1
|
Fedorowicz A, Bartkowiak A. The Influence of Different Butter Type, Their Fatty Acid Composition and Melting Enthalpy on the Viability Rate of Lacticaseibacillusrhamnosus GG Directly After the Spray-Drying Process and During Storage of Powders. Foods 2024; 13:3803. [PMID: 39682875 DOI: 10.3390/foods13233803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The present work reports on the microencapsulation of Lacticaseibacillus rhamnosus GG (LGG) by the spray-drying process using a solution of starch, whey protein concentrate (WPC), soy lecithin and ascorbic acid as a carrier, with addition of different types of butters. The aim of this study was to examine the protective mechanism of six different butter samples on the viability rate of LGG bacteria directly after the spray-drying process and during storage for 4 weeks at 4 °C and 20 °C (±1 °C) based on hypothetical factors-the fatty acid's chemical character and content, and its melting enthalpy. The viability of bacteria, moisture content, water activity, color properties, morphology, particle size of powder, melting enthalpy of butters and their fatty acids composition were evaluated. It is assumed that the highest viability may be indirectly influenced by the relationship between the highest content of proteins and sugars and the lowest content of fats and fatty acids, which is characteristic for butter with a reduced fat content. This butter contained also the least monounsaturated and polyunsaturated fatty acids. The highest number of viable LGG (for systems with reduced-fat butter, as well as salted and lactose-free butter) may be caused by (among other factors) by the lower content of palmitic acid (C16: 0). For these butters, it was also observed that cell viability increased with the increase in melting enthalpy. The results confirmed the protective role of selected butters, which indicates the possibility of using them in industrial processes to increase the durability of additives and products using probiotic powders obtained by spray-drying.
Collapse
Affiliation(s)
- Alicja Fedorowicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 35, 71-270 Szczecin, Poland
| | - Artur Bartkowiak
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 35, 71-270 Szczecin, Poland
| |
Collapse
|
2
|
Yingngam B, Makewilai L, Chaisawat S, Yingngam K, Chaiburi C, Khumsikiew J, Netthong R. Vibration-assisted Microbead Production: A New Frontier for Biocompatible Surfaces. MEDICAL APPLICATIONS FOR BIOCOMPATIBLE SURFACES AND COATINGS 2024:251-285. [DOI: 10.1039/9781837675555-00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The encapsulation of active pharmaceutical ingredients (APIs) in microbeads is an essential step in drug delivery; however, it is also inherently associated with the need to control particle size and drug release profiles. Nevertheless, most conventional methods of microencapsulation fail to provide consistent results. A new method called vibration-assisted microbead coating is a novel unified technique utilizing mechanical vibrations to enable the controlled, uniform coating of microbeads on APIs. This chapter discusses the technology of vibration-assisted encapsulation performed by the authors through microbead formation and the physical activity of coating APIs. This chapter focuses on achieving uniform control of the final coated surface of the API, microbead shape, size, and loading through vibration parameters. Additionally, this chapter discusses the biocompatibility and stability of the final coated surface. This new means of encapsulation has high potential for drug delivery. This method reduces most of the traditional challenges of encapsulation, if not eliminates them, and is more reliable. Based on the abovementioned findings, the authors propose the following main areas for their further work: optimisation of vibration parameters for various APIs, research into the long-term stability of the loading–release profile, and possible use of the technique in targeted drug delivery.
