1
|
Liu J, Guo Y, Sun Y, Liu M, Zhang X, Zheng R, Cong L, Liu B, Xie X, Huang G. Three-dimensional ultrasound fusion imaging in precise needle placement for thermal ablation of hepatocellular carcinoma. Int J Hyperthermia 2024; 41:2316097. [PMID: 38360570 DOI: 10.1080/02656736.2024.2316097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/03/2024] [Indexed: 02/17/2024] Open
Abstract
PURPOSE To investigate the value of three-dimensional ultrasound fusion imaging (3DUS FI) technique for guiding needle placement in hepatocellular carcinoma (HCC) thermal ablation. METHODS A total of 57 patients with 60 HCCs with 3DUS FI-guided thermal ablation were retrospectively included in the study. 3DUS volume data of liver were acquired preoperatively by freehand scanning with the tumor and predetermined 5 mm ablative margin automatically segmented. Plan of needle placement was made through a predetermined simulated ablation zone to ensure a 5 mm ablative margin with the coverage rate toward tumor and ablative margin. With real-time ultrasound and 3DUS fusion imaging, ablation needles were placed according to the plan. After ablation, the ablative margin was immediately evaluated by contrast-enhanced ultrasound and 3DUS fusion imaging. The rate of adequate ablative margin, complete response (CR), local tumor progression (LTP), disease-free survival (DFS), and overall survival (OS) was evaluated. RESULTS According to postoperative contrast-enhanced CT or MR imaging, the complete response rate was 100% (60/60), and 83% of tumors (30/36) achieved adequate ablative margin (>5 mm) three-dimensionally. During the follow-up period of 6.0-42.6 months, LTP occurred in 5 lesions, with 1- and 2-year LTP rates being 7.0% and 9.4%. The 1- and 2-year DFS rates were 76.1% and 65.6%, and 1- and 2-year OS rates were 98.1% and 94.0%. No major complications or ablation-related deaths were observed in any patients. CONCLUSIONS Three-dimensional ultrasound fusion imaging technique may improve the needle placement of thermal ablation for HCC and reduce the rate of LTP.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuqing Guo
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Ultrasound, Huadong Hospital, Fudan University, Shanghai, China
| | - Yueting Sun
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ming Liu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoer Zhang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ruiying Zheng
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Longfei Cong
- Medical Imaging System Division, Shenzhen Mindray Bio-Medical Electronics Co., Ltd, Shenzhen, China
| | - Baoxian Liu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guangliang Huang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Medical Ultrasonics, Guangxi Hospital Division of the First Affiliated Hospital, Sun Yat-Sen University, Nanning, China
| |
Collapse
|
2
|
Long H, Zhou X, Zhang X, Ye J, Huang T, Cong L, Xie X, Huang G. 3D fusion is superior to 2D point-to-point contrast-enhanced US to evaluate the ablative margin after RFA for hepatocellular carcinoma. Eur Radiol 2024; 34:1247-1257. [PMID: 37572191 DOI: 10.1007/s00330-023-10023-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 08/14/2023]
Abstract
PURPOSE To compare the efficiency of three-dimensional (3D) and two-dimensional (2D) contrast-enhanced ultrasound (CEUS)-derived techniques in evaluating the ablative margin (AM) after radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC). METHODS In total, 98 patients with 98 HCCs were enrolled. The 2D CEUS point-to-point imaging (2D CEUS-PI) was conducted by comparing the pre- and post-RFA 2D CEUS images manually, and the 3D CEUS fusion imaging (3D CEUS-FI) was conducted by fusing the pre- and post-RFA 3D CEUS images automatically. These two techniques were compared in distinguishing an adequate AM ≥ 5 mm. Risk factors for local tumor progression (LTP) after RFA were analyzed by the Kaplan-Meier method with log-rank test. RESULTS The mean registration time of 3D CEUS-FI and 2D CEUS-PI was 5.0 and 9.3 min, respectively (p < 0.0001). The kappa coefficient was 0.680 for agreement between 2D CEUS-PI and 3D CEUS-FI in the evaluation of AM (p < 0.0001). Tumors with AM < 5 mm by 2D CEUS-PI were all identified as AM < 5 mm by 3D CEUS-FI. Nonetheless, 16 (26%) tumors identified as AM ≥ 5 mm by 2D CEUS-PI were re-classified as AM < 5 mm by 3D CEUS-FI. During a median follow-up time of 31.2 months (range, 3.2-66.0 months), LTP was identified in 8 tumors. The estimated 1-/2-/3-year cumulative incidence of LTP was 4.4%, 8.1%, and 10.3%, respectively. Higher estimated cumulative incidence of LTP was identified in tumors with AM < 5 mm by 2D CEUS-PI (at 3-year, 27.2% vs 0%; p < 0.001), and by 3D CEUS-FI (at 3-year, 20.7% vs 0%; p = 0.004). CONCLUSION 3D CEUS-FI excelled in the evaluation of AM when compared with 2D CEUS-PI. With equivalent efficacy in the prediction of LTP, 3D CEUS-FI was superior to 2D CEUS-PI for its automatic and time-saving procedure. CLINICAL RELEVANCE STATEMENT 3D CEUS fusion imaging may serve as an effective tool in evaluating ablative margin and predicting local tumor progression after RFA in HCC. KEY POINTS • Both 2D and 3D CEUS-derived techniques could evaluate ablative margin (AM) after RFA for hepatocellular carcinoma. • 3D CEUS fusion imaging was more precise in the evaluation of AM compared to 2D CEUS point-to-point imaging, with advantages of its automatic and time-saving procedure. • An inadequate AM < 5 mm evaluated by CEUS-derived techniques was the only risk factor of LTP after RFA for hepatocellular carcinoma (p < 0.001 for 2D CEUS point-to-point imaging, and p = 0.004 for 3D CEUS fusion imaging).
