake in rats. The solubility of ibuprofen in various oils, surfactants, co-surfactants, and different ratios of surfactant/co-surfactant mixtures was screened and the phase diagrams were constructed. The colloidal particle size was 166.3 ± 2.55 nm and the zeta potential was -22.7 mV. Conductivity and dilution test identified an O/W type microemulsion with pH 4.09 ± 0.08. The rheological study showed a Newtonian flow behavior with cP 10.633 ± 0.603 (mPa⋅s). A steady drug release and linear permeation profiles were observed and showed a 90% permeation rate from the released drug. Ibuprofen microemulsion showed excellent stability in 3-months accelerated storage conditions, heating-cooling and freeze-thaw cycles, accelerated centrifugation, and 6- and 12-months long-term storage conditions. In vivo studies in rats further demonstrated a 4-fold higher brain uptake of ibuprofen from the microemulsion compared to the reference solution and nearly 4-fold and 10-fold higher compared to the intravenous and oral administrations. This study provides an exciting repurposing strategy and new administration route for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Ming Ming Wen
- Department of Pharmaceutics & Pharmaceutical Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Noha Ismail Khamis Ismail
- Department of Pharmaceutics & Pharmaceutical Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Maha M. A. Nasra
- Department of Pharmaceutics, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
11
|
Calva-Estrada SDJ, Jimenez-Fernandez M, Vallejo-Cardona AA, Castillo-Herrera GA, Lugo-Cervantes EDC. Cocoa Nanoparticles to Improve the Physicochemical and Functional Properties of Whey Protein-Based Films to Extend the Shelf Life of Muffins. Foods 2021; 10:foods10112672. [PMID: 34828954 PMCID: PMC8622579 DOI: 10.3390/foods10112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/20/2021] [Accepted: 10/30/2021] [Indexed: 11/16/2022] Open
Abstract
A novel nanocomposite whey protein-based film with nanoemulsified cocoa liquor (CL) was prepared using one-stage microfluidization to evaluate the emulsion properties and the effect of CL on the film properties by response surface methodology (RSM). The results indicated that the number of cycles by microfluidization had a significant effect (p < 0.05) on the particle size and polydispersity of the nanoemulsion, with a polyphenol retention of approximately 83%. CL decreased the solubility (<21.87%) and water vapor permeability (WVP) (<1.57 g mm h-1 m-2 kPa-1) of the film. FTIR analysis indicated that CL modified the secondary protein structure of the whey protein and decreased the mechanical properties of the film. These results demonstrate that applying the film as a coating is feasible and effective to improve the shelf life of bakery products with a high moisture content. This nanocomposite film is easy to produce and has potential applications in the food industry.
Collapse
Affiliation(s)
- Sergio de Jesús Calva-Estrada
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) A.C., Camino Arenero 1227, El Bajío, Zapopan C.P. 45019, JAL, Mexico; (S.d.J.C.-E.); (G.A.C.-H.)
| | - Maribel Jimenez-Fernandez
- Centro de Investigación y Desarrollo en Alimentos, Universidad Veracruzana, Av. Doctor Luis Castelazo, Industrial Las Animas, Xalapa Enríquez C.P. 91190, VER, Mexico
- Correspondence: (M.J.-F.); (E.d.C.L.-C.)
| | - Alba Adriana Vallejo-Cardona
- Consejo Nacional de Ciencia y Tecnología—Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CONACYT-CIATEJ) A.C., Av. Normalistas 800, Colinas de la Normal, Guadalajara C.P. 44270, JAL, Mexico;
| | - Gustavo Adolfo Castillo-Herrera
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) A.C., Camino Arenero 1227, El Bajío, Zapopan C.P. 45019, JAL, Mexico; (S.d.J.C.-E.); (G.A.C.-H.)
| | - Eugenia del Carmen Lugo-Cervantes
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) A.C., Camino Arenero 1227, El Bajío, Zapopan C.P. 45019, JAL, Mexico; (S.d.J.C.-E.); (G.A.C.-H.)