Collapse
Affiliation(s)
- B. Yingngam
- aFaculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - L. Makewilai
- bIntegrated Biopharmaceutical Research Cluster, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - S. Chaisawat
- bIntegrated Biopharmaceutical Research Cluster, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - K. Yingngam
- bIntegrated Biopharmaceutical Research Cluster, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - C. Chaiburi
- cFaculty of Science and Digital Innovation, Thaksin University (Phattalung Campus), Pa Payom, Phattalung, 93210, Thailand
| | - J. Khumsikiew
- aFaculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - R. Netthong
- aFaculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| |
Collapse
|
3
|
Haseeb MT, Muhammad G, Hussain MA, Bukhari SNA, Sheikh FA. Flaxseed (Linum usitatissimum) mucilage: A versatile stimuli-responsive functional biomaterial for pharmaceuticals and healthcare. Int J Biol Macromol 2024; 278:134817. [PMID: 39154696 DOI: 10.1016/j.ijbiomac.2024.134817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The present review is novel as it discusses the main findings of researchers on the topic and their implications, as well as highlights the emerging research in this particular area and its future prospective. The seeds of Flax (Linum usitatissimum) extrude mucilage (FSM) that has a diverse and wide range of applications, especially in the food industry and as a pharmaceutical ingredient. FSM has been blended with several food and dairy products to improve gelling ability, optical properties, taste, and user compliance. The FSM is recognized as a foaming, encapsulating, emulsifying, suspending, film-forming, and gelling agent for several pharmaceutical preparations and healthcare materials. Owing to stimuli (pH) -responsive swelling-deswelling characteristics, high swelling indices at different physiological pHs of the human body, and biocompatibility, FSM is considered a smart material for intelligent, targeted, and controlled drug delivery applications through conventional and advanced drug delivery systems. FSM has been modified through carboxymethylation, acetylation, copolymerization, and electrostatic complexation to get the desired properties for pharma, food, and healthcare products. The present review is therefore devoted to the isolation techniques, structural characterization, highly valuable properties for food and pharmaceutical industries, preclinical and clinical trials, pharmacological aspects, biomedical attributes, and patents of FSM.
Collapse
Affiliation(s)
| | - Gulzar Muhammad
- Department of Chemistry, GC University, Lahore 54000, Pakistan
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan.
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia
| | - Fatima Akbar Sheikh
- College of Pharmacy, Niazi Medical and Dental College, Sargodha 40100, Pakistan
| |
Collapse
|
4
|
Aghelinejad A, Golshan Ebrahimi N. Investigation of delivery mechanism of curcumin loaded in a core of zein with a double-layer shell of chitosan and alginate. Heliyon 2024; 10:e33205. [PMID: 39044993 PMCID: PMC11263642 DOI: 10.1016/j.heliyon.2024.e33205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/22/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
The pursuit of efficient drug delivery systems has led to innovative approaches such as matrix and core-shell structures. This study explores these systems with a focus on enhancing the delivery and stability of curcumin, a bioactive compound with therapeutic potential. Matrix systems using zein protein were fabricated through coaxial airflow extrusion with a vibration generator, while core-shell systems were produced using concentric nozzles. Double-layer reservoir systems were also formed by coating chitosan-shelled structures with an alginate solution. Encapsulation of curcumin within each system was confirmed through FTIR and optical microscope analysis, followed by efficiency evaluation, which was measured approximately 86.5 ± 0.7 % for the matrix systems and 90 ± 0.8 % for the core-shell systems. Moreover, the particle sizes of matrix systems were measured in the range of 2000-2100 mμ and the particle sizes of single-layer and double-layer reservoir systems were in the ranges of 1600-1700 mμ and 1500-1700 mμ, respectively. The study investigated the stability of curcumin in these systems under various environmental conditions, including exposure to light, heat, pH variations, ions, and storage. Results demonstrated that the presence of multiple layers significantly enhanced the drug's stability. Afterwards, swelling and drug release profiles were assessed in simulated gastric, intestinal, and colon fluids. The swelling of the matrix, single-layer and double-layer reservoir systems after 29 h were 127.4 %, 146.9 % and 144 %, respectively. The matrix system showed 68.7 % drug release after 29 h, whereas single-layer chitosan-shelled and double-layer chitosan/alginate-shelled reservoir systems released 51.8 % and 45.6 % of the drug, respectively. The release mechanism was explored using zero-order, Korsmeyer-Peppas, and Kopcha kinetic models. Comparative analysis of the experimental results and model fittings indicated a deviation from Fickian diffusion, with erosion becoming more pronounced with each additional layer. In conclusion, the system with a zein core and double-layer chitosan/alginate shell displayed effective drug release regulation and enhanced stability of curcumin, making it a promising candidate for efficient drug delivery.