Collapse
Affiliation(s)
- Haiyi Long
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, No.58 Zhong Shan Road 2, Guangzhou, 510080, China
| | - Xiaoyu Zhou
- Department of Ultrasound, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xiaoer Zhang
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, No.58 Zhong Shan Road 2, Guangzhou, 510080, China
| | - Jieyi Ye
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, Foshan First People's Hospital, 81 Lingnan North Road, Foshan, 528000, Guangdong, China
| | - Tongyi Huang
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, No.58 Zhong Shan Road 2, Guangzhou, 510080, China
| | - Longfei Cong
- Medical Imaging System Division, Shenzhen Mindray Bio-Medical Electronics Co. Ltd, Shenzhen, China
| | - Xiaoyan Xie
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, No.58 Zhong Shan Road 2, Guangzhou, 510080, China.
| | - Guangliang Huang
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, No.58 Zhong Shan Road 2, Guangzhou, 510080, China.
- Department of Medical Ultrasonics, Guangxi Hospital Division of the First Affiliated Hospital, Sun Yat-Sen University, Guangxi, China.
| |
Collapse
|
3
|
Kudo M, Aoki T, Ueshima K, Tsuchiya K, Morita M, Chishina H, Takita M, Hagiwara S, Minami Y, Ida H, Nishida N, Ogawa C, Tomonari T, Nakamura N, Kuroda H, Takebe A, Takeyama Y, Hidaka M, Eguchi S, Chan SL, Kurosaki M, Izumi N. Achievement of Complete Response and Drug-Free Status by Atezolizumab plus Bevacizumab Combined with or without Curative Conversion in Patients with Transarterial Chemoembolization-Unsuitable, Intermediate-Stage Hepatocellular Carcinoma: A Multicenter Proof-Of-Concept Study. Liver Cancer 2023; 12:321-338. [PMID: 37901197 PMCID: PMC10603621 DOI: 10.1159/000529574] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/01/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Atezolizumab plus bevacizumab therapy is extremely effective in the treatment of intermediate-stage hepatocellular carcinoma (HCC), with a response rate of 44%, as reported in the IMbrave150 trial. When tumor shrinkage is obtained, achieving complete response (CR) is possible in many cases using curative conversion with resection, ablation, or superselective transarterial chemoembolization (TACE) with curative intent. This concept, i.e., curative conversion by combining systemic therapy and locoregional therapy, has not been reported before. This multicenter proof-of-concept study was conducted to show the value of curative conversion in immunotherapy-treated intermediate-stage HCC meeting TACE-unsuitable criteria. Methods This study included 110 consecutive Child-Pugh A patients who received atezolizumab plus bevacizumab as first-line treatment for unresectable and TACE-unsuitable intermediate-stage HCC at seven centers in Japan. CR rate, drug-free rate, time to CR, change in liver function, efficacy in positron emission tomography (PET)-positive HCC, progression-free survival (PFS), and overall survival (OS) were assessed in patients who achieved CR using resection, ablation, superselective TACE with curative intent following atezolizumab plus bevacizumab or atezolizumab plus bevacizumab alone. Results Clinical or pathological CR was achieved in 38 patients (35%) (median observation period: 21.2 months). The modalities of curative conversion in 35 patients were as follows: resection, 7; ablation, 13; and superselective TACE, 15. Three patients achieved clinical CR with atezolizumab plus bevacizumab therapy alone. Among the 38 CR patients, 25 achieved drug-free status. PFS was not reached, and 3 patients experienced recurrence after reaching CR. Regarding OS, there were no deaths in any of the CR patients. The albumin-bilirubin score did not deteriorate after locoregional therapy or resection. Of seven PET-positive patients who achieved CR with atezolizumab plus bevacizumab followed by curative conversion, five achieved drug-free status. Conclusion The achievement of CR rate by curative conversion in patients treated with atezolizumab plus bevacizumab as the preceding therapy for unresectable and TACE-unsuitable intermediate-stage HCC was 35%. Overall, 23% of patients achieved drug-free status and no recurrence was observed from this patient subgroup with CR and drug-free status. Thus, achieving CR and/or drug-free status should be a therapeutic goal for patients with intermediate-stage HCC without vascular invasion or extrahepatic spread.
Collapse
Affiliation(s)
- Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Tomoko Aoki
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuomi Ueshima
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kaoru Tsuchiya
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Masahiro Morita
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hirokazu Chishina
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masahiro Takita
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Satoru Hagiwara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yasunori Minami
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hiroshi Ida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Chikara Ogawa
- Department of Gastroenterology, Takamatsu Red Cross Hospital, Takamatsu, Japan
| | - Tetsu Tomonari
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | | | - Hidekatsu Kuroda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba, Japan
| | - Atsushi Takebe
- Department of Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yoshifumi Takeyama
- Department of Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Stephen L Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Masayuki Kurosaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Namiki Izumi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| |
Collapse
|
4
|
Kudo M. Drug-Off Criteria in Patients with Hepatocellular Carcinoma Who Achieved Clinical Complete Response after Combination Immunotherapy Combined with Locoregional Therapy. Liver Cancer 2023; 12:289-296. [PMID: 37901198 PMCID: PMC10601881 DOI: 10.1159/000532023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 10/31/2023] Open
Affiliation(s)
- Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
5
|
Verdonschot KHM, Arts S, Van den Boezem PB, de Wilt JHW, Fütterer JJ, Stommel MWJ, Overduin CG. Ablative margins in percutaneous thermal ablation of hepatic tumors: a systematic review. Expert Rev Anticancer Ther 2023; 23:977-993. [PMID: 37702571 DOI: 10.1080/14737140.2023.2247564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023]
Abstract
INTRODUCTION This study aims to systematically review current evidence on ablative margins and correlation to local tumor progression (LTP) after thermal ablation of hepatocellular carcinoma (HCC) and colorectal liver metastases (CRLM). METHODS A systematic search was performed in PubMed (MEDLINE) and Web of Science to identify all studies that reported on ablative margins (AM) and related LTP rates. Studies were assessed for risk of bias and synthesized separately per tumor type. Where possible, results were pooled to calculate risk differences (RD) as function of AM. RESULTS In total, 2910 articles were identified of which 43 articles were eligible for final analysis. There was high variability in AM measurement methodology across studies in terms of measurement technique, imaging modalities, and timing. Most common margin stratification was < 5 mm and > 5 mm, for which data were available in 25/43 studies (58%). Of these, all studies favored AM > 5 mm to reduce the risk of LTP, with absolute RD of 16% points for HCC and 47% points for CRLM as compared to AM < 5 mm. CONCLUSIONS Current evidence supports AM > 5 mm to reduce the risk of LTP after thermal ablation of HCC and CRLM. However, standardization of AM measurement and reporting is critical to allow future meta-analyses and improved identification of optimal threshold value for clinical use.
