1
|
Dual-Applicator MR Imaging-Guided Microwave Ablation with Real-Time MR Thermometry: Phantom and Porcine Tissue Model Experiments. J Vasc Interv Radiol 2023; 34:46-53.e4. [PMID: 36202337 DOI: 10.1016/j.jvir.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/17/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To investigate the effect of simultaneous use of dual applicators on the image quality of real-time magnetic resonance (MR) thermometry and to characterize the dual-applicator treatment zone pattern during MR imaging-guided microwave ablation (MWA). MATERIALS AND METHODS MWA experiments were performed on a 1.5-T MR scanner with 2 commercial microwave systems (902-928 MHz). Phantom experiments were first performed to evaluate the effect of dual-applicator MWA on the image quality of MR. Then, porcine tissue model experiments were conducted with real-time MR thermometry using either a single applicator or dual applicators inserted 2.6, 3.6, and 4.6 cm apart. Fiberoptic thermal probes were used to measure the temperature changes at the tissue surface. RESULTS Simultaneous use of dual applicators resulted in a decrease in the relative signal-to-noise ratio (SNR) in the MR thermometry images to 55% ± 2.9% when compared with that of a single applicator (86.2% ± 2.0%). Despite the lower SNR, the temperature and ablation zone maps were of adequate quality to allow visualization of the ablation zone(s). The extents of increase in the temperature at the tissue surface using dual applicators (19.7 °C ± 2.6 °C) and a single applicator (18.2 °C ± 3.3 °C) were not significantly different (P = .40). Treatment zones were significantly larger (P < .05) in dual-applicator ablations (29.4 ± 0.4, 39.9 ± 0.6, and 42.6 ± 0.9 cm2 with 2.6-, 3.6-, and 4.6-cm spacing, respectively) at the end of the ablation procedure than in the single-applicator MWA (18.6 ± 0.9 cm2). CONCLUSIONS MR imaging-guided dual-applicator MWA produced larger ablation zones while allowing adequate real-time MR thermometry image quality for monitoring the evolution of the treatment zone.
Collapse
|
2
|
Hensen B, Hellms S, Werlein C, Jonigk D, Gronski PA, Bruesch I, Rumpel R, Wittauer EM, Vondran FWR, Parker DL, Wacker F, Gutberlet M. Correction of heat-induced susceptibility changes in respiratory-triggered 2D-PRF-based thermometry for monitoring of magnetic resonance-guided hepatic microwave ablation in a human-like in vivo porcine model. Int J Hyperthermia 2022; 39:1387-1396. [DOI: 10.1080/02656736.2022.2138987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Bennet Hensen
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- STIMULATE-Solution Centre for Image Guided Local Therapies, Magdeburg, Germany
| | - Susanne Hellms
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | | | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | | | - Inga Bruesch
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Regina Rumpel
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Eva-Maria Wittauer
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Florian W. R. Vondran
- Clinic for General, Abdominal and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Dennis L. Parker
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, USA
| | - Frank Wacker
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- STIMULATE-Solution Centre for Image Guided Local Therapies, Magdeburg, Germany
| | - Marcel Gutberlet
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- STIMULATE-Solution Centre for Image Guided Local Therapies, Magdeburg, Germany
| |
Collapse
|
3
|
Huang X, Zhou Y, Wang C, Qi F, Luo P, Du H, Zhang Q, Liu Z, Yuan K, Qiu B. Development of a novel MR-conditional microwave needle for MR-guided interventional microwave ablation at 1.5T. Magn Reson Med 2022; 88:1886-1900. [PMID: 35775830 DOI: 10.1002/mrm.29289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE To develop an MR-conditional microwave needle that generates a spherical ablation zone and clear MRI visibility for MR-guided microwave ablation. METHODS An MR-conditional microwave needle consisting of zirconia tip and TA18 titanium alloy tube was investigated. The numerical model was created to optimize the needle's geometry and analyze its performance. A geometrically optimized needle was produced using non-magnetic materials based on the electromagnetics simulation results. The needle's mechanical properties were tested per the Chinese pharmaceutical industry standard YY0899-2013. The MRI visibility performance and ablation characteristics of the needle was tested both in vitro (phantom) and in vivo (rabbit) at 1.5T. The RF-induced heating was evaluated in ex vivo porcine liver. RESULTS The needle's mechanical properties met the specified requirements. The needle susceptibility artifact was clearly visible both in vitro and in vivo. The needle artifact diameter (A) was small in in vivo (Ashaft: 4.96 ± 0.18 mm for T1W-FLASH, 3.13 ± 0.05 mm for T2-weighted fast spin-echo (T2W-FSE); Atip: 2.31 ± 0.09 mm for T1W-FLASH, 2.29 ± 0.08 mm for T2W-FSE; tip location error [TLE]: -0.94 ± 0.07 mm for T1W-FLASH, -1.10 ± 0.09 mm for T2W-FSE). Ablation zones generated by the needle were nearly spherical with an elliptical aspect ratio ranging from 0.79 to 0.90 at 30 W, 50 W for 3, 5, 10 min duration ex vivo ablations and 0.86 at 30 W for 10 min duration in vivo ablations. CONCLUSION The designed MR-conditional microwave needle offers excellent mechanical properties, reliable MRI visibility, insignificant RF-induced heating, and a sufficiently spherical ablation zone. Further clinical development of MR-guided microwave ablation appears warranted.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Yufu Zhou
