1
|
Fatima M, Saleem A, Akhtar MF, Akhtar K, Khan MI. Esculin-loaded nanoparticles ameliorate adjuvant-induced polyarthritis via subduing inflammatory and oxidative stress biomarkers in Wistar rats. Inflammopharmacology 2025; 33:291-309. [PMID: 39731701 DOI: 10.1007/s10787-024-01621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/30/2024] [Indexed: 12/30/2024]
Abstract
Rheumatoid arthritis is an autoimmune disorder affecting multiple joints and requires lifelong treatment. Present study was designed to formulate Esculin-loaded chitosan nanoparticles (ENPs) and evaluation of its anti-inflammatory and anti-arthritic action. The acute toxicity study of ENPs was also performed. ENPs were synthesized using the ion gelation method and their characterization was done. The formulated ENPs had a particle size of 205.1 nm, a polydispersity index of 0.574, zeta potential of 3.6 ± 0.1 mV, and entrapment efficiency of 68%, SEM analysis showed round spherical and irregularity from the outer surface, XRD revealed amorphous nature. Drug release from the carrier by erosion method. For anti-arthritic potential, 0.1 ml Complete Freund's Adjuvant was injected in the left hind paw of all Wistar rats except normal rats on day 1 and treatment with ENPS at 5, 10, 20, ESC and methotrexate (standard drug) was started at 8th day orally and continued for 21 days. Treatment with methotrexate, ESC, and ENPs revealed a significant reduction of paw edema and pain, restoration of body and immune organ weight, Treatment with ENPs 20 mg/kg remarkably (p < 0.0001) restored serotonin and noradrenaline level, oxidation status, hematological and biochemical parameters with significant down-regulation (p < 0.0001) of IL-6, COX-2, TNF-alpha, NF-κβ whereas, up-regulation of IL-4 and IL-10 in comparison to disease control group as obvious from histological examination of sciatic nerve, liver, and ankle joint. The LD50 of ENPs was more than 2000 mg/kg in the acute toxicity study. The ENPs exhibited anti-inflammatory and anti-arthritic activities especially ENPs at 20 mg/kg.
Collapse
Affiliation(s)
- Mehak Fatima
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, 5400, Pakistan.
| | - Kanwal Akhtar
- Department of Physics, Faculty of Sciences, The Superior University Lahore, Faisalabad campus, Faisalabad, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, 5400, Pakistan
| |
Collapse
|
2
|
Li H, Cui J, Zhang T, Lin F, Zhang G, Feng Z. Research Progress on Chitosan Microneedle Arrays in Transdermal Drug Delivery. Int J Nanomedicine 2024; 19:12957-12973. [PMID: 39651356 PMCID: PMC11624690 DOI: 10.2147/ijn.s487313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/04/2024] [Indexed: 12/11/2024] Open
Abstract
As a type of transdermal drug delivery system (TDDS), Microneedles (MNs) have garnered significant attention from researchers due to their ability to penetrate the stratum corneum (SC) of the skin, enhance drug permeability and bioavailability, avoid first-pass metabolism, and cause minimal damage to the skin. This makes them particularly suitable for localized transdermal drug delivery. Dissolvable microneedles (DMNs) can encapsulate sensitive particles, provide high drug-loading capacity, and possess biodegradability and biocompatibility, attracting extensive research interest. Chitosan (CS) has been selected as the matrix for manufacturing DMNs due to its excellent properties, including not eliciting an immune response in vivo and having active functional groups such as hydroxyl and amino groups that allow for modifications to impart appropriate mechanical strength and functionality to DMNs for specific applications. This paper provides a comprehensive review of the research status of various chitosan-based microneedles (CSMNs), explores the mechanisms of their dissolution in vivo, and discusses their applications in promoting wound healing, delivering macromolecular drugs, vaccine delivery, and anti-tumor therapies.