Collapse
Affiliation(s)
- K H M Verdonschot
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - S Arts
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - P B Van den Boezem
- Department of Surgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - J H W de Wilt
- Department of Surgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - J J Fütterer
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
- The Robotics and Mechatronics research group, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, The Netherlands
| | - M W J Stommel
- Department of Surgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - C G Overduin
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Rai P, Ansari MY, Warfa M, Al-Hamar H, Abinahed J, Barah A, Dakua SP, Balakrishnan S. Efficacy of fusion imaging for immediate post-ablation assessment of malignant liver neoplasms: A systematic review. Cancer Med 2023. [PMID: 37191030 DOI: 10.1002/cam4.6089] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Percutaneous thermal ablation has become the preferred therapeutic treatment option for liver cancers that cannot be resected. Since ablative zone tissue changes over time, it becomes challenging to determine therapy effectiveness over an extended period. Thus, an immediate post-procedural evaluation of the ablation zone is crucial, as it could influence the need for a second-look treatment or follow-up plan. Assessing treatment response immediately after ablation is essential to attain favorable outcomes. This study examines the efficacy of image fusion strategies immediately post-ablation in liver neoplasms to determine therapeutic response. METHODOLOGY A comprehensive systematic search using PRISMA methodology was conducted using EMBASE, MEDLINE (via PUBMED), and Cochrane Library Central Registry electronic databases to identify articles that assessed the immediate post-ablation response in malignant hepatic tumors with fusion imaging (FI) systems. The data were retrieved on relevant clinical characteristics, including population demographics, pre-intervention clinical history, lesion characteristics, and intervention type. For the outcome metrics, variables such as average fusion time, intervention metrics, technical success rate, ablative safety margin, supplementary ablation rate, technical efficacy rate, LTP rates, and reported complications were extracted. RESULTS Twenty-two studies were included for review after fulfilling the study eligibility criteria. FI's immediate technical success rate ranged from 81.3% to 100% in 17/22 studies. In 16/22 studies, the ablative safety margin was assessed immediately after ablation. Supplementary ablation was performed in 9 studies following immediate evaluation by FI. In 15/22 studies, the technical effectiveness rates during the first follow-up varied from 89.3% to 100%. CONCLUSION Based on the studies included, we found that FI can accurately determine the immediate therapeutic response in liver cancer ablation image fusion and could be a feasible intraprocedural tool for determining short-term post-ablation outcomes in unresectable liver neoplasms. There are some technical challenges that limit the widespread adoption of FI techniques. Large-scale randomized trials are warranted to improve on existing protocols. Future research should emphasize improving FI's technological capabilities and clinical applicability to a broader range of tumor types and ablation procedures.
Collapse
Affiliation(s)
- Pragati Rai
- Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | | | - Mohammed Warfa
- Department of Clinical Imaging, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Hammad Al-Hamar
- Department of Clinical Imaging, Hamad Medical Corporation, Doha, Qatar
| | - Julien Abinahed
- Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Ali Barah
- Department of Clinical Imaging, Hamad Medical Corporation, Doha, Qatar
| | | | | |
Collapse
|
7
|
Jie T, Guoying F, Gang T, Zhengrong S, Maoping L. Efficacy and Safety of Fusion Imaging in Radiofrequency Ablation of Hepatocellular Carcinoma Compared to Ultrasound: A Meta-Analysis. Front Surg 2021; 8:728098. [PMID: 34938766 PMCID: PMC8685205 DOI: 10.3389/fsurg.2021.728098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Radiofrequency ablation (RFA), generally performed under real-time guidance of ultrasound which is safe and effective, is a common minimally invasive therapy for treating hepatocellular carcinoma. Fusion imaging (FI) is a newly developed imaging method, which integrates CT/MRI accurate imaging and matches the characteristics of real-time ultrasound imaging, thereby providing a new approach to guide tumor ablation therapy. However, the efficacy and safety of FI as opposed to ultrasound in tumor ablation remains unclear. Objective: The present study sought to evaluate the difference in the efficacy and safety between FI and ultrasound in radiofrequency surgery for the treatment of hepatocellular carcinoma through a metaanalysis. Materials and Methods: Searching for studies comparing the efficacy and safety of FI and ultrasound in radiofrequency of hepatocellular carcinoma in PubMed, Embase, and Cochrane Library databases for articles published until April 2021. Random or fixed effect models were used for statistical analysis. Metaanalysis and sensitivity analysis were used on the included studies. Results: A total of six studies met predefined inclusion criteria, and were finally included in the analysis. Sensitivity and subgroup analyses, based on predetermined patient characteristics, allowed minimization of bias. In the RFA of hepatocellular carcinoma, FI decreased 1-year overall survival (OS) when compared with ultrasound. But FI was not significantly different from ultrasound in terms of technical efficiency, 1-, 2-, and 3-year local tumor progression (LTP), complications, as well as 2-year OS. Subgroup analysis, based on tumor mean diameter, showed that FI reduced the rate of 1- and 2-year LTP in patients with tumors of mean diameter ≥15 mm when compared with ultrasound. Moreover, operative complications could be reduced in patients with tumor mean diameter <15 mm using FI, compared with ultrasound. Conclusion: Overall, these results showed that FI may have some effects on improving efficacy and safety of thermal ablation in HCC patients, relative to ultrasound. However, it may be a more effective method for managing large lesions, as well as those that are difficult to ablate. Further large-scale and well-designed randomized controlled trials are needed to validate these findings.
