1
|
Ta LP, Corrigan S, Horniblow RD. Novel pectin-carboxymethylcellulose-based double-layered mucin/chitosan microcomposites successfully protect the next-generation probiotic Akkermansia muciniphila through simulated gastrointestinal transit and alter microbial communities within colonic ex vivo bioreactors. Int J Pharm 2024; 665:124670. [PMID: 39244071 DOI: 10.1016/j.ijpharm.2024.124670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The rapid acceleration of microbiome research has identified many potential Next Generation Probiotics (NGPs). Conventional formulation processing methods are non-compatible, leading to reduced viability and unconfirmed incorporation into intestinal microbial communities; consequently, demand for more bespoke formulation strategies of such NGPs is apparent. In this study, Akkermansia muciniphila (A.muciniphila) as a candidate NGP was investigated for its growth and metabolism properties, based on which a novel microcomposite-based oral formulation was formed. Initially, a chitosan-based microcomposite was coated with mucin to establish a surface culture of A.muciniphila. This was followed by 'double encapsulation' with pectin (PEC) using a novel Entrapment Deposition by Prilling method to create core-shell double-encapsulated microcapsules. The formulation of A.muciniphila was verified to require no oxygen-restriction properties, and additionally, biopolymers were selected, including carboxymethylcellulose (CMC), that support and enhance its growth; consequently, a high viability (6 log CFU/g) of A.muciniphila microencapsulated in PEC-CMC double-encapsulates was obtained. Subsequently, the high stability of the PEC-CMC double-encapsulates was verified in simulated gastric fluid, successfully protecting and then releasing the A.muciniphila under intestinal conditions. Finally, employing a model of gastrointestinal transit and faecal-inoculated colonic bioreactors, significant alterations in microbial communities following administration and successful establishment of A.muciniphila were demonstrated.
Collapse
Affiliation(s)
- Linh Phuong Ta
- Department of Biomedical Sciences, School of Infection, Inflammation, and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sarah Corrigan
- Department of Biomedical Sciences, School of Infection, Inflammation, and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Richard D Horniblow
- Department of Biomedical Sciences, School of Infection, Inflammation, and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
2
|
Phan Van T, Nguyen QD, Nguyen NN, Do AD. Efficiency of freeze- and spray-dried microbial preparation as active dried starter culture in kombucha fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8707-8719. [PMID: 38924118 DOI: 10.1002/jsfa.13697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/17/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Kombucha is a widely consumed fermented beverage produced by fermenting sweet tea with a symbiotic culture of bacteria and yeast (SCOBY). The dynamic nature of microbial communities in SCOBY may pose challenges to production scale-up due to unpredictable variations in microbial composition. Using identified starter strains is a novel strategy to control microorganism composition, thereby ensuring uniform fermentation quality across diverse batches. However, challenges persist in the cultivation and maintenance of these microbial strains. This study examined the potential of microencapsulated kombucha fermentation starter cultures, specifically Komagataeibacter saccharivorans, Levilactobacillus brevis and Saccharomyces cerevisiae, through spray-drying and freeze-drying. RESULTS Maltodextrin and gum arabic-maltodextrin were employed as carrier agents. Our results revealed that both spray-dried and freeze-dried samples adhered to physicochemical criteria, with low moisture content (2.18-7.75%) and relatively high solubility (65.75-87.03%) which are appropriate for food application. Freeze-drying demonstrated greater effectiveness in preserving bacterial strain viability (88.30-90.21%) compared to spray drying (74.92-78.66%). Additionally, the freeze-dried starter strains demonstrated similar efficacy in facilitating kombucha fermentation, compared to the SCOBY group. The observations included pH reduction, acetic acid production, α-amylase inhibition and elevated total polyphenol and flavonoid content. Moreover, the biological activity, including antioxidant potential and in vitro tyrosinase inhibition activity, was enhanced in the same pattern. The freeze-dried strains exhibited consistent kombucha fermentation capabilities over a three-month preservation, regardless of storage temperature at 30 or 4 °C. CONCLUSION These findings highlight the suitability of freeze-dried starter cultures for kombucha production, enable microbial composition control, mitigate contamination risks and ensure consistent product quality. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Thach Phan Van
