1
|
Groen JA, Crezee J, van Laarhoven HWM, Coolen BF, Strijkers GJ, Bijlsma MF, Kok HP. Robust, planning-based targeted locoregional tumour heating in small animals. Phys Med Biol 2024; 69:085017. [PMID: 38471172 DOI: 10.1088/1361-6560/ad3324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Objective.To improve hyperthermia in clinical practice, pre-clinical hyperthermia research is essential to investigate hyperthermia effects and assess novel treatment strategies. Translating pre-clinical hyperthermia findings into clinically viable protocols requires laboratory animal treatment techniques similar to clinical hyperthermia techniques. The ALBA micro8 electromagnetic heating system (Med-logix SRL, Rome, Italy) has recently been developed to provide the targeted locoregional tumour heating currently lacking for pre-clinical research. This study evaluates the heat focusing properties of this device and its ability to induce robust locoregional tumour heating under realistic physiological conditions using simulations.Approach.Simulations were performed using the Plan2Heat treatment planning package (Amsterdam UMC, the Netherlands). First, the specific absorption rate (SAR) focus was characterised using a homogeneous phantom. Hereafter, a digital mouse model was used for the characterisation of heating robustness in a mouse. Device settings were optimised for treatment of a pancreas tumour and tested for varying circumstances. The impact of uncertainties in tissue property and perfusion values was evaluated using polynomial chaos expansion. Treatment quality and robustness were evaluated based on SAR and temperature distributions.Main results.The SAR distributions within the phantom are well-focused and can be adjusted to target any specific location. The focus size (full-width half-maximum) is a spheroid with diameters 9 mm (radially) and 20 mm (axially). The mouse model simulations show strong robustness against respiratory motion and intestine and stomach filling (∆T90≤0.14°C).Mouse positioning errors in the cranial-caudal direction lead to∆T90≤0.23°C. Uncertainties in tissue property and perfusion values were found to impact the treatment plan up to 0.56 °C (SD), with a variation onT90of 0.32 °C (1 SD).Significance.Our work shows that the pre-clinical phased-array system can provide adequate and robust locoregional heating of deep-seated target regions in mice. Using our software, robust treatment plans can be generated for pre-clinical hyperthermia research.
Collapse
Affiliation(s)
- Jort A Groen
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| | - Johannes Crezee
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, The Netherlands
| | - Bram F Coolen
- Amsterdam UMC location University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Amsterdam UMC location University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Maarten F Bijlsma
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and biomarkers, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - H Petra Kok
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Groen JA, Crezee J, van Laarhoven HWM, Bijlsma MF, Kok HP. Quantification of tissue property and perfusion uncertainties in hyperthermia treatment planning: Multianalysis using polynomial chaos expansion. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107675. [PMID: 37339535 DOI: 10.1016/j.cmpb.2023.107675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
INTRODUCTION Hyperthermia treatment planning (HTP) tools can guide treatment delivery, particularly with locoregional radiative phased array systems. Uncertainties in tissue and perfusion property values presently lead to quantitative inaccuracy of HTP, leading to sub-optimal treatment. Assessment of these uncertainties would allow for better judgement of the reliability of treatment plans and improve their value for treatment guidance. However, systematically investigating the impact of all uncertainties on treatment plans is a complex, high-dimensional problem and too computationally expensive for traditional Monte Carlo approaches. This study aims to systematically quantify the treatment-plan impact of tissue property uncertainties by investigating their individual contribution to, and combined impact on predicted temperature distributions. METHODS A novel Polynomial Chaos Expansion (PCE)-based HTP uncertainty quantification was developed and applied for locoregional hyperthermia of modelled tumours in the pancreatic head, prostate, rectum, and cervix. Patient models were based on the Duke and Ella digital human models. Using Plan2Heat, treatment plans were created to optimise tumour temperature (represented by T90) for treatment using the Alba4D system. For all 25-34 modelled tissues, the impact of tissue property uncertainties was analysed individually i.e., electrical and thermal conductivity, permittivity, density, specific heat capacity and perfusion. Next, combined analyses were performed on the top 30 uncertainties with the largest impact. RESULTS Uncertainties in thermal conductivity and heat capacity were found to have negligible impact on the predicted temperature ( < 1 × 10-10 °C), density and permittivity uncertainties had a small impact (< 0.3 °C). Uncertainties in electrical conductivity and perfusion can lead to large variations in predicted temperature. However, variations in muscle properties result in the largest impact at locations that could limit treatment quality, with a standard deviation up to almost 6 °C (pancreas) and 3.5 °C (prostate) for perfusion and electrical conductivity, respectively. The combined influence of all significant uncertainties leads to large variations with a standard deviation up to 9.0, 3.6, 3.7 and 4.1 °C for the pancreatic, prostate, rectal and cervical cases, respectively. CONCLUSION Uncertainties in tissue and perfusion property values can have a large impact on predicted temperatures from hyperthermia treatment planning. PCE-based analysis helps to identify all major uncertainties, their impact and judge the reliability of treatment plans.