Collapse
Affiliation(s)
- Tao Jie
- Department of General Surgery, Chongqing Medical University, Chongqing, China
| | - Feng Guoying
- Department of General Surgery, Chongqing Medical University, Chongqing, China
| | - Tang Gang
- Department of General Surgery, Chongqing Medical University, Chongqing, China
| | - Shi Zhengrong
- Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Maoping
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Jiang Y, Zhang M, Zhu Y, Zhu D. Diagnostic role of contrast-enhanced ultrasonography versus conventional B-mode ultrasonography in cirrhotic patients with early hepatocellular carcinoma: a retrospective study. J Gastrointest Oncol 2021; 12:2403-2411. [PMID: 34790401 DOI: 10.21037/jgo-21-611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
Background Early diagnosis of hepatocellular carcinoma (HCC) is very important for the prognosis of patients. However, there are very few studies that compared the diagnostic accuracy of contrast-enhanced ultrasonography (CEUS) and B-mode ultrasonography for early HCC in cirrhotic patients. Methods This retrospective study included cirrhotic patients, who were suspected of early HCC between January 2020 and June 2021. The diagnosis of patients was based on the pathology results of surgery or biopsy. Demographic and clinical characteristics of included patients were recorded. The diagnoses of suspected lesions using both types of ultrasonography were recorded, and the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy of early HCC in cirrhotic patients were calculated. Results Eventually, 137 patients with solitary lesions in the liver were included in this study, including 89 patients diagnosed with HCC and 48 patients diagnosed with non-HCC. The median diameter of suspected lesions was 26 mm, and the median level of alpha fetoprotein (AFP) was 37.2 ng/mL. When comparing the demographic and clinical characteristics of cirrhotic patients with HCC and non-HCC, it was found that patients with HCC had significantly higher levels of AFP than those with non-HCC (P=0.03). The sensitivity, specificity, PPV, NPV, and accuracy of CEUS in early HCC were 73%, 93.8%, 95.6%, 65.2% and 80.3%, respectively. In CEUS, all of these parameters were much higher than those in B-mode ultrasonography, i.e., 64%, 75%, 82.6%, 52.9%, and 67.9%. It was also found that the diagnostic accuracy of CEUS was much higher than that of B-mode ultrasonography especially regarding lesions <20 mm. To further improve the sensitivity of CEUS in early HCC, AFP was combined with CEUS for the diagnosis of early HCC. As a result, the sensitivity, specificity, PPV, NPV, and accuracy of CEUS combined with AFP level were 83.1%, 87.5%, 92.5%, 73.7%, and 84.7%, respectively. Conclusions Our study confirmed that CEUS' diagnostic accuracy for early HCC in cirrhotic patients was significantly higher than that of B-mode ultrasonography. However, the sensitivity of CEUS needs to be improved further, and the combination of CEUS and AFP level may be a potential solution.
Collapse
Affiliation(s)
- Yandong Jiang
- Department of Ultrasound, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Meng Zhang
- Department of Ultrasound, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yanting Zhu
- Department of Ultrasound, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Dongxiao Zhu
- Department of Ultrasound, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Meloni MF, Francica G, Chiang J, Coltorti A, Danzi R, Laeseke PF. Use of Contrast-Enhanced Ultrasound in Ablation Therapy of HCC: Planning, Guiding, and Assessing Treatment Response. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:879-894. [PMID: 32936485 DOI: 10.1002/jum.15471] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Contrast-enhanced ultrasonography (CEUS) plays an important role in the management of patients treated with ablation therapies, in the diagnostic, therapeutic and monitoring phases. Compared to contrast-enhanced computed tomography and contrast-enhanced magnetic resonance imaging, CEUS presents several advantages in imaging HCC, including real time imaging capability, high sensitivity for tumor vascularity, absence of renal toxicity, no ionizing radiation, repeatability of injections, good compliance by the patient and low cost. The purpose of this review is to evaluate the role of CEUS in the management of the patients with HCC treated with ablation therapies and describe how in our protocol CEUS is integrated with the other imaging modalities such as contrast-enhanced computed tomography and contrast-enhanced magnetic resonance imaging.
Collapse
Affiliation(s)
- Maria Franca Meloni
- Radiology Department, University of Pavia, Italy and Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Giampiero Francica
- Interventional Ultrasound Unit, Pineta Grande Hospital, Castel Volturno, Italy
| | - Jason Chiang
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, USA
| | - Andrea Coltorti
- Department of Radiology, Federico II University, Naples, Italy
| | - Roberta Danzi
- Department of Radiology, Pineta Grande Hospital, Castel Volturno, Italy
| | - Paul F Laeseke
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Ding J, Wang D, Zhou Y, Zhao L, Zhou H, Jing X, Wang Y. A novel mono-modality fusion imaging method based on three-dimensional contrast-enhanced ultrasound for the evaluation of ablation margins after microwave ablation of hepatocellular carcinoma. J Gastrointest Oncol 2021; 12:184-195. [PMID: 33708435 DOI: 10.21037/jgo-21-46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background To investigate the feasibility and accuracy of using preoperative and postoperative three-dimensional contrast-enhanced ultrasound (3D CEUS) fusion imaging in the evaluation of safety margins after thermal ablation of hepatocellular carcinoma (HCC). Methods A total of the 24 patients with HCC who underwent microwave ablation (MWA) between June 2020 and December 2020 were enrolled in this study. All patients received preoperative and postoperative 3D CEUS. The preoperative and postoperative 3D CEUS images were then fused. The success rate and evaluation time were recorded. The ablation margin and whether or not the safety margin was reached were calculated and recorded. If the ablation safety margin was not reached, the residual ablation volume needed to cover the safety margin was calculated automatically. The agreement between contrast-enhanced computed tomography(CECT) and 3D CEUS fusion imaging in the evaluation of ablation margins was explored using the kappa coefficient. Results The 3D CEUS fusion success rate was 95.8% (23/24), with a mean fusion time of (4.1±1.8) minutes. Twenty-three tumors were completely ablated, and the safety margin was achieved for 9 tumors. The ablation margin of 14 tumors was <5 mm. The mean uncovered safety margin volume was (2.27±2.11) mL, and the mean proportion of the uncovered safety margin to the whole safety margin was 16.8%. According to the results of preoperative and postoperative CECT fusion imaging, the ablation margin of 13 tumors was <5 mm, and the ablation margin of 10 tumors was >5 mm. The 2 methods showed excellent consistency, with a Kappa value of 0.911 (P=0.000012). Conclusions This study has presented a novel mono-modality fusion imaging method based on CEUS. We demonstrated that 3D CEUS fusion has a short fusion time and a high success rate, as well as good consistency with enhanced CT fusion. Therefore, 3D CEUS fusion is a feasible and accurate tool for evaluating the immediate efficacy of thermal ablation of HCC.