- Department of Biotechnology, NTT Hi-tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Quoc-Duy Nguyen
- Department of Food Technology, Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Nhu-Ngoc Nguyen
- Department of Food Technology, Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Anh Duy Do
- Department of Biotechnology, NTT Hi-tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
3
|
Schwingel Henn G, Cima LZ, Bettanin BF, Schlabitz C, Neutzling Lehn D, de Souza CFV, Hoehne L. Selenized lactic acid bacteria microencapsulated by spray drying: A promising strategy for beef cattle feed supplementation. Biotechnol Appl Biochem 2024; 71:753-765. [PMID: 38436528 DOI: 10.1002/bab.2574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
This study aimed to assess the technical feasibility of incorporating selenized Lactobacillus spp. microencapsulated via spray drying into cattle feed. Gum Arabic and maltodextrin were used as encapsulating agents. The encapsulation process was carried out with a drying air flow rate of 1.75 m3/min, inlet air temperature of 90°C, and outlet air temperature of 75°C. The viability of the encapsulated microorganisms and the technological characteristics of the obtained microparticles were evaluated. Microorganisms were incorporated into beef cattle feed to supplement their diet with up to 0.3 mg of Se per kilogram of feed. The encapsulated particles, consisting of a 50/50 ratio of gum Arabic/maltodextrin at a 1:20 proportion of selenized biomass to encapsulant mixture, exhibited superior technical viability for application in beef cattle feed. Supplemented feeds displayed suitable moisture, water activity, and hygroscopicity values, ensuring the preservation of viable microorganisms for up to 5 months of storage, with an approximate count of 4.5 log CFU/g. Therefore, supplementing beef cattle feed with selenized and microencapsulated lactic acid bacteria represents a viable technological alternative, contributing to increased animal protein productivity through proper nutrition.
Collapse
Affiliation(s)
- Guilherme Schwingel Henn
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Rio Grande do Sul, Brazil
- Food Biotechnology Laboratory, University of Vale do Taquari - Univates, Lajeado, Rio Grande do Sul, Brazil
| | - Larissa Zago Cima
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Rio Grande do Sul, Brazil
| | - Beatriz Fabris Bettanin
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Rio Grande do Sul, Brazil
| | - Cláudia Schlabitz
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Rio Grande do Sul, Brazil
- Food Biotechnology Laboratory, University of Vale do Taquari - Univates, Lajeado, Rio Grande do Sul, Brazil
| | - Daniel Neutzling Lehn
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Rio Grande do Sul, Brazil
- Food Biotechnology Laboratory, University of Vale do Taquari - Univates, Lajeado, Rio Grande do Sul, Brazil
| | - Claucia Fernanda Volken de Souza
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Rio Grande do Sul, Brazil
- Food Biotechnology Laboratory, University of Vale do Taquari - Univates, Lajeado, Rio Grande do Sul, Brazil
| | - Lucélia Hoehne
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Hu R, Dong D, Hu J, Liu H. Improved viability of probiotics encapsulated in soybean protein isolate matrix microcapsules by coacervation and cross-linking modification. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Shobuz M, Sabur K, Khan MR, Julkifal I, Uttam Kumar S, Hasan GMMA, Ahmed M. Viability and stability of microencapsulated probiotic bacteria by freeze‐drying under in vitro gastrointestinal conditions. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Mahmud Shobuz
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - khan Sabur
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - Mahbubur Rahman Khan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - Islam Julkifal
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - Sarker Uttam Kumar
- Department of Chemistry, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - G. M. M. Anwarul Hasan
- Institute of Food Science &Technology (IFST) Bangladesh Council of Scientific &Industrial Research (BCSIR), Dr Qudrat‐I‐ Khuda Road, Dhaka‐1205 Bangladesh
