1
|
Treigyte V, Chaillou T, Eimantas N, Venckunas T, Brazaitis M. Passive heating-induced changes in muscle contractile function are not further augmented by prolonged exposure in young males experiencing moderate thermal stress. Front Physiol 2024; 15:1356488. [PMID: 38476145 PMCID: PMC10928533 DOI: 10.3389/fphys.2024.1356488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Background: We investigated the impact of 1) passive heating (PH) induced by single and intermittent/prolonged hot-water immersion (HWI) and 2) the duration of PH, on muscle contractile function under the unfatigued state, and during the development of muscle fatigue. Methods: Twelve young males volunteered for this study consisting of two phases: single phase (SP) followed by intermittent/prolonged phase (IPP), with both phases including two conditions (i.e., four trials in total) performed randomly: control passive sitting (CON) and HWI (44-45°C; water up to the waist level). SP-HWI included one continuous 45-min bath (from 15 to 60 min). IPP-HWI included an initial 45-min bath (from 15 to 60 min) followed by eight additional 15-min baths interspaced with 15-min breaks at room temperature between 75 and 300 min. Intramuscular (Tmu; measured in the vastus lateralis muscle) and rectal (Trec) temperatures were determined. Neuromuscular testing (performed in the knee extensors and flexors) was performed at baseline and 60 min later during SP, and at baseline, 60, 90, 150 and 300 min after baseline during IPP. A fatiguing protocol (100 electrical stimulations of the knee extensors) was performed after the last neuromuscular testing of each trial. Results: HWI increased Tmu and Trec to 38°C-38.5°C (p < 0.05) during both SP and IPP. Under the unfatigued state, HWI did not affect electrically induced torques at 20 Hz (P20) and 100 Hz (P100). However, it induced a shift towards a faster contractile profile during both SP and IPP, as evidenced by a decreased P20/P100 ratio (p < 0.05) and an improved muscle relaxation (i.e., reduced half-relaxation time and increased rate of torque relaxation; p < 0.05). Despite a reduced voluntary activation (i.e., -2.63% ± 4.19% after SP-HWI and -5.73% ± 4.31% after IPP-HWI; condition effect: p < 0.001), HWI did not impair maximal isokinetic and isometric contraction torques. During the fatiguing protocol, fatigue index and the changes in muscle contractile properties were larger after HWI than CON conditions (p < 0.05). Finally, none of these parameters were significantly affected by the heating duration. Conclusion: PH induces changes in muscle contractile function which are not augmented by prolonged exposure when thermal stress is moderate.
Collapse
Affiliation(s)
- Viktorija Treigyte
- Sports Science and Innovation Institute, Lithuanian Sports University, Kaunas, Lithuania
| | - Thomas Chaillou
- School of Health Sciences, Örebro University, Örebro, Sweden
| | - Nerijus Eimantas
- Sports Science and Innovation Institute, Lithuanian Sports University, Kaunas, Lithuania
| | - Tomas Venckunas
- Sports Science and Innovation Institute, Lithuanian Sports University, Kaunas, Lithuania
| | - Marius Brazaitis
- Sports Science and Innovation Institute, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
2
|
Wang J, Solianik R, Eimantas N, Baranauskiene N, Brazaitis M. Age-Related Difference in Cognitive Performance under Severe Whole-Body Hyperthermia Parallels Cortisol and Physical Strain Responses. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1665. [PMID: 37763784 PMCID: PMC10535853 DOI: 10.3390/medicina59091665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Background and Objectives: To date, understanding age-related changes in cognitive processes during heat exposure still needs to be better-understood. Thus, the main aim of the current study was to evaluate the effects of whole-body hyperthermia (WBH), i.e., a ≈ 2.5 °C increase in rectal temperature (Tre) from overnight-fast baseline value, on cognitive functioning in old and young men and to explore factors, such as stress and thermophysiological strain, that could influence such changes. Materials and Methods: Ten young (19-21 years of age) and nine old (61-80 years of age) healthy men underwent an experimental trial with passive lower-body heating in hot water immersion (HWI) at 43 °C (HWI-43 °C) until Tre reached 39 °C in old adults and 39.5 °C in young adults. Cognitive performance and cortisol concentration were assessed before and after HWI, and the physiological strain index (PSI) was assessed during HWI-43 °C. Results: PSI was lower and cortisol concentration was greater after HWI-43 °C in the old group compared with the young group (p < 0.05). Surprisingly, hyperthermia improved cognitive flexibility only in old adults, whereas short-term and visual recognition memories were maintained in both age groups. Conclusions: A ≈ 2.5 °C increase in rectal temperature can improve executive function in old adults, and this increase parallels the increased cortisol concentration and the lower thermophysiological strain under severe WBH conditions.