Collapse
Affiliation(s)
- Jort A Groen
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, the Netherlands.
| | - Johannes Crezee
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and biomarkers, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - H Petra Kok
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Bevacqua MT, Gaffoglio R, Bellizzi GG, Righero M, Giordanengo G, Crocco L, Vecchi G, Isernia T. Field and Temperature Shaping for Microwave Hyperthermia: Recent Treatment Planning Tools to Enhance SAR-Based Procedures. Cancers (Basel) 2023; 15:cancers15051560. [PMID: 36900351 PMCID: PMC10000666 DOI: 10.3390/cancers15051560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The aim of the article is to provide a summary of the work carried out in the framework of a research project funded by the Italian Ministry of Research. The main goal of the activity was to introduce multiple tools for reliable, affordable, and high-performance microwave hyperthermia for cancer therapy. The proposed methodologies and approaches target microwave diagnostics, accurate in vivo electromagnetic parameters estimation, and improvement in treatment planning using a single device. This article provides an overview of the proposed and tested techniques and shows their complementarity and interconnection. To highlight the approach, we also present a novel combination of specific absorption rate optimization via convex programming with a temperature-based refinement method implemented to mitigate the effect of thermal boundary conditions on the final temperature map. To this purpose, numerical tests were carried out for both simple and anatomically detailed 3D scenarios for the head and neck region. These preliminary results show the potential of the combined technique and improvements in the temperature coverage of the tumor target with respect to the case wherein no refinement is adopted.
Collapse
Affiliation(s)
- Martina T. Bevacqua
- Department of Information Engineering, Infrastructures and Sustainable Energy, Università Mediterranea di Reggio Calabria, Via Graziella, 89124 Reggio di Calabria, Italy
- Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Consorzio Nazionale Interuniversitario per le Telecomunicazioni, Viale G.P. Usberti, 181/A Pal.3, 43124 Parma, Italy
| | - Rossella Gaffoglio
- Advanced Computing, Photonics & Electromagnetics (CPE), Fondazione LINKS, 10138 Turin, Italy
| | - Gennaro G. Bellizzi
- Department of Information Engineering, Infrastructures and Sustainable Energy, Università Mediterranea di Reggio Calabria, Via Graziella, 89124 Reggio di Calabria, Italy
- Correspondence: (G.G.B.); (T.I.)
| | - Marco Righero
- Advanced Computing, Photonics & Electromagnetics (CPE), Fondazione LINKS, 10138 Turin, Italy
| | - Giorgio Giordanengo
- Advanced Computing, Photonics & Electromagnetics (CPE), Fondazione LINKS, 10138 Turin, Italy
| | - Lorenzo Crocco
- National Research Council of Italy (CNR), Istituto per il Rilevamento Elettromagnetico dell’ Ambiente, CNR-IREA, Via Diocleziano 308, 80100 Napoli, Italy
| | - Giuseppe Vecchi
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
| | - Tommaso Isernia
- Department of Information Engineering, Infrastructures and Sustainable Energy, Università Mediterranea di Reggio Calabria, Via Graziella, 89124 Reggio di Calabria, Italy
- Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Consorzio Nazionale Interuniversitario per le Telecomunicazioni, Viale G.P. Usberti, 181/A Pal.3, 43124 Parma, Italy
- National Research Council of Italy (CNR), Istituto per il Rilevamento Elettromagnetico dell’ Ambiente, CNR-IREA, Via Diocleziano 308, 80100 Napoli, Italy
- Correspondence: (G.G.B.); (T.I.)