- Correspondence: (M.J.-F.); (E.d.C.L.-C.)
| |
Collapse
|
12
|
Wei S, Zhao X, Yu J, Yin S, Liu M, Bo R, Li J. Characterization of tea tree oil nanoemulsion and its acute and subchronic toxicity. Regul Toxicol Pharmacol 2021; 124:104999. [PMID: 34242706 DOI: 10.1016/j.yrtph.2021.104999] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/20/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Tea tree oil (TTO) is a popular topical use to treat skin infections. However, its poor aqueous solubility and stability have substantially limited its widespread application, including oral administration that might be therapeutic for enteric infections. In this study, mechanical ultrasonic methods were used to prepare TTO nanoemulsion (nanoTTO) with a mean droplet diameter of 161.80 nm ± 3.97, polydispersity index of 0.21 ± 0.01, and zeta potential of -12.33 ± 0.72 mV. The potential toxicity of nanoTTO was assessed by studying the oral median lethal dose (LD50) and repeated 28-day oral toxicity to provide a reference for in vivo application. Results showed that nanoTTO had no phase separation under a centrifugation test and displayed good stability during storage at -20, 4 and 25 °C over 60 days. Repeated-dose 28-day oral toxicity evaluation revealed no significant effects on growth and behavior. Assessments of hematology, clinical biochemistry, and histopathology indicated no obvious adverse effects in mice at 50, 100 and 200 mg/mL. These data suggest that nanoTTO can be considered a potential antimicrobial agent by oral administration due to its inhibitory effect on bacteria and relatively lower toxicity.
Collapse
Affiliation(s)
- SiMin Wei
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Postgraduate Research &Practice Innovation Program of Jiangsu Province, China
| | - Xin Zhao
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Jie Yu
- The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225009, PR China
| | - ShaoJie Yin
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - MingJiang Liu
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - RuoNan Bo
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - JinGui Li
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
13
|
Stabilisation of Lutein and Lutein Esters with Polyoxyethylene Sorbitan Monooleate, Medium-Chain Triglyceride Oil and Lecithin. Foods 2021; 10:foods10030500. [PMID: 33652594 PMCID: PMC7996776 DOI: 10.3390/foods10030500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Lutein is a challenging compound to incorporate into food, as it is poorly soluble and unstable in aqueous solutions. In this study, the aim was to prepare stable encapsulates of lutein and lutein esters using feasible and straightforward techniques. Fine suspensions based on polyoxyethylene sorbitan monooleate and medium-chain triglyceride oil micelle-like units with 3.45% lutein esters or 1.9% lutein equivalents provided high encapsulation efficiencies of 79% and 83%, respectively. Lutein encapsulated in fine suspensions showed superior stability, as 86% was retained within the formulation over 250 days at 25 °C in the dark. Under the same storage conditions, only 38% of lutein remained in corresponding formulations. Higher encapsulation efficiencies were achieved with lecithin emulsions, at up to 99.3% for formulations with lutein, and up to 91.4% with lutein esters. In lecithin emulsions that were stored for 250 days, 17% and 80% of lutein and lutein esters, respectively, were retained within the formulations.