Collapse
Affiliation(s)
| | | | | | | | - Marius Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, LT-44221 Kaunas, Lithuania; (J.W.); (R.S.); (N.E.); (N.B.)
| |
Collapse
|
3
|
Baranauskiene N, Wang J, Eimantas N, Solianik R, Brazaitis M. Age-related differences in the neuromuscular performance of fatigue-provoking exercise under severe whole-body hyperthermia conditions. Scand J Med Sci Sports 2023; 33:1621-1637. [PMID: 37218443 DOI: 10.1111/sms.14403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
PURPOSE The purpose of this study was to determine if aging would lead to greater decline in neuromuscular function during a fatiguing task under severe whole-body hyperthermia conditions. METHODS Twelve young (aged 19-21 years) and 11 older (aged 65-80 years) males were enrolled in the study, which comprised a randomized control trial under a thermoneutral condition at an ambient temperature of 23°C (CON) and an experimental trial with passive lower body heating in 43°C water (HWI-43°C). Changes in neuromuscular function and fatigability, and physical performance-influencing factors such as psychological, thermoregulatory, neuroendocrine, and immune responses to whole-body hyperthermia were measured. RESULTS A slower increase in rectal temperature, and a lower heart rate, thermal sensation, and sweating rate were observed in older males than young males in response to HWI-43°C trial (p < 0.05). Nevertheless, prolactin increased more in response to hyperthermia in young males, while interleukin-6 and cortisol levels increased more in older males (p < 0.05). Peripheral dopamine levels decreased in older males and increased in young males in response to hyperthermia (p < 0.05). Surprisingly, older males demonstrated greater neuromuscular fatigability resistance and faster maximal voluntary contraction (MVC) torque recovery after a 2-min sustained isometric MVC task under thermoneutral and severe hyperthermic conditions (p < 0.05). CONCLUSION Neuromuscular performance during fatigue-provoking sustained isometric exercise under severe whole-body hyperthermia conditions appears to decline in both age groups, but a lower relative decline in torque production for older males may relate to lower psychological and thermophysiological strain along with a diminished dopamine response and prolactin release.
Collapse
Affiliation(s)
- Neringa Baranauskiene
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Junli Wang
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Nerijus Eimantas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Rima Solianik
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Marius Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
4
|
Eimantas N, Ivanove S, Baranauskiene N, Solianik R, Brazaitis M. Modulation of neuromuscular excitability in response to acute noxious heat exposure has no additional effects on central and peripheral fatigability. Front Physiol 2022; 13:936885. [PMID: 36035478 PMCID: PMC9412021 DOI: 10.3389/fphys.2022.936885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Whole-body hyperthermia (WBH) has an adverse effect on the nervous system and neurophysiological performance. In the present study, we examined whether short-duration whole-body immersion in 45°C water (HWI-45°C), which produces a strong neural and temperature flux without inducing WBH, can increase or impair neurophysiological performance in humans. Methods: Fifteen men (aged 25 ± 6 years) were enrolled in this study and participated in three experiments: 1) a brief (5-min) immersion of the whole body in 37°C water (WI-37°C); 2) a brief (5-min) HWI-45°C; and 3) a control trial in a thermoneutral condition at an ambient temperature of 24°C and 60% relative humidity. Before and after the immersions, neuromuscular function (electromyographic activity, reflexes, electrically and voluntary induced torque production, voluntary muscle activation level) were tested. To provoke central inhibition, the participants performed a sustained 2-min maximal voluntary contraction (MVC). Results: Thermophysiological strain was greater after HWI-45°C than after WI-37°C. Electrophysiological modulations of motor drive transmission and peripheral modulations of muscle contractility properties in response to HWI-45°C seemed to have little effect on central activation of the exercising muscles and no effect on MVC production. Conclusion: Although exposure to acute noxious heat was effective in evoking neuromuscular excitability, the increases in core temperature (∼0.2°C) and muscle temperature (∼0.6°C) did not induce moderate or severe WBH. These changes did not seem to affect central structures; that is, there were no additional increases in central and/or peripheral fatigue during a sustained 2-min MVC.