| |
Collapse
|
4
|
Zanoli M, Ek E, Dobšíček Trefná H. Antenna Arrangement in UWB Helmet Brain Applicators for Deep Microwave Hyperthermia. Cancers (Basel) 2023; 15:cancers15051447. [PMID: 36900238 PMCID: PMC10000505 DOI: 10.3390/cancers15051447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Deep microwave hyperthermia applicators are typically designed as narrow-band conformal antenna arrays with equally spaced elements, arranged in one or more rings. This solution, while adequate for most body regions, might be sub-optimal for brain treatments. The introduction of ultra-wide-band semi-spherical applicators, with elements arranged around the head and not necessarily aligned, has the potential to enhance the selective thermal dose delivery in this challenging anatomical region. However, the additional degrees of freedom in this design make the problem non-trivial. We address this by treating the antenna arrangement as a global SAR-based optimization process aiming at maximizing target coverage and hot-spot suppression in a given patient. To enable the quick evaluation of a certain arrangement, we propose a novel E-field interpolation technique which calculates the field generated by an antenna at any location around the scalp from a limited number of initial simulations. We evaluate the approximation error against full array simulations. We demonstrate the design technique in the optimization of a helmet applicator for the treatment of a medulloblastoma in a paediatric patient. The optimized applicator achieves 0.3 °C higher T90 than a conventional ring applicator with the same number of elements.
Collapse
|
5
|
Zanoli M, Dobšíček Trefná H. The hot-to-cold spot quotient for SAR-based treatment planning in deep microwave hyperthermia. Int J Hyperthermia 2022; 39:1421-1439. [DOI: 10.1080/02656736.2022.2136411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Massimiliano Zanoli
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Hana Dobšíček Trefná
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
6
|
VilasBoas-Ribeiro I, Franckena M, van Rhoon GC, Hernández-Tamames JA, Paulides MM. Using MRI to measure position and anatomy changes and assess their impact on the accuracy of hyperthermia treatment planning for cervical cancer. Int J Hyperthermia 2022; 40:2151648. [PMID: 36535922 DOI: 10.1080/02656736.2022.2151648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE We studied the differences between planning and treatment position, their impact on the accuracy of hyperthermia treatment planning (HTP) predictions, and the relevance of including true treatment anatomy and position in HTP based on magnetic resonance (MR) images. MATERIALS AND METHODS All volunteers were scanned with an MR-compatible hyperthermia device, including a filled waterbolus, to replicate the treatment setup. In the planning setup, the volunteers were scanned without the device to reproduce the imaging in the current HTP. First, we used rigid registration to investigate the patient position displacements between the planning and treatment setup. Second, we performed HTP for the planning anatomy at both positions and the treatment mimicking anatomy to study the effects of positioning and anatomy on the quality of the simulated hyperthermia treatment. Treatment quality was evaluated using SAR-based parameters. RESULTS We found an average displacement of 2 cm between planning and treatment positions. These displacements caused average absolute differences of ∼12% for TC25 and 10.4%-15.9% in THQ. Furthermore, we found that including the accurate treatment position and anatomy in treatment planning led to an improvement of 2% in TC25 and 4.6%-10.6% in THQ. CONCLUSIONS This study showed that precise patient position and anatomy are relevant since these affect the accuracy of HTP predictions. The major part of improved accuracy is related to implementing the correct position of the patient in the applicator. Hence, our study shows a clear incentive to accurately match the patient position in HTP with the actual treatment.