| | - Maruf Ahmed
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| |
Collapse
|
6
|
Kowalska E, Ziarno M, Ekielski A, Żelaziński T. Materials Used for the Microencapsulation of Probiotic Bacteria in the Food Industry. Molecules 2022; 27:3321. [PMID: 35630798 PMCID: PMC9142984 DOI: 10.3390/molecules27103321] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Probiotics and probiotic therapy have been rapidly developing in recent years due to an increasing number of people suffering from digestive system disorders and diseases related to intestinal dysbiosis. Owing to their activity in the intestines, including the production of short-chain fatty acids, probiotic strains of lactic acid bacteria can have a significant therapeutic effect. The activity of probiotic strains is likely reduced by their loss of viability during gastrointestinal transit. To overcome this drawback, researchers have proposed the process of microencapsulation, which increases the resistance of bacterial cells to external conditions. Various types of coatings have been used for microencapsulation, but the most popular ones are carbohydrate and protein microcapsules. Microencapsulating probiotics with vegetable proteins is an innovative approach that can increase the health value of the final product. This review describes the different types of envelope materials that have been used so far for encapsulating bacterial biomass and improving the survival of bacterial cells. The use of a microenvelope has initiated the controlled release of bacterial cells and an increase in their activity in the large intestine, which is the target site of probiotic strains.
Collapse
Affiliation(s)
- Ewa Kowalska
- Department of Technology and Food Evaluation, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland;
| | - Małgorzata Ziarno
- Department of Technology and Food Evaluation, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland;
| | - Adam Ekielski
- Department of Production Engineering, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.E.); (T.Ż.)
| | - Tomasz Żelaziński
- Department of Production Engineering, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.E.); (T.Ż.)
| |
Collapse
|
7
|
García MJ, Ruíz F, Asurmendi P, Pascual L, Barberis L. Reevaluating a non-conventional procedure to microencapsulate beneficial lactobacilli: assessments on yield and bacterial viability under simulated technological and physiological conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2981-2989. [PMID: 34773408 DOI: 10.1002/jsfa.11638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/29/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Maintaining viability of beneficial microorganisms applied to foods still constitutes an industrial challenge. Many microencapsulation methodologies have been studied to protect probiotic microorganisms and ensure their resistance from manufacturing through to consumption. However, in many Latin-American countries such as Argentina there are still no marketed food products containing microencapsulated beneficial bacteria. The objectives of this work were: (i) to obtain microcapsules containing Lactobacillus fermentum L23 and L. rhamnosus L60 in a milk protein matrix; and (ii) to evaluate the viability of microencapsulated lactobacilli exposed to long-term refrigerated storage, mid-high temperatures and simulated gastrointestinal conditions. RESULTS The method of emulsification/rennet-catalyzed gelation of milk proteins used in this study led to high encapsulation yields for both strains (98.2-99%). Microencapsulated lactobacilli remained viable for 120 days at 4 °C, while free lactobacilli gradually lost their viability under the same conditions. Microencapsulation increased the resistance of lactobacilli to mid-high temperatures, since they showed survival rates of 95-99.3% at 50 °C, and of 72.5-74.4% at 65 °C. Under simulated gastric conditions, the microencapsulated lactobacilli counts were higher than 8.5 log CFU mL-1 and showed survival rates between 96.61% and 97.74%. Furthermore, in the presence of bile (0.5-2% w/v) the survival of microencapsulated strains was higher than 96%. CONCLUSION The microencapsulation process together with the matrix of milk proteins used in this study protected beneficial Lactobacillus strains against these first simulated technological and physiological conditions. These findings suggest that this microencapsulation method could contribute to secure optimal amounts of living lactobacilli cells able to reach the intestine. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- María J García