Collapse
Affiliation(s)
- Amitis Aghelinejad
- Polymer Engineering Department, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Nadereh Golshan Ebrahimi
- Polymer Engineering Department, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Shishir MRI, Suo H, Taip FS, Ahmed M, Xiao J, Wang M, Chen F, Cheng KW. Seed mucilage-based advanced carrier systems for food and nutraceuticals: fabrication, formulation efficiency, recent advancement, challenges, and perspectives. Crit Rev Food Sci Nutr 2024; 64:7609-7631. [PMID: 36919601 DOI: 10.1080/10408398.2023.2188564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Seed mucilages are potential sources of natural polysaccharides. They are biodegradable, biocompatible, sustainable, renewable, and safe for human consumption. Due to the desirable physicochemical and functional properties (e.g. gelling, thickening, stabilizing, and emulsifying), seed mucilages have attracted extensive attention from researchers for utilization as a promising material for the development of advanced carrier systems. Seed mucilages have been utilized as natural polymers to improve the properties of various carrier systems (e.g. complex coacervates, beads, nanofibers, and gels) and for the delivery of diverse hydrophilic and lipophilic compounds (e.g. vitamins, essential oils, antioxidants, probiotics, and antimicrobial agents) to achieve enhanced stability, bioavailability, bioactivity of the encapsulated molecules, and improved quality attributes of food products. This review highlights the recent progress in seed mucilage-based carrier systems for food and nutraceutical applications. The main contents include (1) sources, extraction methods, and physicochemical and functional characteristics of seed mucilages, (2) application of seed mucilages for the development of advanced carrier systems, (3) major issues associated with carrier fabrication, and (4) mechanisms of carrier development, latest improvements in carrier formulation, carrier efficiency in the delivery of bioactive agents, and application in food and nutraceuticals. Furthermore, major challenges and future perspectives of seed mucilage-based carriers for a commercial application are discussed.
Collapse
Affiliation(s)
- Mohammad Rezaul Islam Shishir
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
| | - Hao Suo
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Farah Saleena Taip
- Department of Process and Food Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| | - Maruf Ahmed
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur, Bangladesh
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Mingfu Wang
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Feng Chen
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Ka-Wing Cheng
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
6
|
Homayouni-Rad A, Mortazavian AM, Pourjafar H, Moghadam SK. Extrusion and Co-extrusion: A Technology in Probiotic Encapsulation with Alternative Materials. Curr Pharm Biotechnol 2024; 25:1986-2000. [PMID: 38275053 DOI: 10.2174/0113892010264234231219073231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 01/27/2024]
Abstract
Encapsulation, in particular extrusion and co-extrusion, is a common practice to protect probiotics from the harsh conditions of the digestive tract as well as processing. Hydrocolloids, including proteins and carbohydrates, natural or modified, are a group of ingredients used as the wall material in extrusion. Hydrocolloids, due to their specific properties, can significantly improve the probiotic survivability of the final powder during the microencapsulation process and storage. The present article will discuss the different kinds of hydrocolloids used for microencapsulation of probiotics by extrusion and co-extrusion, along with new sources of novel gums and their potential as wall material.
Collapse
Affiliation(s)
- Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir M Mortazavian
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Saba Kamalledin Moghadam
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Sharma H, Sharma S, Bajwa J, Chugh R, Kumar D. Polymeric carriers in probiotic delivery system. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
8
|
Kowsalya M, Sudha KG, Ali S, Velmurugan T, Prasanna Rajeshkumar M. Sustainability and controlled release behavior of microencapsulated Lactobacillus plantarum PRK7 and its application in probiotic yogurt production. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Structural Characterization and Functional Properties of Flaxseed Hydrocolloids and Their Application. Foods 2022; 11:foods11152304. [PMID: 35954070 PMCID: PMC9368198 DOI: 10.3390/foods11152304] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 01/15/2023] Open
Abstract
Flaxseed is an excellent source of valuable nutrients and is also considered a functional food. There are two types of hydrocolloids in flaxseed: flaxseed gum and proteins. Flaxseed gum exhibits emulsifying and foaming activities or can be used as a thickening and gelling agent. Due to its form of soluble fiber, flaxseed gum is related to many health benefits. Flaxseed proteins have various functional properties based on their physicochemical properties. While albumins possess the emulsion-forming ability, globulins better serve as foaming agents. Flaxseed proteins may also serve as a source of functional peptides with interesting biological and health-related activities. Functional properties and health-related benefits predetermine the application of these hydrocolloids, mainly in the food industry or medicine. Although these properties of flaxseed hydrocolloids have been recently and extensively studied, they are still not widely used on the industrial scale compared to other popular plant gums and proteins. The aim of this review was to present, discuss and highlight the recent discoveries in the structural characteristics and functional and biological properties of these versatile hydrocolloids with respect to factors affecting their characteristics and offer new insights into their potential applications as comparable alternatives to the other natural hydrocolloids or as the sources of novel functional products.