Collapse
Affiliation(s)
- Iva VilasBoas-Ribeiro
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martine Franckena
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gerard C van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Applied Radiation and Isotopes, Reactor Institute Delft, Delft University of Technology, Delft, The Netherlands
| | - Juan A Hernández-Tamames
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Margarethus M Paulides
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Care and Cure research lab (EM-4C&C) of the Electromagnetics Group, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
7
|
Drizdal T, Paulides MM, Sumser K, Vrba D, Malena L, Vrba J, Fiser O, van Rhoon GC. Application of photogrammetry reconstruction for hyperthermia quality control measurements. Phys Med 2022; 101:87-94. [PMID: 35987024 DOI: 10.1016/j.ejmp.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Hyperthermia is a cancer treatment in which the target region is heated to temperatures of 40-44 °C usually applying external electromagnetic field sources. The behavior of the hyperthermia applicators (antennas) in clinical practice should be periodically checked with phantom experiments to verify the applicator's performance over time. The purpose of this study was to investigate the application of photogrammetry reconstructions of 3D applicator position in these quality control procedure measurements. METHODS Photogrammetry reconstruction was applied at superficial hyperthermia scenario using the Lucite cone applicator (LCA) and phased-array heating in the head and neck region using the HYPERcollar3D. Wire-frame models of the entire measurement setups were created from multiple-view images and used for recreation of the setup inside 3D electromagnetic field simulation software. We evaluated applicator relation (Ra) between measured and simulated absolute specific absorption rate (SAR) for manually created and photogrammetry reconstructed simulation setups. RESULTS We found a displacement of 7.9 mm for the LCA and 8.2 mm for the HYPERcollar3D setups when comparing manually created and photogrammetry reconstructed applicator models placements. Ra improved from 1.24 to 1.18 for the LCA and from 1.17 to 1.07 for the HYPERcollar3D when using photogrammetry reconstructed simulation setups. CONCLUSION Photogrammetry reconstruction technique holds promise to improve measurement setup reconstruction and agreement between measured and simulated absolute SAR.
Collapse
Affiliation(s)
- Tomas Drizdal
- Dept. of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, nam. Sitna 3105, 272 01 Kladno, Czech Republic; Hyperthermia Unit, Dept. of Radiation Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands.
| | - Margarethus M Paulides
- Hyperthermia Unit, Dept. of Radiation Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands; Dept. of Electrical Engineering, Eindhoven University of Technology, De Rondom 70, 5612 AP Eindhoven, the Netherlands
| | - Kemal Sumser
- Hyperthermia Unit, Dept. of Radiation Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - David Vrba
- Dept. of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, nam. Sitna 3105, 272 01 Kladno, Czech Republic
| | - Lukas Malena
- Dept. of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, nam. Sitna 3105, 272 01 Kladno, Czech Republic
| | - Jan Vrba
- Dept. of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, nam. Sitna 3105, 272 01 Kladno, Czech Republic
| | - Ondrej Fiser
- Dept. of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, nam. Sitna 3105, 272 01 Kladno, Czech Republic
| | - Gerard C van Rhoon
- Hyperthermia Unit, Dept. of Radiation Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| |
Collapse
|
8
|
Sumser K, Drizdal T, Bellizzi GG, Hernandez-Tamames JA, van Rhoon GC, Paulides MM. Experimental Validation of the MRcollar: An MR Compatible Applicator for Deep Heating in the Head and Neck Region. Cancers (Basel) 2021; 13:5617. [PMID: 34830773 PMCID: PMC8615935 DOI: 10.3390/cancers13225617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Clinical effectiveness of hyperthermia treatments, in which tumor tissue is artificially heated to 40-44 °C for 60-90 min, can be hampered by a lack of accurate temperature monitoring. The need for noninvasive temperature monitoring in the head and neck region (H&N) and the potential of MR thermometry prompt us to design an MR compatible hyperthermia applicator: the MRcollar. In this work, we validate the design, numerical model, and MR performance of the MRcollar. The MRcollar antennas have low reflection coefficients (<-15 dB) and the intended low interaction between the individual antenna modules (<-32 dB). A 10 °C increase in 3 min was reached in a muscle-equivalent phantom, such that the specifications from the European Society for Hyperthermic Oncology were easily reached. The MRcollar had a minimal effect on MR image quality and a five-fold improvement in SNR was achieved using the integrated coils of the MRcollar, compared to the body coil. The feasibility of using the MRcollar in an MR environment was shown by a synchronous heating experiment. The match between the predicted SAR and measured SAR using MR thermometry satisfied the gamma criteria [distance-to-agreement = 5 mm, dose-difference = 7%]. All experiments combined show that the MRcollar delivers on the needs for MR-hyperthermia in the H&N and is ready for in vivo investigation.