- Área de Bacteriología, Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), UNRC-CONICET, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Científico Tecnológico-Córdoba (CCT-Córdoba), Córdoba, Argentina
| | - Francesca Ruíz
- Área de Bacteriología, Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), UNRC-CONICET, Río Cuarto, Córdoba, Argentina
| | - Paula Asurmendi
- Área de Bacteriología, Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), UNRC-CONICET, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Científico Tecnológico-Córdoba (CCT-Córdoba), Córdoba, Argentina
| | - Liliana Pascual
- Área de Bacteriología, Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), UNRC-CONICET, Río Cuarto, Córdoba, Argentina
| | - Lucila Barberis
- Área de Bacteriología, Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), UNRC-CONICET, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
8
|
Development of Healthier and Functional Dry Fermented Sausages: Present and Future. Foods 2022; 11:foods11081128. [PMID: 35454715 PMCID: PMC9031353 DOI: 10.3390/foods11081128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
In recent years, consumer perception about the healthiness of meat products has changed. In this scenario, the meat industry and the scientific and technological areas have put their efforts into improving meat products and achieving healthier and functional formulations that meet the demands of today’s market and consumers. This article aims to review the current functional fermented meat products, especially on sausage development. Firstly, an emphasis is given to reducing and replacing traditional ingredients associated with increased risk to consumer’s health (sodium, fat, and nitrites), adding functional components (prebiotics, probiotics, symbiotics, and polyphenols), and inducing health benefits. Secondly, a look at future fermented sausages is provided by mentioning emerging strategies to produce innovative healthier and functional meat products. Additional recommendations were also included to assist researchers in further development of healthier and functional sausages.
Collapse
|
9
|
Xu W, Sun H, Li H, Li Z, Zheng S, Luo D, Ning Y, Wang Y, Shah BR. Preparation and characterization of tea oil powder with high water solubility using Pickering emulsion template and vacuum freeze-drying. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Savoldi TE, Scheufele FB, Drunkler DA, da Silva GJ, de Lima JD, Maestre KL, Triques CC, da Silva EA, Fiorese ML. Microencapsulation of
Saccharomyces boulardii
using vegan and vegetarian wall materials. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tárcio Enrico Savoldi
- Postgraduate Program in Chemical Engineering. Western Paraná State University ‐ Unioeste, 645 Faculdade Street, Jd. Santa Maria Toledo, 85903‐000 PR Brazil
| | - Fabiano Bisinella Scheufele
- Postgraduate Program in Chemical and Biotechnological Processes. Federal University of Technology ‐ Paraná, 19 Cristo Rei Street, Vila Becker Toledo, 85902‐490 PR Brazil
| | - Deisy Alessandra Drunkler
- Postgraduate Program in Food Technology. Federal University of Technology ‐ Paraná, 4232 Brazil Avenue, Independência Medianeira, 858884‐000 PR Brazil
| | - Glacy Jaqueline da Silva
- Postgraduate Program in Biotechnology Applied to Agriculture. Paranaense University ‐ Unipar, 4282 Mascarenhas de Moraes Square, Center Umuarama, 87502‐210 PR Brazil
| | - Juliana Destro de Lima
- Postgraduate Program in Biotechnology Applied to Agriculture. Paranaense University ‐ Unipar, 4282 Mascarenhas de Moraes Square, Center Umuarama, 87502‐210 PR Brazil
| | - Keiti Lopes Maestre
- Postgraduate Program in Chemical Engineering. Western Paraná State University ‐ Unioeste, 645 Faculdade Street, Jd. Santa Maria Toledo, 85903‐000 PR Brazil
| | - Carina Contini Triques
- Postgraduate Program in Chemical Engineering. Western Paraná State University ‐ Unioeste, 645 Faculdade Street, Jd. Santa Maria Toledo, 85903‐000 PR Brazil
| | - Edson Antonio da Silva
- Postgraduate Program in Chemical Engineering. Western Paraná State University ‐ Unioeste, 645 Faculdade Street, Jd. Santa Maria Toledo, 85903‐000 PR Brazil
| | - Mônica Lady Fiorese
- Postgraduate Program in Chemical Engineering. Western Paraná State University ‐ Unioeste, 645 Faculdade Street, Jd. Santa Maria Toledo, 85903‐000 PR Brazil
| |
Collapse
|
11
|
Osmoporation is a versatile technique to encapsulate fisetin using the probiotic bacteria Lactobacillus acidophilus. Appl Microbiol Biotechnol 2022; 106:1031-1044. [DOI: 10.1007/s00253-021-11735-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 12/21/2022]