Collapse
|
10
|
Puligundla P, Lim S. A Review of Extraction Techniques and Food Applications of Flaxseed Mucilage. Foods 2022; 11:1677. [PMID: 35741874 PMCID: PMC9223220 DOI: 10.3390/foods11121677] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/15/2022] Open
Abstract
Flaxseed contains significant concentration of mucilage or gum (a type of hydrocolloid). Flaxseed mucilage (FM) predominantly occurs in the outermost layer of the seed's hull and is known to possess numerous health benefits such as delayed gastric emptying, reduced serum cholesterol, and improved glycemic control. FM is typically composed of an arabinoxylan (neutral in nature) and a pectic-like material (acidic in nature). Similar to gum arabic, FM exhibits good water-binding capacity and rheological properties (similar functionality); therefore, FM can be used as its replacement in foods. In this review, an overview of methods used for FM extraction and factors influencing the extraction yield were discussed initially. Thereafter, food applications of FM as gelling agent/gel-strengthening agent, structure-forming agent, stabilizing agent, fat replacer, anti-retrogradation agent, prebiotic, encapsulating agent, edible coatings and films/food packaging material, and emulsifier/emulsion stabilizer were included. At the end, some limitations to its wide application and potential solutions were added.
Collapse
Affiliation(s)
| | - Seokwon Lim
- Department of Food Science & Biotechnology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Korea;
| |
Collapse
|
11
|
Talebian S, Schofield T, Valtchev P, Schindeler A, Kavanagh JM, Adil Q, Dehghani F. Biopolymer-Based Multilayer Microparticles for Probiotic Delivery to Colon. Adv Healthc Mater 2022; 11:e2102487. [PMID: 35189037 PMCID: PMC11468821 DOI: 10.1002/adhm.202102487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/16/2022] [Indexed: 11/06/2022]
Abstract
The potential health benefits of probiotics may not be realized because of the substantial reduction in their viability during food storage and gastrointestinal transit. Microencapsulation has been successfully utilized to improve the resistance of probiotics to critical conditions. Owing to the unique properties of biopolymers, they have been prevalently used for microencapsulation of probiotics. However, majority of microencapsulated products only contain a single layer of protection around probiotics, which is likely to be inferior to more sophisticated approaches. This review discusses emerging methods for the multilayer encapsulation of probiotic using biopolymers. Correlations are drawn between fabrication techniques and the resultant microparticle properties. Subsequently, multilayer microparticles are categorized based on their layer designs. Recent reports of specific biopolymeric formulations are examined regarding their physical and biological properties. In particular, animal models of gastrointestinal transit and disease are highlighted, with respect to trials of multilayer microencapsulated probiotics. To conclude, novel materials and approaches for fabrication of multilayer structures are highlighted.