Collapse
Affiliation(s)
- Kemal Sumser
- Department of Radiotherapy, Erasmus Medical Center Cancer Institute, 3015 GD Rotterdam, The Netherlands; (T.D.); (G.G.B.); (G.C.v.R.); (M.M.P.)
| | - Tomas Drizdal
- Department of Radiotherapy, Erasmus Medical Center Cancer Institute, 3015 GD Rotterdam, The Netherlands; (T.D.); (G.G.B.); (G.C.v.R.); (M.M.P.)
- Department of Biomedical Technology, Czech Technical University in Prague, nam. Sítna 3105, 272 01 Kladno, Czech Republic
| | - Gennaro G. Bellizzi
- Department of Radiotherapy, Erasmus Medical Center Cancer Institute, 3015 GD Rotterdam, The Netherlands; (T.D.); (G.G.B.); (G.C.v.R.); (M.M.P.)
| | - Juan A. Hernandez-Tamames
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center Cancer Institute, 3015 GD Rotterdam, The Netherlands;
| | - Gerard C. van Rhoon
- Department of Radiotherapy, Erasmus Medical Center Cancer Institute, 3015 GD Rotterdam, The Netherlands; (T.D.); (G.G.B.); (G.C.v.R.); (M.M.P.)
| | - Margarethus Marius Paulides
- Department of Radiotherapy, Erasmus Medical Center Cancer Institute, 3015 GD Rotterdam, The Netherlands; (T.D.); (G.G.B.); (G.C.v.R.); (M.M.P.)
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
9
|
Paulides MM, Rodrigues DB, Bellizzi GG, Sumser K, Curto S, Neufeld E, Montanaro H, Kok HP, Dobsicek Trefna H. ESHO benchmarks for computational modeling and optimization in hyperthermia therapy. Int J Hyperthermia 2021; 38:1425-1442. [PMID: 34581246 DOI: 10.1080/02656736.2021.1979254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The success of cancer hyperthermia (HT) treatments is strongly dependent on the temperatures achieved in the tumor and healthy tissues as it correlates with treatment efficacy and safety, respectively. Hyperthermia treatment planning (HTP) simulations have become pivotal for treatment optimization due to the possibility for pretreatment planning, optimization and decision making, as well as real-time treatment guidance. MATERIALS AND METHODS The same computational methods deployed in HTP are also used for in silico studies. These are of great relevance for the development of new HT devices and treatment approaches. To aid this work, 3 D patient models have been recently developed and made available for the HT community. Unfortunately, there is no consensus regarding tissue properties, simulation settings, and benchmark applicators, which significantly influence the clinical relevance of computational outcomes. RESULTS AND DISCUSSION Herein, we propose a comprehensive set of applicator benchmarks, efficacy and safety optimization algorithms, simulation settings and clinical parameters, to establish benchmarks for method comparison and code verification, to provide guidance, and in view of the 2021 ESHO Grand Challenge (Details on the ESHO grand challenge on HTP will be provided at https://www.esho.info/). CONCLUSION We aim to establish guidelines to promote standardization within the hyperthermia community such that novel approaches can quickly prove their benefit as quickly as possible in clinically relevant simulation scenarios. This paper is primarily focused on radiofrequency and microwave hyperthermia but, since 3 D simulation studies on heating with ultrasound are now a reality, guidance as well as a benchmark for ultrasound-based hyperthermia are also included.