Collapse
Affiliation(s)
- Jianmin Ding
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, China.,The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Tianjin, China
| | - Dong Wang
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Tianjin, China
| | - Yan Zhou
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Tianjin, China
| | - Lin Zhao
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Tianjin, China
| | - Hongyu Zhou
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Tianjin, China
| | - Xiang Jing
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Tianjin, China
| | - Yandong Wang
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Tianjin, China
| |
Collapse
|
11
|
Zhao QY, Xie LT, Chen SC, Xu X, Jiang TA, Zheng SS. Virtual navigation-guided radiofrequency ablation for recurrent hepatocellular carcinoma invisible on ultrasound after hepatic resection. Hepatobiliary Pancreat Dis Int 2020; 19:532-540. [PMID: 33020034 DOI: 10.1016/j.hbpd.2020.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/20/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND No reports are available on the technical efficiency and therapeutic response of virtual navigation (VN)-guided radiofrequency ablation (RFA) for patients with recurrent hepatocellular carcinoma (HCC) after hepatic resection. The aim of this study was to investigate the overall technical performance and outcome of VN-guided RFA in recurrent HCC patients. In addition, a nomogram model was developed to predict the factors influencing the overall survival (OS). METHODS This was a prospective study on 76 recurrent HCC patients who underwent VN-guided RFA between June 2015 and February 2018. The technical feasibility, success, and efficiency, OS, local tumor progression, and complications were evaluated. A multivariate Cox regression analysis was conducted to predict the significant factors, and a nomogram including independent predictive factors was subsequently plotted to predict OS. RESULTS The technical feasibility, success, and efficiency rates of VN-guided RFA were 86.4%, 94.7%, and 97.4%, respectively. The cumulative OS rates at 1-, 2-, and 3-year were 88.1%, 79.7%, and 71.0%, respectively. The cumulative local tumor progression rates at 1-, 2-, and 3-year were 5.5%, 8.7%, and 14.0%, respectively. In addition, the minor and major complication rates were 5.3% and 3.9%, respectively. No intervention-related deaths occurred during the follow-up period. The C-index of the OS nomogram in this study was 0.737. CONCLUSIONS VN-guided RFA is an effective therapeutic option in recurrent HCC patients and improves the long-term outcomes especially for the lesions that cannot be detected in the two-dimensional ultrasound. Besides, the nomogram may be a useful supporting tool in predicting OS to estimate the individual survival probability, optimize treatment options, and facilitate decision-making.
Collapse
Affiliation(s)
- Qi-Yu Zhao
- Department of Ultrasound, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Li-Ting Xie
- Department of Ultrasound, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shuo-Chun Chen
- Department of Ultrasound, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiao Xu
- Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Tian-An Jiang
- Department of Ultrasound, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shu-Sen Zheng
- Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
12
|
Jing X, Zhou Y, Ding J, Wang Y, Qin Z, Wang Y, Zhou H. The Learning Curve for Thermal Ablation of Liver Cancers: 4,363-Session Experience for a Single Central in 18 Years. Front Oncol 2020; 10:540239. [PMID: 33194601 PMCID: PMC7606932 DOI: 10.3389/fonc.2020.540239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022] Open
Abstract
This study aimed to explore the special efforts required to achieve proficiency in performing thermal ablation of liver cancers, including tumors in difficult locations, and clarify the effects of handing-down teaching on the corresponding process. Major complications of patients receiving percutaneous thermal ablation of liver cancer were analyzed. Polynomial fitting was used to describe the connection between major complication rates and special experience. Learning curve of major complications was plotted both for the whole group and for each operator, respectively. Tumors in difficult locations were further studied. A total of 4,363 thermal ablation sessions were included in this study. 143 of 4,363 patients had major complications, corresponding to an incidence rate of 3.27%. 806 thermal ablation sessions were performed for tumors in difficult locations. The major complication rate of these sessions is 6.33%. According to the trend of the learning curve of the 4363 patients, the experience of the whole group can be classified into five stages, that is, the high-risk, relatively stable, unstable, proficient and stable periods. A learning curve for an individual operator can be classified into the high-risk, proficient and stable periods. The major complication rates for the chronologically first, second and third operator of the group are 3.23, 3.35, and 3.31%, respectively. The special experience needed to bypass the first stage corresponds to 410, 510, and 440 sessions, the second stage, 1850, 850, and 870 sessions, by the three operators, respectively. The major complication rates for the tumors in difficult locations for the first, second and third operator were 7.04, 5.53, and 5.98%, respectively. For the tumors in difficult locations, the special experience needed to bypass the first stage corresponds to 150, 130, and 140 sessions, the second stage, 290, 175, and 185 sessions, by the three operators, respectively. In conclusion, the learning process of an operator percutaneous thermal ablation for liver cancer can be classified into three stages. The major complication rate for tumors in difficult locations were higher than that for all tumors. Handing-down teaching can make an operator arrive at the third stage earlier but not the second stage.