Collapse
Affiliation(s)
- Haonan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, People’s Republic of China
| | - Jie Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, People’s Republic of China
| | - Tianyi Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Fengli Lin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Guimin Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, People’s Republic of China
- Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, 276000, People’s Republic of China
| | - Zhong Feng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, People’s Republic of China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
- Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, 276000, People’s Republic of China
| |
Collapse
|
3
|
Arora A, Sharma A, Singh S, Singh R, Singh A, Kakkar D, Sharma N. Nanoparticles encapsulated in Abelmoschus esculentus polysaccharide-based pellets as colon targeting approach. J Microencapsul 2024; 41:519-534. [PMID: 39162289 DOI: 10.1080/02652048.2024.2390951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/07/2024] [Indexed: 08/21/2024]
Abstract
AIM(S) This article explores the application of mesalazine-loaded nanoparticles (MLZ-NPs) encapsulated in Abelmoschus esculentus plant polysaccharide-based pellets (MLZ-NPs-Pellets) for ulcerative colitis. METHODS MLZ-NPs were prepared and evaluated for diameter, PDI, and entrapment efficiency. In-vitro efficacy study was conducted on Caco-2 cells. MLZ-NPs were encapsulated in polysaccharides to form MLZ-NPs-Pellets and characterised for efficacy in animals and targeting efficiency in human volunteers. RESULTS Optimised batch of MLZ-NPs were characterised for diameter, PDI, zeta potential and entrapment efficiency which was found to be 145.42 ± 6.75 nm, 0.214 ± 0.049, -31.63 mV and 77.65 ± 2.33(%w/w) respectively. ROS, superoxide and NF-kβ were well controlled in Caco-2 cells when treated with MLZ-NPs. In-vivo data revealed that some parameters (body weight, colon length, lipid peroxidase, and glutathione) recovered significantly in the DSS-induced mice model treated with oral MLZ-NPs-Pellets. Gamma scintigraphy revealed that the formulation can effectively target the colon within 600 min. CONCLUSION MLZ-NPs-Pellets can be effectively used for microbial-triggered colon targeting approach in treating ulcerative colitis.
Collapse
Affiliation(s)
- Akshita Arora
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Anshul Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, India
| | - Amrinder Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Dipti Kakkar
- Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, India
- Anusandhan National Research Foundation, Technology Bhavan, New Delhi, India
| | - Nitin Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| |
Collapse
|
4
|
Omidian H, Gill EJ, Dey Chowdhury S, Cubeddu LX. Chitosan Nanoparticles for Intranasal Drug Delivery. Pharmaceutics 2024; 16:746. [PMID: 38931868 PMCID: PMC11206675 DOI: 10.3390/pharmaceutics16060746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
This manuscript explores the use of nanostructured chitosan for intranasal drug delivery, targeting improved therapeutic outcomes in neurodegenerative diseases, psychiatric care, pain management, vaccination, and diabetes treatment. Chitosan nanoparticles are shown to enhance brain delivery, improve bioavailability, and minimize systemic side effects by facilitating drug transport across the blood-brain barrier. Despite substantial advancements in targeted delivery and vaccine efficacy, challenges remain in scalability, regulatory approval, and transitioning from preclinical studies to clinical applications. The future of chitosan-based nanomedicines hinges on advancing clinical trials, fostering interdisciplinary collaboration, and innovating in nanoparticle design to overcome these hurdles and realize their therapeutic potential.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (E.J.G.); (S.D.C.); (L.X.C.)
| | | | | | | |
Collapse
|
5
|
Alam MS, Sultana N, Rashid MA, Alhamhoom Y, Ali A, Waheed A, Ansari MS, Aqil M, Mujeeb M. Quality by Design-Optimized Glycerosome-Enabled Nanosunscreen Gel of Rutin Hydrate. Gels 2023; 9:752. [PMID: 37754433 PMCID: PMC10531150 DOI: 10.3390/gels9090752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Sunburn is caused by prolonged exposure to ultraviolet (UV) rays from the sun, resulting in redness of the skin as well as tenderness, swelling, and blistering issues. During the healing process, it can cause peeling, irritation, and some long-term effects, including premature aging, pigmentation, and a high risk of skin cancer. Rutin has antioxidant and anti-inflammatory effects, which could potentially reduce inflammation and soothe sunburned skin. The objective of the current proposal is to develop and create carbopol gel-encased glycerosomes for the treatment of sunburn. The Design of Expert (DoE) technique was used to optimize the proposed formulation and was subjected to various characterization parameters such as nanovesicles size, polydispersity index (PDI), surface charge, entrapment efficiency (EE), and surface morphology. The optimized rutin-loaded glycerosomes (opt-RUT-loaded-GMs) were further characterised for drug release, 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay, and confocal laser scanning microscopy (CLSM). The formulation showed sustained release, greater permeation into the skin, and good antioxidant activity. The dermatokinetic study of opt-RUT-loaded-GMs confirms that the Rutin hydrate had better retention in the epidermis as compared to the dermis, owing to its potential for long lasting protection after topical application. It was observed that the prepared formulation was stable, highly safe, and had good sun protection factor (SPF) values that could be used as a suitable option for topical drug administration to maximize the therapeutic efficacy of the drugs.