Collapse
Affiliation(s)
- Margarethus M Paulides
- Electromagnetics for Care & Cure Laboratory (EM4C&C), Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Radiotherapy, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Dario B Rodrigues
- Hyperthermia Therapy Program, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, USA
| | - Gennaro G Bellizzi
- Department of Radiotherapy, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Kemal Sumser
- Department of Radiotherapy, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Sergio Curto
- Department of Radiotherapy, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Hazael Montanaro
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland.,Laboratory for Acoustics/Noise control, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dubendorf, Switzerland
| | - H Petra Kok
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Hana Dobsicek Trefna
- Biomedical Electromagnetics Group, Department of Electrical Engineering, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
10
|
Zanoli M, Trefná HD. Suitability of eigenvalue beam-forming for discrete multi-frequency hyperthermia treatment planning. Med Phys 2021; 48:7410-7426. [PMID: 34529281 DOI: 10.1002/mp.15220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Thermal dose delivery in microwave hyperthermia for cancer treatment is expected to benefit from the introduction of ultra-wideband (UWB)-phased array applicators. A full exploitation of the combination of different frequencies to improve the deposition pattern is, however, a nontrivial problem. It is unclear whether the cost functions used for hyperthermia treatment planning (HTP) optimization in the single-frequency setting can be meaningfully extended to the UWB case. METHOD We discuss the ability of the eigenvalue (EV) and a novel implementation of iterative-EV (i-EV) beam-forming methods to fully exploit the available frequency spectrum when a discrete set of simultaneous operating frequencies is available for treatment. We show that the quadratic power deposition ratio solved by the methods can be maximized by only one frequency in the set, therefore rendering EV inadequate for UWB treatment planning. We further investigate whether this represents a limitation in two realistic test cases, comparing the thermal distributions resulting from EV and i-EV to those obtained by optimizing for other nonlinear cost functions that allow for multi-frequency. RESULTS The classical EV-based single-frequency HTP yields systematically lower target SAR deposition and temperature values than nonlinear HTP. In a larynx target, the proposed single-frequency i-EV scheme is able to compensate for this and reach temperatures comparable to those given by global nonlinear optimization. In a meninges target, the multi-frequency setting outperforms the single-frequency one, achieving better target coverage and 0 . 5 ∘ C higher T 90 in the tumor than single-frequency-based HTP. CONCLUSIONS Classical EV performs poorly in terms of resulting target temperatures. The proposed single-frequency i-EV scheme can be a viable option depending on the patient and tumor to be treated, as long as the proper operating frequency can be selected across a UWB range. Multi-frequency HTP can bring a considerable benefit in regions typically difficult to treat such as the brain.
Collapse
Affiliation(s)
- Massimiliano Zanoli
- Department of Electrical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Hana Dobšíček Trefná
- Department of Electrical Engineering, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
11
|
Hannon G, Tansi FL, Hilger I, Prina‐Mello A. The Effects of Localized Heat on the Hallmarks of Cancer. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging Group Trinity Translational Medicine Institute Dublin 8 Ireland
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute Trinity College Dublin Dublin 8 Ireland
| | - Felista L. Tansi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital—Friedrich Schiller University Jena Am Klinikum 1 07740 Jena Germany
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital—Friedrich Schiller University Jena Am Klinikum 1 07740 Jena Germany
| | - Adriele Prina‐Mello
- Nanomedicine and Molecular Imaging Group Trinity Translational Medicine Institute Dublin 8 Ireland
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute Trinity College Dublin Dublin 8 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute Trinity College Dublin Dublin 2 Ireland
| |
Collapse
|
12
|
Wang L, Wang H, Xu C, Ji Z, Li J, Dong X, Shi X. Dielectric Properties of Human Active Liver, Kidney and Spleen Compared to Those of Respective Inactive Tissues, Porcine Tissues and the Data Provided by a Database in the Frequency Range of 10 Hz to 100 MHz. IEEE Trans Biomed Eng 2021; 68:3098-3109. [PMID: 33687834 DOI: 10.1109/tbme.2021.3065016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The purpose of this work is to study whether the active state and species of biological tissues can influence changes in their dielectric properties. METHODS In this paper, the dielectric properties of liver, kidney and spleen tissues from human active, human inactive and animal tissues are measured in the frequency range of 10 Hz to 100 MHz. The four- and two-electrode methods are used to measure dielectric properties at different frequencies. Statistical analysis and the pattern recognition method are used to compare the dielectric properties of human active tissues, human inactive tissues, animal tissues and data provided by the IFAC database. RESULTS The results show that the dielectric properties of human active tissues are significantly different from those of human inactive tissues and animal tissues, resulting in a great difference between the dielectric properties provided by the IFAC database and those of human active tissues. The dielectric properties of human active tissues can be identified by the pattern recognition method based on principal component analysis, which further proves that the dielectric properties of human active tissues cannot be replaced. CONCLUSION The dielectric properties of biological tissues are closely related to the activity and species of tissues. The dielectric properties of human active tissues cannot be replaced by those of human cadaver tissues or animal tissues. SIGNIFICANCE The significance of this study is suggesting that the IFAC database should be updated with the dielectric properties of human active tissues to provide accurate data for bioelectromagnetics research.