|
12
|
Unravelling the functional and technological potential of soy milk based microencapsulated Lactobacillus crispatus and Lactobacillus gasseri. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
13
|
Inorganic Additive Improves the Survival of the Probiotic Lacticaseibacillus rhamnosus CRL1505 During Spray Drying, Rehydration, and Storage. Curr Microbiol 2021; 78:3863-3871. [PMID: 34508271 DOI: 10.1007/s00284-021-02648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
In previous in vitro studies, an inorganic additive (MCM3) showed a thermo-protective effect on the cell viability of Lacticaseibacillus rhamnosus CRL1505 (Lr-CRL1505). In this work, cultures of this probiotic strain were spray dried at lab scale using two carriers: maltodextrin (powder MA) and maltodextrin plus MCM3 (powder MA/MCM3). The cell survival was higher in powder MA/MCM3 (72.8%) than in powder MA (42.8%). Different rehydration media, including the additive MCM3, and two temperatures (37 °C and 45 °C) were evaluated. The best results were obtained in cells rehydrated at 37 °C in MCM3. During the storage of the powders, the highest cell counts were observed in the MA/MCM3 powder. Our results demonstrated that the presence of MCM3 in the carrier and in reconstitution media benefits the spray drying process and the recovery of dehydrated cells. Thus, the use of this additive of inorganic nature and low cost represents a promising technological alternative.
Collapse
|
14
|
Machado Vasconcelos LI, Silva-Buzanello RAD, Kalschne DL, Scremin FR, Stival Bittencourt PR, Gaudêncio Dias JT, Canan C, Corso MP. Functional fermented sausages incorporated with microencapsulated Lactobacillus plantarum BG 112 in Acrycoat S100. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Vaniski R, Silva SC, Silva‐Buzanello RA, Canan C, Drunkler DA. Improvement of
Lactobacillus acidophilus
La‐5 microencapsulation viability by spray‐drying with rice bran protein and maltodextrin. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rosane Vaniski
- Federal Technological University of Paraná Medianeira Paraná Brazil
| | | | | | - Cristiane Canan
- Federal Technological University of Paraná Medianeira Paraná Brazil
| | | |
Collapse
|
16
|
Cavender G, Jiang N, Singh RK, Chen J, Mis Solval K. Improving the survival of Lactobacillus plantarum NRRL B-1927 during microencapsulation with ultra-high-pressure-homogenized soymilk as a wall material. Food Res Int 2021; 139:109831. [PMID: 33509456 DOI: 10.1016/j.foodres.2020.109831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/30/2020] [Accepted: 10/16/2020] [Indexed: 11/30/2022]
Abstract
Probiotic foods and supplements have been shown to offer multiple potential health benefits to consumers. Dried probiotic cultures are increasingly used by the food industry because they are easily handled, transported, stored, and used in different applications. However, drying technologies often expose probiotic cells to extreme environmental conditions that reduces cell viability. Hence, this study aimed to evaluate the effect of using ultra high-pressure homogenization (UHPH) on soymilk's microencapsulating ability, and the resultant effect on the survivability of probiotic Lactobacillus plantarum NRRL B-1927 (LP) during drying. Liquid suspensions containing LP (~109 CFU/g of solids) were prepared by suspending LP cultures in soymilk which had been either treated with UHPH at 150 MPa or 300 MPa or left untreated. LP suspensions were then dried by concurrent spray drying (CCSD), mixed-flow spray drying (MXSD) or freeze-drying (FD). Cell counts of LP were determined before and after microencapsulation. Moisture, water activity, particle size and morphology of LP powders were also characterized. LP powders produced with 300 MPa treated soymilk had 8.7, 6.4, and 2 times more cell counts than those produced with non-UHPH treated soymilk during CCSD, MXSD, and FD, respectively. In the 300 MPa treated samples, cell survival (%) of LP during drying was the highest in MXSD (83.72) followed by FD (76.31) and CCSD (34.01). Using soymilk treated at higher UHPH pressures resulted in LP powders with lower moisture content, smaller particle sizes and higher agglomeration. LP powders produced via MXSD showed higher agglomeration and fewer signs of thermal damage than powders produced via CCSD. This study demonstrates that UHPH improves the effectiveness of soymilk as a microencapsulant for probiotics, creating probiotic powders that could be used in plant-based and non-dairy foods.