Collapse
Affiliation(s)
- Md. Shabbir Alam
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.S.A.); (N.S.); (A.A.); (A.W.); (M.S.A.); (M.M.)
| | - Niha Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.S.A.); (N.S.); (A.A.); (A.W.); (M.S.A.); (M.M.)
| | - Md. Abdur Rashid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia; (M.A.R.); (Y.A.)
| | - Yahya Alhamhoom
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia; (M.A.R.); (Y.A.)
| | - Asad Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.S.A.); (N.S.); (A.A.); (A.W.); (M.S.A.); (M.M.)
| | - Ayesha Waheed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.S.A.); (N.S.); (A.A.); (A.W.); (M.S.A.); (M.M.)
| | - Mo. Suheb Ansari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.S.A.); (N.S.); (A.A.); (A.W.); (M.S.A.); (M.M.)
| | - Mohd. Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.S.A.); (N.S.); (A.A.); (A.W.); (M.S.A.); (M.M.)
| | - Mohd Mujeeb
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.S.A.); (N.S.); (A.A.); (A.W.); (M.S.A.); (M.M.)
| |
Collapse
|
6
|
Noreen S, Hasan S, Ghumman SA, Bukhari SNA, Ijaz B, Hameed H, Iqbal H, Aslam A, Elsherif MAM, Noureen S, Ejaz H. pH Responsive Abelmoschus esculentus Mucilage and Administration of Methotrexate: In-Vitro Antitumor and In-Vivo Toxicity Evaluation. Int J Mol Sci 2022; 23:ijms23052725. [PMID: 35269867 PMCID: PMC8910941 DOI: 10.3390/ijms23052725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
The rapid progression in biomaterial nanotechnology apprehends the potential of non-toxic and potent polysaccharide delivery modules to overcome oral chemotherapeutic challenges. The present study is aimed to design, fabricate and characterize polysaccharide nanoparticles for methotrexate (MTX) delivery. The nanoparticles (NPs) were prepared by Abelmoschus esculentus mucilage (AEM) and chitosan (CS) by the modified coacervation method, followed by ultra-sonification. The NPs showed much better pharmaceutical properties with a spherical shape and smooth surface of 213.4–254.2 nm with PDI ranging between 0.279–0.485 size with entrapment efficiency varying from 42.08 ± 1.2 to 72.23 ± 2.0. The results revealed NPs to possess positive zeta potential and a low polydispersity index (PDI). The in-vitro drug release showed a sustained release of the drug up to 32 h with pH-dependence. Blank AEM -CS NPs showed no in-vivo toxicity for a time duration of 14 days, accompanied by high cytotoxic effects of optimized MTX loaded NPs against MCF-7 and MD-MBA231 cells by MTT assay. In conclusion, the findings advocated the therapeutic potential of AEM/CS NPs as an efficacious tool, offering a new perspective for pH-responsive routing of anticancer drugs with tumor cells as a target.
Collapse
Affiliation(s)
- Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.H.); (H.I.); (S.N.)
- Correspondence: (S.N.); (S.N.A.B.); Tel.: +966-5657-38896 (S.N.A.B.)
| | - Sara Hasan
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.H.); (H.I.); (S.N.)
- Department of Chemistry, Sargodha Campus, The University of Lahore, Sargodha 40100, Pakistan
| | - Shazia Akram Ghumman
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan; (S.A.G.); (A.A.)