Collapse
|
13
|
Lutz NW, Bernard M. Contactless Thermometry by MRI and MRS: Advanced Methods for Thermotherapy and Biomaterials. iScience 2020; 23:101561. [PMID: 32954229 PMCID: PMC7489251 DOI: 10.1016/j.isci.2020.101561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Control of temperature variation is of primordial importance in particular areas of biomedicine. In this context, medical treatments such as hyperthermia and cryotherapy, and also the development and use of hydrogel-based biomaterials, are of particular concern. To enable accurate temperature measurement without perturbing or even destroying the biological tissue or material to be monitored, contactless thermometry methods are preferred. Among these, the most suitable are based on magnetic resonance imaging and spectroscopy (MRI, MRS). Here, we address the latest developments in this field as well as their current and anticipated practical applications. We highlight recent progress aimed at rendering MR thermometry faster and more reproducible, versatile, and sophisticated and provide our perspective on how these new techniques broaden the range of applications in medical treatments and biomaterial development by enabling insight into finer details of thermal behavior. Thus, these methods facilitate optimization of clinical and industrial heating and cooling protocols.
Collapse
Affiliation(s)
- Norbert W. Lutz
- Aix-Marseille University, CNRS, CRMBM, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Monique Bernard
- Aix-Marseille University, CNRS, CRMBM, 27 Bd Jean Moulin, 13005 Marseille, France
| |
Collapse
|
14
|
Quantitative, Multi-institutional Evaluation of MR Thermometry Accuracy for Deep-Pelvic MR-Hyperthermia Systems Operating in Multi-vendor MR-systems Using a New Anthropomorphic Phantom. Cancers (Basel) 2019; 11:cancers11111709. [PMID: 31684057 PMCID: PMC6896203 DOI: 10.3390/cancers11111709] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 01/10/2023] Open
Abstract
Clinical outcome of hyperthermia depends on the achieved target temperature, therefore target conformal heating is essential. Currently, invasive temperature probe measurements are the gold standard for temperature monitoring, however, they only provide limited sparse data. In contrast, magnetic resonance thermometry (MRT) provides unique capabilities to non-invasively measure the 3D-temperature. This study investigates MRT accuracy for MR-hyperthermia hybrid systems located at five European institutions while heating a centric or eccentric target in anthropomorphic phantoms with pelvic and spine structures. Scatter plots, root mean square error (RMSE) and Bland-Altman analysis were used to quantify accuracy of MRT compared to high resistance thermistor probe measurements. For all institutions, a linear relation between MRT and thermistor probes measurements was found with R2 (mean ± standard deviation) of 0.97 ± 0.03 and 0.97 ± 0.02, respectively for centric and eccentric heating targets. The RMSE was found to be 0.52 ± 0.31 °C and 0.30 ± 0.20 °C, respectively. The Bland-Altman evaluation showed a mean difference of 0.46 ± 0.20 °C and 0.13 ± 0.08 °C, respectively. This first multi-institutional evaluation of MR-hyperthermia hybrid systems indicates comparable device performance and good agreement between MRT and thermistor probes measurements. This forms the basis to standardize treatments in multi-institution studies of MR-guided hyperthermia and to elucidate thermal dose-effect relations.
Collapse
|