Collapse
Affiliation(s)
- George Cavender
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA; Currently at Cooperative Research and Extension Division, Lincoln University, Jefferson City, MO 65101, USA
| | - Nan Jiang
- Department of Food Science and Technology, The University of Georgia, Griffin, GA 30223, USA
| | - Rakesh K Singh
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA
| | - Jinru Chen
- Department of Food Science and Technology, The University of Georgia, Griffin, GA 30223, USA
| | - Kevin Mis Solval
- Department of Food Science and Technology, The University of Georgia, Griffin, GA 30223, USA.
| |
Collapse
|
17
|
A Brief Review of Edible Coating Materials for the Microencapsulation of Probiotics. COATINGS 2020. [DOI: 10.3390/coatings10030197] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The consumption of probiotics has been associated with a wide range of health benefits for consumers. Products containing probiotics need to have effective delivery of the microorganisms for their consumption to translate into benefits to the consumer. In the last few years, the microencapsulation of probiotic microorganisms has gained interest as a method to improve the delivery of probiotics in the host as well as extending the shelf life of probiotic-containing products. The microencapsulation of probiotics presents several aspects to be considered, such as the type of probiotic microorganisms, the methods of encapsulation, and the coating materials. The aim of this review is to present an updated overview of the most recent and common coating materials used for the microencapsulation of probiotics, as well as the involved techniques and the results of research studies, providing a useful knowledge basis to identify challenges, opportunities, and future trends around coating materials involved in the probiotic microencapsulation.
Collapse
|
18
|
González-Ferrero C, Irache JM, Marín-Calvo B, Ortiz-Romero L, Virto-Resano R, González-Navarro CJ. Encapsulation of probiotics in soybean protein-based microparticles preserves viable cell concentration in foods all along the production and storage processes. J Microencapsul 2020; 37:242-253. [PMID: 31997685 DOI: 10.1080/02652048.2020.1724203] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The influence on the stability of Lactobacillus plantarum CECT 220 (25 °C/60% relative humidity) of microencapsulation by simple coacervation followed by spray-drying using different Ca2+-to-soybean protein isolate ratios was evaluated. After optimisation, the selected soybean protein concentrate (SPC) microparticles were used to evaluate the tolerance of L. plantarum under acidic conditions (lactic acid, pH = 4; and HCl, pH = 3) and heat stress (80 °C for 1 min) in contrast to free cells. Moreover, after the heat treatment, the influence of the simulated gastric fluid was evaluated. Additionally, different foods were formulated using either microencapsulated or freeze-dried L. plantarum, and the stability of cells during the shelf-life of the formulated foods was studied. Results show that encapsulation with SPC enhanced significantly the stability of the Lactic Acid Bacteria all along the probiotic food value chain, from production to the end of the food shelf-life.
Collapse
Affiliation(s)
- Carolina González-Ferrero
- Research and Development Area, National Centre for Food Technology and Safety - CNTA, San Adrián, Spain
| | - Juan Manuel Irache
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain
| | - Beatriz Marín-Calvo
- Research and Development Area, National Centre for Food Technology and Safety - CNTA, San Adrián, Spain
| | - Leticia Ortiz-Romero
- Research and Development Area, National Centre for Food Technology and Safety - CNTA, San Adrián, Spain
| | - Raquel Virto-Resano
- Research and Development Area, National Centre for Food Technology and Safety - CNTA, San Adrián, Spain
| | | |
Collapse
|