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
- Correspondence: (S.N.); (S.N.A.B.); Tel.: +966-5657-38896 (S.N.A.B.)
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54000, Pakistan;
| | - Huma Hameed
- IRSET, EHSEP, INSERM, University of Rennes 1, 35000 Rennes, France;
| | - Huma Iqbal
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.H.); (H.I.); (S.N.)
| | - Afeefa Aslam
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan; (S.A.G.); (A.A.)
| | | | - Shazia Noureen
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.H.); (H.I.); (S.N.)
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
| |
Collapse
|
7
|
Hock N, Racaniello GF, Aspinall S, Denora N, Khutoryanskiy VV, Bernkop‐Schnürch A. Thiolated Nanoparticles for Biomedical Applications: Mimicking the Workhorses of Our Body. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102451. [PMID: 34773391 PMCID: PMC8728822 DOI: 10.1002/advs.202102451] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/13/2021] [Indexed: 05/03/2023]
Abstract
Advances in nanotechnology have generated a broad range of nanoparticles (NPs) for numerous biomedical applications. Among the various properties of NPs are functionalities being related to thiol substructures. Numerous biological processes that are mediated by cysteine or cystine subunits of proteins representing the workhorses of the bodies can be transferred to NPs. This review focuses on the interface between thiol chemistry and NPs. Pros and cons of different techniques for thiolation of NPs are discussed. Furthermore, the various functionalities gained by thiolation are highlighted. These include overall bio- and mucoadhesive, cellular uptake enhancing, and permeation enhancing properties. Drugs being either covalently attached to thiolated NPs via disulfide bonds or being entrapped in thiolated polymeric NPs that are stabilized via inter- and intrachain crosslinking can be released at the diseased tissue or in target cells under reducing conditions. Moreover, drugs, targeting ligands, biological analytes, and enzymes bearing thiol substructures can be immobilized on noble metal NPs and quantum dots for therapeutic, theranostic, diagnostic, biosensing, and analytical reasons. Within this review a concise summary and analysis of the current knowledge, future directions, and potential clinical use of thiolated NPs are provided.
Collapse
Affiliation(s)
- Nathalie Hock
- Thiomatrix Forschungs und Beratungs GmbHTrientlgasse 65Innsbruck6020Austria
| | | | - Sam Aspinall
- Reading School of PharmacyUniversity of ReadingWhiteknights PO Box 224, Room 122 (Chemistry and Pharmacy Building)ReadingRG66DXUK
| | - Nunzio Denora
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari “Aldo Moro”Bari70125Italy
| | - Vitaliy V. Khutoryanskiy
- Reading School of PharmacyUniversity of ReadingWhiteknights PO Box 224, Room 122 (Chemistry and Pharmacy Building)ReadingRG66DXUK
| | - Andreas Bernkop‐Schnürch
- Department of Pharmaceutical Technology, Institute of PharmacyUniversity of InnsbruckInnrain 80/82Innsbruck6020Austria
| |
Collapse
|
8
|
Shi Z, Wang Y, Sun Y, Wu X, Xiao T, Dong S, Lan T. Facile One‐Pot Synthesis of Magnetic Targeted Polymers for Drug Delivery and Study on Thermal Decomposition Kinetics. ChemistrySelect 2021. [DOI: 10.1002/slct.202004607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhen Shi
- College of Materials Science and Engineering Qiqihar University Qiqihar 161006 China
| | - Yazhen Wang
- College of Materials Science and Engineering Qiqihar University Qiqihar 161006 China
- College of Chemistry, Chemical Engineering and Resource Utilization Northeast Forestry University Harbin 150040 China
| | - Yu Sun
- College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition Material Qiqihar University Qiqihar 161006 China
| | - Xueying Wu
- College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition Material Qiqihar University Qiqihar 161006 China
| | - Tianyuan Xiao
- College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition Material Qiqihar University Qiqihar 161006 China
| | - Shaobo Dong
- College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition Material Qiqihar University Qiqihar 161006 China
| | - Tianyu Lan
- College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition Material Qiqihar University Qiqihar 161006 China
| |
Collapse
|