Collapse
Affiliation(s)
- Xiang Jing
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Tianjin, China
| | - Yan Zhou
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Tianjin, China
| | - Jianmin Ding
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Tianjin, China
| | - Yijun Wang
- Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Tianjin, China.,Department of Hepatobiliary Surgery, Tianjin Third Central Hospital, Tianjin, China
| | - Zhengyi Qin
- Department of Ultrasound, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Yandong Wang
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Tianjin, China
| | - Hongyu Zhou
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Tianjin, China
| |
Collapse
|
13
|
Dietrich CF, Nolsøe CP, Barr RG, Berzigotti A, Burns PN, Cantisani V, Chammas MC, Chaubal N, Choi BI, Clevert DA, Cui X, Dong Y, D'Onofrio M, Fowlkes JB, Gilja OH, Huang P, Ignee A, Jenssen C, Kono Y, Kudo M, Lassau N, Lee WJ, Lee JY, Liang P, Lim A, Lyshchik A, Meloni MF, Correas JM, Minami Y, Moriyasu F, Nicolau C, Piscaglia F, Saftoiu A, Sidhu PS, Sporea I, Torzilli G, Xie X, Zheng R. Guidelines and Good Clinical Practice Recommendations for Contrast Enhanced Ultrasound (CEUS) in the Liver - Update 2020 - WFUMB in Cooperation with EFSUMB, AFSUMB, AIUM, and FLAUS. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2020; 41:562-585. [PMID: 32707595 DOI: 10.1055/a-1177-0530] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The present, updated document describes the fourth iteration of recommendations for the hepatic use of contrast enhanced ultrasound (CEUS), first initiated in 2004 by the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB). The previous updated editions of the guidelines reflected changes in the available contrast agents and updated the guidelines not only for hepatic but also for non-hepatic applications.The 2012 guideline requires updating as previously the differences of the contrast agents were not precisely described and the differences in contrast phases as well as handling were not clearly indicated. In addition, more evidence has been published for all contrast agents. The update also reflects the most recent developments in contrast agents, including the United States Food and Drug Administration (FDA) approval as well as the extensive Asian experience, to produce a truly international perspective.These guidelines and recommendations provide general advice on the use of ultrasound contrast agents (UCA) and are intended to create standard protocols for the use and administration of UCA in liver applications on an international basis to improve the management of patients.
Collapse
Affiliation(s)
- Christoph F Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem und Permanence, Bern, Switzerland
- Johann Wolfgang Goethe Universitätsklinik Frankfurt, Germany
| | - Christian Pállson Nolsøe
- Center for Surgical Ultrasound, Dep of Surgery, Zealand University Hospital, Køge. Copenhagen Academy for Medical Education and Simulation (CAMES). University of Copenhagen, Denmark
| | - Richard G Barr
- Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio, USA and Southwoods Imaging, Youngstown, Ohio, USA
| | - Annalisa Berzigotti
- Hepatology, University Clinic for Visceral Surgery and Medicine, DBMR, Inselspital, University of Bern, Switzerland
| | - Peter N Burns
- Dept Medical Biophysics, University of Toronto, Imaging Research, Sunnybrook Research Institute, Toronto
| | - Vito Cantisani
- Uos Ecografia Internistico-chirurgica, Dipartimento di Scienze Radiologiche, Oncologiche, Anatomo-Patologiche, Policlinico Umberto I, Univ. Sapienza, Rome, Italy
| | - Maria Cristina Chammas
- Institute of Radiology, Hospital das Clínicas, School of Medicine, University of São Paulo, Brazil
| | - Nitin Chaubal
- Thane Ultrasound Centre, Jaslok Hospital and Research Centre, Mumbai, India
| | - Byung Ihn Choi
- Department of Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Dirk-André Clevert
- Interdisciplinary Ultrasound-Center, Department of Radiology, University of Munich-Grosshadern Campus, Munich, Germany
| | - Xinwu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Yi Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mirko D'Onofrio
- Department of Radiology, G.B. Rossi University Hospital, University of Verona, Verona, Italy
| | - J Brian Fowlkes
- Basic Radiological Sciences Division, Department of Radiology, University of Michigan Health System, Ann Arbor, MI, United States
| | - Odd Helge Gilja
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, and Department of Clinical Medicine, University of Bergen, Norway
| | - Pintong Huang
- Department of Ultrasound in Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Andre Ignee
- Department of Internal Medicine 2, Caritas Krankenhaus, Bad Mergentheim, Germany
| | - Christian Jenssen
- Krankenhaus Märkisch Oderland, Department of Internal Medicine, Strausberg/Wriezen, Germany
| | - Yuko Kono
- Departments of Medicine and Radiology, University of California, San Diego, USA
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Nathalie Lassau
- Imaging Department. Gustave Roussy and BIOMAPS. Université Paris-Saclay, Villejuif, France
| | - Won Jae Lee
- Department of Radiology and Center For Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. Departments of Health and Science and Technology and Medical Device Management and Research, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| | - Jae Young Lee
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Adrian Lim
- Department of Imaging, Imperial College London and Healthcare NHS Trust, Charing Cross Hospital Campus, London United Kingdom
| | - Andrej Lyshchik
- Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, PA, United States
| | | | - Jean Michel Correas
- Service de Radiologie Adultes, Hôpital Necker, Université Paris Descartes, Paris, France
| | - Yasunori Minami
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Fuminori Moriyasu
- Center for Cancer Ablation Therapy, Sanno Hospital, International University of Health and Welfare, Tokyo, Japan
| | - Carlos Nicolau
- Radiology Department, Hospital Clinic. University of Barcelona, Barcelona, Spain
| | - Fabio Piscaglia
- Unit of Internal Medicine, Dept of Medical and Surgical Sciences, University of Bologna S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Adrian Saftoiu
- Research Center of Gastroenterology and Hepatology Craiova, University of Medicine and Pharmacy Craiova, Romania
| | - Paul S Sidhu
- Department of Radiology, King's College Hospital, King's College London, London
| | - Ioan Sporea
- Department of Gastroenterology and Hepatology, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania
| | - Guido Torzilli
- Department of Surgery, Division of Hepatobiliary & General Surgery, Humanitas University & Research Hospital, Rozzano, Milano, Italy
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Rongqin Zheng
- Department of Ultrasound, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Dietrich CF, Nolsøe CP, Barr RG, Berzigotti A, Burns PN, Cantisani V, Chammas MC, Chaubal N, Choi BI, Clevert DA, Cui X, Dong Y, D'Onofrio M, Fowlkes JB, Gilja OH, Huang P, Ignee A, Jenssen C, Kono Y, Kudo M, Lassau N, Lee WJ, Lee JY, Liang P, Lim A, Lyshchik A, Meloni MF, Correas JM, Minami Y, Moriyasu F, Nicolau C, Piscaglia F, Saftoiu A, Sidhu PS, Sporea I, Torzilli G, Xie X, Zheng R. Guidelines and Good Clinical Practice Recommendations for Contrast-Enhanced Ultrasound (CEUS) in the Liver-Update 2020 WFUMB in Cooperation with EFSUMB, AFSUMB, AIUM, and FLAUS. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2579-2604. [PMID: 32713788 DOI: 10.1016/j.ultrasmedbio.2020.04.030] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 05/14/2023]
Abstract
The present, updated document describes the fourth iteration of recommendations for the hepatic use of contrast-enhanced ultrasound, first initiated in 2004 by the European Federation of Societies for Ultrasound in Medicine and Biology. The previous updated editions of the guidelines reflected changes in the available contrast agents and updated the guidelines not only for hepatic but also for non-hepatic applications. The 2012 guideline requires updating as, previously, the differences in the contrast agents were not precisely described and the differences in contrast phases as well as handling were not clearly indicated. In addition, more evidence has been published for all contrast agents. The update also reflects the most recent developments in contrast agents, including U.S. Food and Drug Administration approval and the extensive Asian experience, to produce a truly international perspective. These guidelines and recommendations provide general advice on the use of ultrasound contrast agents (UCAs) and are intended to create standard protocols for the use and administration of UCAs in liver applications on an international basis to improve the management of patients.