Collapse
|
14
|
McClements DJ. Advances in edible nanoemulsions: Digestion, bioavailability, and potential toxicity. Prog Lipid Res 2020; 81:101081. [PMID: 33373615 DOI: 10.1016/j.plipres.2020.101081] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022]
Abstract
The design, fabrication, and application of edible nanoemulsions for the encapsulation and delivery of bioactive agents has been a highly active research field over the past decade or so. In particular, they have been widely used for the encapsulation and delivery of hydrophobic bioactive substances, such as hydrophobic drugs, lipids, vitamins, and phytochemicals. A great deal of progress has been made in creating stable edible nanoemulsions that can increase the stability and efficacy of these bioactive agents. This article highlights some of the most important recent advances within this area, including increasing the water-dispersibility of bioactives, protecting bioactives from chemical degradation during storage, increasing the bioavailability of bioactives after ingestion, and targeting the release of bioactives within the gastrointestinal tract. Moreover, it highlights progress that is being made in creating plant-based edible nanoemulsions. Finally, the potential toxicity of edible nanoemulsions is considered.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
15
|
Zhang R, Zhang Z, McClements DJ. Nanoemulsions: An emerging platform for increasing the efficacy of nutraceuticals in foods. Colloids Surf B Biointerfaces 2020; 194:111202. [DOI: 10.1016/j.colsurfb.2020.111202] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022]
|
16
|
Kumar M, Nishad DK, Kumar A, Bhatnagar A, Karwasra R, Khanna K, S K, Sharma D, Dua K, Mudaliyar V, Sharma N. Enhancement in brain uptake of vitamin D 3 nanoemulsion for treatment of cerebral ischemia: formulation, gamma scintigraphy and efficacy study in transient middle cerebral artery occlusion rat models. J Microencapsul 2020; 37:492-501. [PMID: 32715833 DOI: 10.1080/02652048.2020.1801870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIM For the treatment of cerebral ischaemia, vitamin-D3 loaded nanoemulsions were developed. METHOD Tween 20 and polyethylene glycol were chosen as surfactant/co-surfactant, while oleic acid as the oil phase. The formulation was characterised for various in-vitro parameters. Targeting efficiency was investigated through radiometry, gamma scintigraphy and efficacy was studied in transient middle cerebral artery occlusion (MCAo) rat model. RESULT Vitamin D3-nanoemulsion showed a mean size range of 49.29 ± 10.28 nm with polydispersity index 0.17 ± 0.04 and zeta potential 13.77 mV. The formulation was found stable during thermodynamic stability study and permeated within 180 min through sheep nasal mucosa (permeation coefficient 7.873 ± 0.884 cm/h). Gamma scintigraphy and radiometry assay confirmed better percentage deposition (2.53 ± 0.17%) of 99mTc-vitamin D3-nanoemulsion through nasal route compared to IV administered 99mTc-vitamin D3 solution (0.79 ± 0.03%). Magnetic Resonance Imaging (MRI) of the ischaemic model confirmed better efficacy of vitamin D3-nanoemulsion. CONCLUSION This work demonstrated better permeation, deposition, and efficacy of vitaminD3-nanoemulsion through the intranasal route.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, Meerut, India.,Department of Drug Development, Institute of Nuclear Medicine & Allied Sciences, DRDO (Ministry of Defence), New Delhi, India
| | - Dhruv Kumar Nishad
- Department of Drug Development, Institute of Nuclear Medicine & Allied Sciences, DRDO (Ministry of Defence), New Delhi, India
| | - Anoop Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, Meerut, India
| | - Aseem Bhatnagar
- Department of Drug Development, Institute of Nuclear Medicine & Allied Sciences, DRDO (Ministry of Defence), New Delhi, India
| | - Ritu Karwasra
- Department of Drug Development, Institute of Nuclear Medicine & Allied Sciences, DRDO (Ministry of Defence), New Delhi, India
| | - Kushagra Khanna
- Department of Drug Development, Institute of Nuclear Medicine & Allied Sciences, DRDO (Ministry of Defence), New Delhi, India
| | - Keerthana S
- Department of Drug Development, Institute of Nuclear Medicine & Allied Sciences, DRDO (Ministry of Defence), New Delhi, India
| | - Deeksha Sharma
- Department of Drug Development, Institute of Nuclear Medicine & Allied Sciences, DRDO (Ministry of Defence), New Delhi, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia.,Centre for Inflammation, Centenary Institute, Royal Prince Alfred Hospital, Sydney, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN), Callaghan, Australia
| | - Vijaybabu Mudaliyar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, Meerut, India
| | - Nitin Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, Meerut, India.,Department of Drug Development, Institute of Nuclear Medicine & Allied Sciences, DRDO (Ministry of Defence), New Delhi, India
| |
Collapse
|