Collapse
|
5
|
Eimantas N, Ivanove S, Solianik R, Brazaitis M. Exposure to acute noxious heat evokes a cardiorespiratory shock response in humans. Int J Hyperthermia 2022; 39:134-143. [PMID: 35000494 DOI: 10.1080/02656736.2021.2023225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Noxious acute cold stimuli cause cold shock via the sympathetic nervous system. However, no studies have investigated respiratory "heat shock" in response to noxious acute heat stimuli (≥ 42 °C).Methods: In the present study, we examined whether short-duration whole-body immersion (for 5 min) in noxious hot water (45 °C) is a sufficient stimulus to induce a respiratory acute shock response.Results and conclusion: Our results indicate that short-duration whole-body immersion in noxious 45 °C water produces a significantly greater body temperature, heart rate, and perceptual and respiratory strain than immersion in innocuous warm 37 °C water (p < .05). The initial first minute of hot water immersion (HWI) at 45 °C (vs. immersion at 37 °C) caused a cardiorespiratory shock response, which manifested as acute hyperventilation, and increased ventilatory tidal volume, respiratory exchange ratio, and heart rate (p < .05). Adjustment to this initial respiratory heat shock response within the first minute of immersion was observed as compared with remaining HWI time (1-5 min). Intriguingly, the time-course kinetics of breathing frequency, oxygen uptake, and carbon dioxide washout did not differ between whole-body immersion at 37 °C and immersion at 45 °C, but were higher than in control thermoneutral conditions of an empty bath (p < .05). This may be because of events initiated not only by the water temperature but also by the change in the hydrostatic pressure acting upon the body when immersed in the water bath.
Collapse
Affiliation(s)
- Nerijus Eimantas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Soneta Ivanove
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Rima Solianik
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Marius Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
6
|
The Influence of Electro-Conductive Compression Knits Wearing Conditions on Heating Characteristics. MATERIALS 2021; 14:ma14226780. [PMID: 34832180 PMCID: PMC8622006 DOI: 10.3390/ma14226780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022]
Abstract
Textile-based heaters have opened new opportunities for next-generation smart heating devices. This experiment presents electrically conductive textiles for heat generation in orthopaedic compression supports. The main goal was to investigate the influence of frequent washing and stretching on heat generation durability of constructed compression knitted structures. The silver coated polyamide yarns were used to knit a half-Milano rib structure containing elastomeric inlay-yarn. Dimensional stability of the knitted fabric and morphological changes of the silver coated electro-conductive yarns were investigated during every wash cycle. The results revealed that temperature becomes stable within two minutes for all investigated fabrics. The heat generation was found to be dependent on the stretching, mostly due to the changing surface area; and it should be considered during the development of heated compression knits. Washing negatively influences the heat-generating capacity on the fabric due to the surface damage caused by the mechanical and chemical interaction during washing. The higher number of silver-coated filaments in the electro-conductive yarn and the knitted structure, protecting the electro-conductive yarn from mechanical abrasion, may ensure higher durability of heating characteristics.
Collapse
|
7
|
Paulauskas H, Baranauskiene N, Wang J, Mikucioniene D, Eimantas N, Brazaitis M. Local knee heating increases spinal and supraspinal excitability and enhances plantar flexion and dorsiflexion torque production of the ankle in older adults. Eur J Appl Physiol 2020; 120:2259-2271. [PMID: 32776256 DOI: 10.1007/s00421-020-04449-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/25/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE Aging is associated with progressive loss of active muscle mass and consequent decreases in resting metabolic rate and body temperature, and slowing of nerve conduction velocities and muscle contractility. These effectors compromise the ability of the elderly to maintain an upright posture during sudden balance perturbation, increase the risk of falls, and lead to self-imposed reduction in physical activity. Short-term superficial acute heating can modulate the neural drive transmission to exercising muscles without any marked change in deep-muscle temperature. METHODS To determine whether the short-term (5 min) application of local passive knee-surface heating (next-to-skin temperature, ~ 44 °C) in healthy older subjects of both sexes (64-74 years; eight men/eight women) enhances reflex excitability, we compared the voluntarily and electrically induced ankle muscle torque production and contractile properties with those of healthy younger subjects of both sexes (21-35 years, 10 men/10 women). RESULTS The application of local heating (vs. control) increased the maximal Hoffman reflex (Hmax), the maximal volitional wave (Vsup) amplitude, and the Hmax/Mmax amplitude ratio, and decreased Vsup latency only in older adults. In the older adults (vs. younger adults), the application of local heating (vs. control trial) was accompanied by a significant increase in maximal voluntary peak torque, rate of torque development, and isokinetic peak torque of plantar flexion/dorsiflexion muscle contraction. CONCLUSION The spinal and supraspinal reflex excitability of older adults increased during local knee-heating application. The improved motor drive transmission observed in older adults was accompanied by increased voluntarily induced torque production of the ankle muscles during isometric/isokinetic contractions.