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Changliang Wang
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Fulang Qi
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Penghui Luo
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Huiyu Du
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Qing Zhang
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Zhengrong Liu
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Kecheng Yuan
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Bensheng Qiu
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| |
Collapse
|
4
|
Lu A, Woodrum DA, Felmlee JP, Favazza CP, Gorny KR. Improved MR-thermometry during hepatic microwave ablation by correcting for intermittent electromagnetic interference artifacts. Phys Med 2020; 71:100-107. [PMID: 32114323 DOI: 10.1016/j.ejmp.2020.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/01/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
MRI-guided microwave ablation (MWA) is a minimally invasive treatment for localized cancer. MR thermometry has been shown to be able to provide vital information for monitoring the procedure in real-time. However, MRI during active MWA can suffer from image quality degradation due to intermittent electromagnetic interference (EMI). A novel approach to correct for EMI-contaminated images is presented here to improve MR thermometry during clinical hepatic MWA. The method was applied to MR-thermometry images acquired during four MR-guided hepatic MWA treatments using a commercially available MRI-configured microwave generator system. During the treatments MR thermometry data acquisition was synchronized to respiratory cycle to minimize the impact of motion. EMI was detected and corrected using uncontaminated k-space data from nearby frames in k-space. Substantially improved temperature and thermal damage maps have been obtained and the treatment zone can be better visualized. Our ex vivo tissue sample study shows the correction introduced minimal errors to the temperature maps and thermal damage maps.
Collapse
Affiliation(s)
- Aiming Lu
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, United States.
| | - David A Woodrum
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, United States
| | - Joel P Felmlee
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, United States
| | | | - Krzysztof R Gorny
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, United States
| |
Collapse
|
5
|
Bressem KK, Vahldiek JL, Erxleben C, Shnayien S, Poch F, Geyer B, Lehmann KS, Hamm B, Niehues SM. Improved Visualization of the Necrotic Zone after Microwave Ablation Using Computed Tomography Volume Perfusion in an In Vivo Porcine Model. Sci Rep 2019; 9:18506. [PMID: 31811190 PMCID: PMC6898643 DOI: 10.1038/s41598-019-55026-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/21/2019] [Indexed: 01/02/2023] Open
Abstract
After hepatic microwave ablation, the differentiation between fully necrotic and persistent vital tissue through contrast enhanced CT remains a clinical challenge. Therefore, there is a need to evaluate new imaging modalities, such as CT perfusion (CTP) to improve the visualization of coagulation necrosis. MWA and CTP were prospectively performed in five healthy pigs. After the procedure, the pigs were euthanized, and the livers explanted. Orthogonal histological slices of the ablations were stained with a vital stain, digitalized and the necrotic core was segmented. CTP maps were calculated using a dual-input deconvolution algorithm. The segmented necrotic zones were overlaid on the DICOM images to calculate the accuracy of depiction by CECT/CTP compared to the histological reference standard. A receiver operating characteristic analysis was performed to determine the agreement/true positive rate and disagreement/false discovery rate between CECT/CTP and histology. Standard CECT showed a true positive rate of 81% and a false discovery rate of 52% for display of the coagulation necrosis. Using CTP, delineation of the coagulation necrosis could be improved significantly through the display of hepatic blood volume and hepatic arterial blood flow (p < 0.001). The ratios of true positive rate/false discovery rate were 89%/25% and 90%/50% respectively. Other parameter maps showed an inferior performance compared to CECT.