Collapse
Affiliation(s)
- Christoph F Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem und Permanence, Bern, Switzerland; Johann Wolfgang Goethe Universitätsklinik, Frankfurt, Germany.
| | - Christian Pállson Nolsøe
- Center for Surgical Ultrasound, Dep of Surgery, Zealand University Hospital, Køge. Copenhagen Academy for Medical Education and Simulation (CAMES). University of Copenhagen, Denmark
| | - Richard G Barr
- Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio, USA; Southwoods Imaging, Youngstown, Ohio, USA
| | - Annalisa Berzigotti
- Hepatology, University Clinic for Visceral Surgery and Medicine, DBMR, Inselspital, University of Bern, Switzerland
| | - Peter N Burns
- Department of Medical Biophysics, University of Toronto, Imaging Research, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Vito Cantisani
- Uos Ecografia Internistico-chirurgica, Dipartimento di Scienze Radiologiche, Oncologiche, Anatomo-Patologiche, Policlinico Umberto I, Univ. Sapienza, Rome, Italy
| | - Maria Cristina Chammas
- Institute of Radiology, Hospital das Clínicas, School of Medicine, University of São Paulo, Brazil
| | - Nitin Chaubal
- Thane Ultrasound Centre, Jaslok Hospital and Research Centre, Mumbai, India
| | - Byung Ihn Choi
- Department of Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Dirk-André Clevert
- Interdisciplinary Ultrasound-Center, Department of Radiology, University of Munich-Grosshadern Campus, Munich, Germany
| | - Xinwu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mirko D'Onofrio
- Department of Radiology, G. B. Rossi University Hospital, University of Verona, Verona, Italy
| | - J Brian Fowlkes
- Basic Radiological Sciences Division, Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Odd Helge Gilja
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, and Department of Clinical Medicine, University of Bergen, Norway
| | - Pintong Huang
- Department of Ultrasound in Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Andre Ignee
- Department of Internal Medicine 2, Caritas Krankenhaus, Bad Mergentheim, Germany
| | - Christian Jenssen
- Krankenhaus Märkisch Oderland, Department of Internal Medicine, Strausberg/Wriezen, Germany
| | - Yuko Kono
- Departments of Medicine and Radiology, University of California, San Diego, California, USA
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Nathalie Lassau
- Imaging Department, Gustave Roussy and BIOMAPS, Université Paris-Saclay, Villejuif, France
| | - Won Jae Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Departments of Health and Science and Technology and Medical Device Management and Research, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| | - Jae Young Lee
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Adrian Lim
- Department of Imaging, Imperial College London and Healthcare NHS Trust, Charing Cross Hospital Campus, London, United Kingdom
| | - Andrej Lyshchik
- Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | | | - Jean Michel Correas
- Service de Radiologie Adultes, Hôpital Necker, Université Paris Descartes, Paris, France
| | - Yasunori Minami
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Fuminori Moriyasu
- Center for Cancer Ablation Therapy, Sanno Hospital, International University of Health and Welfare, Tokyo, Japan
| | - Carlos Nicolau
- Radiology Department, Hospital Clinic. University of Barcelona, Barcelona, Spain
| | - Fabio Piscaglia
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University of Bologna S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Adrian Saftoiu
- Research Center of Gastroenterology and Hepatology Craiova, University of Medicine and Pharmacy Craiova, Romania
| | - Paul S Sidhu
- Department of Radiology, King's College Hospital, King's College London, London, United Kingdom
| | - Ioan Sporea
- Department of Gastroenterology and Hepatology, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania
| | - Guido Torzilli
- Department of Surgery, Division of Hepatobiliary & General Surgery, Humanitas University & Research Hospital, Rozzano, Milan, Italy
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Rongqin Zheng
- Department of Ultrasound, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
15
|
Huang GL, Liu M, Zhang XE, Liu BX, Xu M, Lin MX, Kuang M, Lu MD, Xie XY. Multiple-Electrode Switching-Based Radiofrequency Ablation vs. Conventional Radiofrequency Ablation for Single Early-Stage Hepatocellular Carcinoma Ranging From 2 to 5 Cm. Front Oncol 2020; 10:1150. [PMID: 32793484 PMCID: PMC7393260 DOI: 10.3389/fonc.2020.01150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose: To retrospectively compare the treatment outcome of multiple-electrode switching-based radiofrequency ablation (switching RFA) and the conventional RFA for early-stage hepatocellular carcinoma (HCC). Methods: A total of 122 patients with single early-stage HCC ranging from 2.1 to 5.0 cm received ultrasonography-guided percutaneous RFA as the first-line treatment. Seventy-one patients underwent switching RFA, and 51 underwent conventional RFA. Tumor response, major complication, local tumor progression (LTP), and overall survival (OS) were compared between the two groups. Log-rank tests and Cox regression models were used for univariate and multivariate analyses to identify predictors of LTP and OS. Results: The rate of initial local complete response rates were 100% (71/71) in the switching RFA group and 98.0% (50/51) in the conventional RFA group (P > 0.05). No major complication occurred in the switching RFA group, whereas two in the conventional RFA group. After a median follow-up period of 45.9 months (range, 9.8-60.0 months), the rates of LTP in the switching RFA and conventional RFA groups were 19.7% (14/71) and 41.2% (21/51), respectively. The cumulative LTP rates at 1, 3, and 5 years were 11.3, 20.5, and 20.5% for switching RFA and 17.6, 38.7, and 46.7% for conventional RFA, respectively (p < 0.001). Switching RFA was an independent factor associated with a lower LTP rate (p = 0.022). Five-year OS rates were 75.8% after switching RFA vs. 66.2% after conventional RFA (p = 0.363). Extrahepatic recurrence was a significant prognostic factor for OS in multivariable analysis. Conclusion: Compared with conventional RFA, switching RFA provides a high local tumor control for single early-stage HCC. An ongoing randomized trial might help to clarify the role of this approach for the treatment of HCC.