Collapse
Affiliation(s)
- Sepehr Talebian
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Nano Institute (Sydney Nano)The University of SydneySydneyNSW2006Australia
| | - Timothy Schofield
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
| | - Peter Valtchev
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Centre for Advanced Food EngineeringThe University of SydneySydneyNSW2006Australia
| | - Aaron Schindeler
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Centre for Advanced Food EngineeringThe University of SydneySydneyNSW2006Australia
- Bioengineering & Molecular Medicine LaboratoryThe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadNSW2145Australia
| | - John M. Kavanagh
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
| | - Qayyum Adil
- PharmaCare Laboratories18 Jubilee AveWarriewoodNSW2102Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Centre for Advanced Food EngineeringThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
12
|
Rodrigues F, Cedran M, Pereira G, Bicas J, Sato H. Effective encapsulation of reuterin-producing Limosilactobacillus reuteri in alginate beads prepared with different mucilages/gums. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 34:e00737. [PMID: 35686007 PMCID: PMC9171447 DOI: 10.1016/j.btre.2022.e00737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 01/07/2023]
Abstract
The mainly aim of this study was to use mucilaginous solutions obtained from tamarind, mutamba, cassia tora, psyllium and konjac powdered to encapsulate reuterin-producing Limosilactobacillus reuteri in alginate beads by extrusion technique. In the particles were determined the bacterial encapsulation efficiency, cell viability during storage and survival under simulated gastric and intestinal conditions. Moreover, the reuterin production, its entrapment into the beads and the influence on viability of encapsulated microorganism were evaluated. Scanning electron microscopy and Fourier Transform Infrared spectroscopy were employed to characterize the produced particles. The beads showed a relatively spherical shape with homogenous distribution of L. reuteri. The use of gums and mucilages combined with alginate improved the encapsulation efficiency (from 93.2 to 97.4%), the viability of encapsulated bacteria during refrigerated storage (especially in prolonged storage of 20, 30 and 60 days) and the survival after exposure to gastric and enteric environments (from 67.7 to 76.6%). The L. reuteri was able to produce reuterin via bioconversion of glycerol in the film-forming solutions, and the entrapment of the metabolite was improved using konjac, mutamba and tamarind mucilaginous solutions in the encapsulation process (45, 44.57 and 41.25%, respectively). Thus, our findings confirm the great potential of these hydrocolloids to different further purposes, enabling its application as support material for delivery of chemical or biological compounds.
Collapse
Affiliation(s)
- F.J. Rodrigues
- Food Biochemistry Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - M.F. Cedran
- Food Biotechnology Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - G.A. Pereira
- School of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém, PA, Brazil
| | - J.L. Bicas
- Food Biotechnology Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - H.H. Sato
- Food Biochemistry Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
13
|
Advances in extrusion-dripping encapsulation of probiotics and omega-3 rich oils. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Application of Spray Dried Encapsulated Probiotics in Functional Food Formulations. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Lacticaseibacillus rhamnosus: A Suitable Candidate for the Construction of Novel Bioengineered Probiotic Strains for Targeted Pathogen Control. Foods 2022; 11:foods11060785. [PMID: 35327208 PMCID: PMC8947445 DOI: 10.3390/foods11060785] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics, with their associated beneficial effects, have gained popularity for the control of foodborne pathogens. Various sources are explored with the intent to isolate novel robust probiotic strains with a broad range of health benefits due to, among other mechanisms, the production of an array of antimicrobial compounds. One of the shortcomings of these wild-type probiotics is their non-specificity. A pursuit to circumvent this limitation led to the advent of the field of pathobiotechnology. In this discipline, specific pathogen gene(s) are cloned and expressed into a given probiotic to yield a novel pathogen-specific strain. The resultant recombinant probiotic strain will exhibit enhanced species-specific inhibition of the pathogen and its associated infection. Such probiotics are also used as vehicles to deliver therapeutic agents. As fascinating as this approach is, coupled with the availability of numerous probiotics, it brings a challenge with regard to deciding which of the probiotics to use. Nonetheless, it is indisputable that an ideal candidate must fulfil the probiotic selection criteria. This review aims to show how Lacticaseibacillus rhamnosus, a clinically best-studied probiotic, presents as such a candidate. The objective is to spark researchers’ interest to conduct further probiotic-engineering studies using L. rhamnosus, with prospects for the successful development of novel probiotic strains with enhanced beneficial attributes.