Collapse
Affiliation(s)
- Keno K Bressem
- Department of Radiology, Charité, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Janis L Vahldiek
- Department of Radiology, Charité, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Christoph Erxleben
- Department of Radiology, Charité, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Seyd Shnayien
- Department of Radiology, Charité, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Franz Poch
- Department of Surgery, Charité, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Beatrice Geyer
- Department of Surgery, Charité, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Kai S Lehmann
- Department of Surgery, Charité, Hindenburgdamm 30, 12203, Berlin, Germany
| | - B Hamm
- Department of Radiology, Charité, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Stefan M Niehues
- Department of Radiology, Charité, Hindenburgdamm 30, 12203, Berlin, Germany
| |
Collapse
|
6
|
Practical implementation of robust MR-thermometry during clinical MR-guided microwave ablations in the liver at 1.5 T. Phys Med 2019; 67:91-99. [PMID: 31704392 DOI: 10.1016/j.ejmp.2019.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
Abstract
Practical non-invasive equipment modifications and effective acquisition methods to achieve robust and reliable real-time MR thermometry for monitoring of clinical hepatic microwave ablations were implemented. These included selection of the microwave generator location (inside versus outside the MR scan room), the number of radiofrequency chokes added to the microwave generator's coaxial lines, and the use of copper wool to maximize their electrical grounding. Signal-to-noise ratio (SNR) of MR thermometry images of a small fluid-filled phantom acquired during activation of microwave antenna were used to evaluate image quality as a function of each modification. SNR measurements corresponding to both locations of the microwave generator were comparable and so it was located outside the MR scan room. For this location, addition of one RF choke on the power and four chokes on the sensor coaxial lines was found to be optimal, corresponding to a 68% increase in SNR. Furthermore, image quality strongly depended on the proper electrical grounding of the power and sensor lines. SNR ratio (relative to SNR of baseline images) during activation of microwave generator was found to be 0.49 ± 0.28 without adequate grounding, and 0.88 ± 0.08 with adequate grounding (p = 0.002, Student's t-test). These SNR measurements were sufficiently sensitive to detect issues related to equipment performance and hence formed part of the quality assurance testing performed prior to each clinical treatment. Incorporating these non-invasive approaches resulted in significant improvements to image quality and, importantly while maintaining the clinical integrity of the microwave system which is of paramount importance in a highly regulated healthcare environment.