Collapse
Affiliation(s)
- Henrikas Paulauskas
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto 6, 44221, Kaunas, Lithuania
| | - Neringa Baranauskiene
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto 6, 44221, Kaunas, Lithuania
| | - Junli Wang
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto 6, 44221, Kaunas, Lithuania
| | - Daiva Mikucioniene
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu 56, 51424, Kaunas, Lithuania
| | - Nerijus Eimantas
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto 6, 44221, Kaunas, Lithuania.
| | - Marius Brazaitis
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto 6, 44221, Kaunas, Lithuania.
| |
Collapse
|
8
|
Brazaitis M, Eimantas N, Baranauskiene N, Kilikeviciene S, Vitkauskiene A, Daniuseviciute L. Effects of severe whole-body hyperthermia on ovarian hormone and extracellular Hsp72 responses in young adult women. Int J Hyperthermia 2019; 36:660-665. [DOI: 10.1080/02656736.2019.1627431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Marius Brazaitis
- Institute of Sports Science and Innovations Lithuanian Sports University, Kaunas, Lithuania
| | - Nerijus Eimantas
- Institute of Sports Science and Innovations Lithuanian Sports University, Kaunas, Lithuania
| | - Neringa Baranauskiene
- Institute of Sports Science and Innovations Lithuanian Sports University, Kaunas, Lithuania
| | - Sandra Kilikeviciene
- Institute of Sports Science and Innovations Lithuanian Sports University, Kaunas, Lithuania
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Laura Daniuseviciute
- Department of Educational Studies, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
9
|
Mickeviciene D, Leleikiene A, Valanciene D, Vizbaraite D, Brazaitis M, Skurvydas A. Absence of differences in the learning rate of a speed-accuracy movement task between women patients with mild and major depression and healthy adult women. Hum Mov Sci 2019; 66:363-370. [PMID: 31153033 DOI: 10.1016/j.humov.2019.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022]
Abstract
This study tested the hypothesis that women patients with depression should perform movements more slowly and with greater variability, and their learning rate should be lower compared with age-matched healthy adult women. Three groups of adult women subjects (aged 33-37 years, women patients with mild and major depression and healthy adult women, n = 20 in each group) performed five series (20 repetitions in each series) of a speed-accuracy hand-movement task (SAT). The mean movement speed (Va) of the SAT was lower and more stable (the coefficient of variation of Va was lower) in women patients with major depression compared with those with minor depression and healthy adult women during the first series of the SAT. Only the Va and movement accuracy (path of movement, S) of the SAT varied significantly in the five learning series regardless of the subject group (healthy women subjects and women patients with minor and major depression). The intraindividual variability of reaction time, Va, maximal movement velocity to the target (tVmax), time to tVmax, and S did not change significantly in any of the groups. Our research data showed that although women patients with depression performed speed-accuracy movements more slowly, the stability of the performance of their movements and their learning rate did not differ from those of age-matched healthy adult women.
Collapse
Affiliation(s)
- Dalia Mickeviciene
- Institute of Sport Science and Innovations, Lithuanian Sports University, Sporto Str. 6, 44221 Kaunas, Lithuania
| | - Aiste Leleikiene
- Institute of Sport Science and Innovations, Lithuanian Sports University, Sporto Str. 6, 44221 Kaunas, Lithuania
| | - Dovile Valanciene
- Institute of Sport Science and Innovations, Lithuanian Sports University, Sporto Str. 6, 44221 Kaunas, Lithuania.
| | - Daiva Vizbaraite
- Institute of Sport Science and Innovations, Lithuanian Sports University, Sporto Str. 6, 44221 Kaunas, Lithuania
| | - Marius Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Sporto Str. 6, 44221 Kaunas, Lithuania
| | - Albertas Skurvydas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Sporto Str. 6, 44221 Kaunas, Lithuania
| |
Collapse
|