Collapse
|
16
|
Production and Characterization of Yogurt-Like Fermented Beverage Based on Camelina (Camelina sativa L.) Seed Press Cake. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plant-based fermented beverages are growing in popularity due to the rise in vegetarianism, health trends and ethical concerns. In this study, camelina (Camelina sativa L.) seed press cake (CPC, 15% and 20% w/w) was fermented using yogurt starter culture. The physicochemical properties of the samples, including pH, total acidity, color, viscosity, texture and rheological properties were investigated. Moreover, the lactic acid bacteria (LAB) viability, bioactive compounds and antioxidant activity were determined. During fermentation and 28-day refrigerated storage, the samples achieved a mean viable bacterial count of at least 1010 CFU/g, which is higher than the recommended bacteria level for traditional dairy yogurt (106 CFU/g). A significant acidification, consumption of reducing sugars, increase in free amino acids and polyphenolics was observed. In addition, CPC-based fermented samples showed good antioxidant potential. Textural and rheological characteristics were similar to dairy yogurt. Moreover, fermentation improved the sensory attributes of CPC, meeting consumers’ acceptance criteria. Thus, the study indicated that fermentation had a marked effect on the physicochemical, microbiological and functional properties of CPC. Therefore, the fermented CPC-based beverage has the potential to be a valid, value-added and novel alternative to dairy-based yogurt.
Collapse
|
17
|
Łopusiewicz Ł, Bogusławska-Wąs E, Drozłowska E, Trocer P, Dłubała A, Mazurkiewicz-Zapałowicz K, Bartkowiak A. The Application of Spray-Dried and Reconstituted Flaxseed Oil Cake Extract as Encapsulating Material and Carrier for Probiotic Lacticaseibacillus rhamnosus GG. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5324. [PMID: 34576543 PMCID: PMC8471581 DOI: 10.3390/ma14185324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/28/2022]
Abstract
Agro-industrial by-products are promising source of biopolymers, including proteins and polysaccharides. This study was designed to evaluate the flaxseed oil cake extract (FOCE) as natural encapsulating material and carrier for probiotic Lacticaseibacillus rhamnous GG (LGG). The powders were obtained using three spray drying inlet temperatures (110 °C, 140 °C, 170 °C), and reconstituted. The influence of temperature on water activity, morphology, chemical composition, flowability and cohesiveness of the powders was estimated. For all variants, the survival of bacteria during spray drying, and simulated passage through the gastrointestinal tract was evaluated. The preservation of LGG probiotic features such as cholesterol reduction, hydrophobicity and adhesion to mucin were examined. Results revealed that all physicochemical and functional characteristics of the powders were affected by the inlet temperature. This study demonstrated that FOCE is an appropriate matrix for spray drying (due to flaxseed proteins and polysaccharides) providing high survivability of bacteria (89.41-96.32%), that passed meaningfully through the simulated gastrointestinal tract (4.39-5.97 log reduction), largely maintaining their probiotic properties, being a promising environmentally-friendly carrier for probiotic LGG.
Collapse
Affiliation(s)
- Łukasz Łopusiewicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (E.D.); (P.T.); (A.B.)
| | - Elżbieta Bogusławska-Wąs
- Department of Applied Microbiology and Human Nutrition Physiology, West Pomeranian University of Technology Szczecin, Papieża Pawła VI 3, 71-899 Szczecin, Poland; (E.B.-W.); (A.D.)
| | - Emilia Drozłowska
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (E.D.); (P.T.); (A.B.)
| | - Paulina Trocer
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (E.D.); (P.T.); (A.B.)
| | - Alicja Dłubała
- Department of Applied Microbiology and Human Nutrition Physiology, West Pomeranian University of Technology Szczecin, Papieża Pawła VI 3, 71-899 Szczecin, Poland; (E.B.-W.); (A.D.)
| | - Kinga Mazurkiewicz-Zapałowicz
- Department of Hydrobiology, Ichthyology and Biotechnology of Reproduction, West Pomeranian University of Technology in Szczecin, Kazimierza Królewicza 4, 71-899 Szczecin, Poland;
| | - Artur Bartkowiak
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (E.D.); (P.T.); (A.B.)
| |
Collapse
|
18
|
Effect of prebiotics encapsulated with probiotics on encapsulation efficiency, microbead size, and survivability: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01059-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
How Y, Pui L. Survivability of microencapsulated probiotics in nondairy beverages: A review. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuhsuan How
- Department of Food Science with Nutrition, Faculty of Applied Sciences UCSI University Wilayah Persekutuan Kuala Lumpur Malaysia
| | - Liewphing Pui
- Department of Food Science with Nutrition, Faculty of Applied Sciences UCSI University Wilayah Persekutuan Kuala Lumpur Malaysia
| |
Collapse
|