Collapse
Affiliation(s)
- Guang-Liang Huang
- Department of Medical Ultrasonics, Institute for Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ming Liu
- Department of Medical Ultrasonics, Institute for Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao-Er Zhang
- Department of Medical Ultrasonics, Institute for Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bao-Xian Liu
- Department of Medical Ultrasonics, Institute for Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ming Xu
- Department of Medical Ultrasonics, Institute for Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Man-Xia Lin
- Department of Medical Ultrasonics, Institute for Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ming Kuang
- Department of Medical Ultrasonics, Institute for Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ming-de Lu
- Department of Medical Ultrasonics, Institute for Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao-Yan Xie
- Department of Medical Ultrasonics, Institute for Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Citone M, Fanelli F, Falcone G, Mondaini F, Cozzi D, Miele V. A closer look to the new frontier of artificial intelligence in the percutaneous treatment of primary lesions of the liver. Med Oncol 2020; 37:55. [PMID: 32424627 DOI: 10.1007/s12032-020-01380-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023]
Abstract
The purpose of thermal ablation is induction of tumor death by means of localized hyperthermia resulting in irreversible cellular damage. Ablative therapies are well-recognized treatment modalities for HCC lesions and are considered standard of care for HCC nodules < 3 cm in diameter in patients not suitable for surgery. Effective lesion treatment rely on complete target volume ablation. Technical limitations are represented by large (> 3 cm) or multicentric nodules as well as complex nodule location and poor lesion conspicuity. Artificial Intelligence (AI) is a general term referred to computational algorithms that can analyze data and perform complex tasks otherwise prerogative of Human Intelligence. AI has a variety of application in percutaneous ablation procedures such as Navigational software, Fusion Imaging, and robot-assisted ablation tools. Those instruments represent relative innovations in the field of Interventional Oncology and promising strategies to overcome actual limitations of ablative therapy in order to increase feasibility and technical results. This work aims to review the principal application of Artificial Intelligence in the percutaneous ablation of primary lesions of the liver with special focus on how AI can impact in the treatment of HCC especially on potential advantages on the drawbacks of the conventional technique.
Collapse
Affiliation(s)
- M Citone
- Vascular and Interventional Radiology Department, Careggi University Hospital, Florence, Italy
| | - F Fanelli
- Vascular and Interventional Radiology Department, Careggi University Hospital, Florence, Italy
| | - G Falcone
- Vascular and Interventional Radiology Department, Careggi University Hospital, Florence, Italy
| | - F Mondaini
- Vascular and Interventional Radiology Department, Careggi University Hospital, Florence, Italy
| | - D Cozzi
- Emergency Radiology Department, Careggi University Hospital, L.go G.A. Brambilla, 3, 50134, Florence, Italy
| | - V Miele
- Emergency Radiology Department, Careggi University Hospital, L.go G.A. Brambilla, 3, 50134, Florence, Italy.
| |
Collapse
|
17
|
Huang Q, Zeng Q, Long Y, Tan L, Zheng R, Xu E, Li K. Fusion imaging techniques and contrast-enhanced ultrasound for thermal ablation of hepatocellular carcinoma - A prospective randomized controlled trial. Int J Hyperthermia 2020; 36:1207-1215. [PMID: 31813295 DOI: 10.1080/02656736.2019.1687945] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objectives: This randomized controlled trial (RCT) aims to compare the clinical application values of contrast-enhanced ultrasound (CEUS), computed tomography/magnetic resonance-CEUS (CT/MR-CEUS), and three-dimensional ultrasound-CEUS (3DUS-CEUS) Fusion imaging (FI) techniques in the assistance of thermal ablation for hepatocellular carcinoma (HCC).Methods: A RCT was conducted on 374 patients with 456 HCCs between January 2016 and September 2017. CEUS, CT/MR-CEUS, and 3DUS-CEUS FI techniques were randomly used to assist HCC ablation. All lesions were ablated according to a previously determined plan, and FI groups required a 5-mm ablative margin. The primary endpoints were technical efficacy of thermal ablation and local tumor progression (LTP).Results: According to randomization, 153 (18.8 ± 8.0 cm), 153 (18.3 ± 6.6 cm) and 150 (19.1 ± 6.9 cm) HCCs were assigned to CT/MR-CEUS, 3DUS-CEUS and CEUS groups respectively. Technical efficacy rates (99.3% vs. 100% vs. 100%) were achieved in the three groups, showing no statistical differences (p = 1.000). The median follow-up time was 24 (1-37) months. LTP rates at 1 and 2 years were 3.4%, 12.2% for CT/MR-CEUS FI, 4.8%, 9.0% for 3DUS-CEUS FI, and 8.6%, 19.9% for CEUS, respectively (p = .105). The results of subgroup analysis for LTP were statistically significant when patients with albumin-bilirubin (ALBI) grade 2 and 3 (p = .000), and tumor located at risky positions (p = .042). In addition, the p value in group of multiple tumors was close to .05 (p = .052).Conclusions: All the three techniques are feasible for intraoperative HCC thermal ablation. Compared with CEUS, FI techniques are more suitable in patients with ALBI grade 2 and 3, multiple tumors, and in tumors at risky locations.
Collapse
Affiliation(s)
- Qiannan Huang
- Department of Ultrasound, Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Qingjing Zeng
- Department of Ultrasound, Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Yinglin Long
- Department of Ultrasound, Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Lei Tan
- Department of Ultrasound, Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Rongqin Zheng
- Department of Ultrasound, Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Erjiao Xu
- Department of Ultrasound, Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Kai Li
- Department of Ultrasound, Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| |
Collapse
|