Collapse
|
7
|
Strigari L, Minosse S, D'Alessio D, Farina L, Cavagnaro M, Cassano B, Pinto R, Vallati G, Lopresto V. Microwave thermal ablation using CT-scanner for predicting the variation of ablated region over time: advantages and limitations. Phys Med Biol 2019; 64:115021. [PMID: 30995620 DOI: 10.1088/1361-6560/ab1a67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aims at investigating in real-time the structural and dynamical changes occurring in an ex vivo tissue during a microwave thermal ablation (MTA) procedure. The experimental set-up was based on ex vivo liver tissue inserted in a dedicated box, in which 3 fibre-optic (FO) temperature probes were introduced to measure the temperature increase over time. Computed tomography (CT) imaging technique was exploited to experimentally study in real-time the Hounsfield Units (HU) modification occurring during MTA. The collected image data were processed with a dedicated MATLAB tool, developed to analyse the FO positions and HU modifications from the CT images acquired over time before and during the ablation procedures. The radial position of a FO temperature probe (rFO) and the value of HU in the region of interest (ROI) containing the probe (HUo), along with the corresponding value of HU in the contralateral ROI with respect to the MTA antenna applicator (HUc), were determined and registered over time during and after the MTA procedure. Six experiments were conducted to confirm results. The correlation between temperature and the above listed predictors was investigated using univariate and multivariate analysis. At the multivariate analysis, the time, rFO and HUc resulted significant predictive factors of the logarithm of measured temperature. The correlation between predicted and measured temperatures was 0.934 (p < 0.001). The developed tool allows identifying and registering the image-based parameters useful for predicting the temperature variation over time in each investigated voxel by taking into consideration the HU variation.
Collapse
Affiliation(s)
- L Strigari
- Laboratory of Medical Physics and Expert Systems, IRCCS Regina Elena National Cancer Institute, IFO, via Elio Chianesi, 53, 00144, Rome, Italy. Current address: Department of Medical Physics, St. Orsola-Malpighi University Hospital, via Massarenti 9 40138 Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hübner F, Schreiner R, Reimann C, Bazrafshan B, Kaltenbach B, Schüßler M, Jakoby R, Vogl TJ. Ex vivo validation of microwave thermal ablation simulation using different flow coefficients in the porcine liver. Med Eng Phys 2019; 66:56-64. [PMID: 30826254 DOI: 10.1016/j.medengphy.2019.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 12/25/2022]
Abstract
The purpose of the study was to validate the simulation model for a microwave thermal ablation in ex vivo liver tissue. The study aims to show that heat transfer due to the flow of tissue water during ablation in ex vivo tissue is not negligible. Ablation experiments were performed in ex vivo porcine liver with microwave powers of 60 W to 100 W. During the procedure, the temperature was recorded in the liver sample at different distances to the applicator using a fiber-optic thermometer. The position of the probes was identified by CT imaging and transferred to the simulation. The simulation of the heat distribution in the liver tissue was carried out with the software CST Studio Suite. The results of the simulation with different flow coefficients were compared with the results of the ablation experiments using the Bland-Altman analysis. The analysis showed that the flow coefficient of 90,000 W/(K*m3) can be considered as the most suitable value for clinically used powers. The presented simulation model can be used to calculate the temperature distribution for microwave ablation in ex vivo liver tissue.
Collapse
Affiliation(s)
- Frank Hübner
- Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe - University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Roland Schreiner
- Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe - University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Carolin Reimann
- Institute for Microwave Engineering and Photonics, Technische Universität Darmstadt, Merckstrasse 25, 64283 Darmstadt, Germany
| | - Babak Bazrafshan
- Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe - University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Benjamin Kaltenbach
- Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe - University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Martin Schüßler
- Institute for Microwave Engineering and Photonics, Technische Universität Darmstadt, Merckstrasse 25, 64283 Darmstadt, Germany
| | - Rolf Jakoby
- Institute for Microwave Engineering and Photonics, Technische Universität Darmstadt, Merckstrasse 25, 64283 Darmstadt, Germany
| | - Thomas Josef Vogl
- Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe - University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
9
|
Hoffmann R, Kessler DE, Weiss J, Clasen S, Pereira PL, Nikolaou K, Rempp H. Preclinical evaluation of an MR-compatible microwave ablation system and comparison with a standard microwave ablation system in an ex vivo bovine liver model. Int J Hyperthermia 2017; 33:617-623. [DOI: 10.1080/02656736.2017.1284349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Rüdiger Hoffmann
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - David-Emanuel Kessler
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Jakob Weiss
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Stephan Clasen
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Philippe L. Pereira
- Department of Radiology, Minimally Invasive Therapies and Nuclear Medicine, SLK-Kliniken Heilbronn GmbH, Heilbronn, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Hansjörg Rempp
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|